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Abstract. The early Universe has been a subject of research for many cosmologists and it is reviewed and 
analyzed rigorously in cosmology recently. Thermal history and theory of phase transition coordinate us 
to elucidate the evolution of the Universe at its early stages and is interesting to get a gist of early universe 
behavior. At phase transition, effective potential plays a significant role for the kinds of transition that 
occurred during the evolution.  The temperature, at which phase transition occurs, can be determined at 
minimum effective potential.  It is also known fact that temperature of the Universe has changed considerably 
with its evolution.  The present work investigates the time-temperature relation in four- dimensional and 
five-dimensional cosmological models.  A comparison of time- temperature relation in FRW model with that 
of Kaluza-Klein (K-K) model demonstrates that temperature decreases faster in Kaluza-Klein model. The 
investigation demonstrates the important role played by extra dimension in the study of time-temperature 
relation at the early Universe scenario. 
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Introduction 
 
Man is always curious about secrets of the 

Universe. Birth of the Universe, Origin, its behavior 
at early stages are long standing issues which are still 
being explored by researchers. In this regard, major 
revolution is caused by Big-Bang theory which is the 
most successful yet incomplete, as it is unable to 
explain certain features of the Universe, such as, 
presence of Dark Matter, Dark Energy, Large Scale 
Structure, Accelerated Expansion etc. Emergence of 
the universe from nothing has been an amazing 
situation. In this regard, Lamaitre has proposed 
‘hypothesis of primeval atom’ in 1927 [1]. The 
theory has also predicted that just after 10-37 second 
when the temperature and pressure had been very 
high enough to cause cosmic inflation [2]. The 
Universe was in the soup of matter and radiation 
which were in thermal equilibrium with each other. 
Thermal history of the Universe revealed that it had 
undergone several phase transitions during its 
evolutions. In this regard, a detail information with 
deep theoretical analysis have been provided by the 
published literature [3 – 5]. It is interesting to note 
that theoretical analysis of thermal history have been 
done by mechanism of Higg’s boson [3] which has 

been discovered recently [4]. Weinberg [5] has 
ingeniously elucidated various stages of phase 
transitions at the early era of the universe. 

First order phase transition is similar to process 
of thermal equilibrium at bubble walls [6]. If pressure 
difference across the bubble wall is different than 
bubble wall can be broken and energy is released 
which can be in other forms. Consequences of First 
order transition give rise to formation of domain 
walls, generation of gravitational waves and other 
certain topological defects. Cosmic strings are also 
topological defects which came into existence before 
the Electro – Weak Transition.  

Second Phase transition [7] occurred which 
resulted in Quark-Gluon -Plasma State at 10-6 sec. 
After Big-Bang, although temperature was not so 
high, pair production and annihilation was happening 
that resulted into production of quarks and leptons. 
Today quarks and leptons are basic building blocks 
for elementary particles. Baryogenesis [8], i.e. 
generation of Baryons continued with the evolution 
of the Universe. It has also seen that Baryogenesis 
even violated the conservation of baryon number in 
the process of matter creation so as to have some 
structure for the Universe. Although matter creation 
at early stages of the Universe sounds to be appealing 
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but it is found that the natur has preferred matter 
generation over antimatter creation. In the Universe, 
matter-antimatter ratio is unequal. This Problem is 
yet to be solved.  

With the time evolution of the Universe, due to 
pair annihilation it was filled with photons, neutrinos, 
electrons, protons. The Second Order phase 
transitions are also called crossover transition that 
took place at time 106 sec where the temperature is 
about 1 GeV. As Universe expanded, it cooled down 
so the quarks- Hadron interaction resulted into its 
appearance in bound form in baryons and mesons. 
Before this transition, quarks were free to move in 
space which is called as Quark -Gluon plasma state 
[9]. The impact of the transition on quarks is to 
interact in such a way that led to the formations of 
baryons and mesons. In this way, they became 
building blocks for Hadrons or baryons. In other 
words, Second Order Transition led to confinement 
of Quarks, so also the formation of Hadrons. The 
inflation caused the Universe to expand 
continuously. As a result, the temperature of the 
Universe has fallen to several Kelvin. It had been 
predicted by several workers [10, 11, 12] that the 
Universe at very early stages was initially 
anisotropic, later due to its expansion it becomes 
isotropic.   

There are several effects of the phase transitions 
in the normal matter. The major effect of the Phase 
transition is the symmetry breaking. In normal 
matter, it is observed that water is more symmetric 
than ice, steam is more symmetric than water. From 
here, we also observe that symmetry of the matter is 
related to the temperature. There is more symmetry 
for high temperature. Thus, for the Universe, a 
fraction of second after its birth, it was highly 
symmetric as its temperature was very high. Phase 
transition is well understood from thermal history of 
the Universe. Evolution of the Universe with its 
thermal history has been discussed by Prokopec [13]. 
Besides phase transition, attempt has been made to 
unite all forces as it is believed that just before the 
Big-Bang all forces except gravity are together as per 
Grand Unified Theory (GUT) which had been first 
forth by Guth [14-15]. Weinberg [16] has 
indigenously illustrated these forces which had been 
later put together as standard model in particle 
physics. Later on Kaluza in 1921[17] and Klein in 
1926 [18] have made indigenous effort for it and 
propounded Kaluza-Klein theory which proved a 
milestone for the further development in the early 
Universe cosmology.  

Thermal history successfully depicts evolution of 
the Universe [19] but the cause of phase transition 
cannot be understood by it. Theoretical aspects of 
phase transition have been explained by Toy model 
[20, 21] which illuminates phase transition by 
inclusion of effective potential. The theory of phase 
transition [19-21] provides the relation between 
effective potential and critical temperature and it has 
been given by  

𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝜑𝜑𝜑𝜑,𝑇𝑇𝑇𝑇) =  
𝜆𝜆𝜆𝜆
4
𝜑𝜑𝜑𝜑4 +

𝑔𝑔𝑔𝑔3𝑇𝑇𝑇𝑇
4𝜋𝜋𝜋𝜋

𝜑𝜑𝜑𝜑3 + 

+ 1
2
��𝜆𝜆𝜆𝜆
3

+ 𝑔𝑔𝑔𝑔2

4
� 𝑇𝑇𝑇𝑇2 − 𝜆𝜆𝜆𝜆𝜈𝜈𝜈𝜈2� 𝜑𝜑𝜑𝜑2                (1) 

 
where λ, ν, are constants.  g is the charge, φ is gauge 
potential and T is the temperature. It is also found that 
effective potential is minimized at critical 
temperature. There are three minima of potentials 
observed at different temperatures which are termed 
as critical temperatures. The order of phase transition 
depends upon these temperatures. As discussed 
previously, structure, geometry and present universe 
scenario are the consequences of phase transitions. 
The effective potential and critical temperature can 
be obtained from Friedmann-Robertson-Walker 
(FRW) model also. The FRW model is also called as 
steady state model under certain conditions.  

Big Bang model had been challenged by ‘Steady 
state model’ (FRW) [22]. The Steady state model of 
the Universe explained the Universe and its behavior 
with the help of ‘Cosmological Principle’ which is 
termed as perfect Cosmological principle. The 
expansion of the Universe, its isotropic nature, matter 
creation etc. are well explained by the steady state 
model. However certain observations created a major 
setback to steady state model. In this regard, Big-
Bang model is proved to be more successful than 
Steady state model. The observations by Deep space 
radio telescope indicated that the Universe at its early 
stages was quite different than the present Universe 
[23, 24]. Cosmic microwave background for the 
Universe as per COBE satellite [25, 26] was inferred 
by which the Universe appeared to be permeated 
uniformly by Cosmic radiation in background, thus, 
it appears to be isotropic in present time. Apart from 
Big-Bang model, higher dimension theory as a 
consequence of string theory in the field of 
Cosmology brought a revolution which can be 
mainly applied in the study of the early Universe 
[27,28]. Many researchers worked on Kaluza-Klein 
theory [29-31] and set up the model so as to study the 
early universe. 
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Motivated with the above discussion, time-
temperature relations have been obtained in 
Friedmann Robertson Walker (FRW) and Kaluza- 
Klein (KK) cosmological models in this paper. We 
have also studied effective potential for four 
dimensional and five dimensional models.  It is 
observed that with evolution, temperature is 
decreased. The present study also emphasizes the 
implication of extra dimension on time temperature.  

The organization of the paper is in five sections. 
We began with Introduction in first section followed 
by discussion on determination of time-temperature 
relation in FRW metric in section 2 and in K-K model 
in section 3. Section 4 comprises of discussion 
followed by conclusion in the 5th section.   

Time-Temperature relation in FRW metric 

Friedmann derived field equations in 1922 with 
the help of Einstein’s general theory of relativity in 
the context of expansion of the universe, assuming 
homogeneous and isotropic. Universe. These 
equations are called as Friedmann equations. In 1926 
Lemaitre independently carried out the similar work 
explaining expansion of the universe. Later in 1930s, 
Robertson and Walker independently obtained metric 
equation in order to explain complete geometrical 
properties of the universe. Using Robertson-Walker 
metric, the Einstein Field Equations (EFE) have been 
derived which resembled the equations obtained by 
Friedmann, The cosmological model representing 
Friedmann equations thus named as Friedmann-
Lemaitre-Robertson-Walker cosmological model 
(FLRW), or FRW model in more general form. The 
FRW model is also called standard model as it can 
explain most of the features of the universe as 
discussed in previous section. Here, let us have a 
glance at FRW model for the study of time-
temperature relation, which will enable us to set up a 
new model in higher dimension, to be discussed in 
next section. 

Consider FRW metric [32,33] as given below, 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 = −𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 + 
+𝑅𝑅𝑅𝑅2(𝑡𝑡𝑡𝑡) � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2

1−𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2
+ 𝑟𝑟𝑟𝑟2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 + 𝑟𝑟𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑2�      (2)

Let x0 = -t, x1= r, x2 = θ, x3 = ϕ are space –time 
coordinates. In a curved space time, the line element 
is given as, 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 where gij is a 4×4 
metric tensor. k is a curvature constant, k = 0 for flat 
universe, k =1 for closed universe and      k = -1 for 

open universe. The Einstein field equations can be 
obtained from the following Eq. (3) 

𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −
1
2
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + Λ𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

Ri
j – Ricci tensor, R – Ricci scalar, T i

j – nergy-
momentum tensor, Λ – Cosmological constant and G 
– gravitational constant. Field Equations (Eq. 3) can 
also be written as,

𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝑐𝑐𝑐𝑐2

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + Λ𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (4) 

where 𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −
1
2
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . 

Energy momentum tensor Ti
j is represented as 

given below. 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑝𝑝𝑝𝑝 + 𝜌𝜌𝜌𝜌)𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 + 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝          (5) 

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

is the 4 – vector velocity component such that uiuj = 
-1, when i = 0,1,2,3 (space-time coordinates); p and
ρ are pressure and density of matter distribution of
the universe, respectively. Hence, from above
equation, the energy momentum   tensor is given by
Ti

j = (-ρ, p, p, p). We have assumed ћ = c= 1 for
deriving field equations in accordance with the
cosmological principle.  Field equations for FRW
cosmological model are obtained by solving Eqs (2-
5) as follows,

3 𝑅̇𝑅𝑅𝑅2

𝑅𝑅𝑅𝑅2
+ 3 𝑘𝑘𝑘𝑘

𝑅𝑅𝑅𝑅2
= 8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌 + Λ              (6) 

2 𝑅̈𝑅𝑅𝑅
𝑅𝑅𝑅𝑅

+ 𝑅̇𝑅𝑅𝑅2

𝑅𝑅𝑅𝑅2
+ 𝑘𝑘𝑘𝑘

𝑅𝑅𝑅𝑅2
= −8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑝𝑝𝑝𝑝 + Λ           (7) 

Let 𝐻𝐻𝐻𝐻 = 𝑅̇𝑅𝑅𝑅
𝑅𝑅𝑅𝑅
 then Eq. (6) and (7) are modified as: 

3𝐻𝐻𝐻𝐻2 + 3 𝑘𝑘𝑘𝑘
𝑅𝑅𝑅𝑅2

= 8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌 + Λ            (8) 

(1 − 2𝑞𝑞𝑞𝑞)𝐻𝐻𝐻𝐻2 + 3 𝑘𝑘𝑘𝑘
𝑅𝑅𝑅𝑅2

= −8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑝𝑝𝑝𝑝 + Λ     (9) 

In Eq. (9), q is deceleration parameter defined as, 

𝑞𝑞𝑞𝑞 = − �
𝑅𝑅𝑅𝑅𝑅̈𝑅𝑅𝑅
𝑅̇𝑅𝑅𝑅2
�
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Here Λ the Cosmological constant plays a 
significant role in the study of early Universe as it 
represents Vacuum Energy. At the early stage of the 
Universe k can be taken zero (k = 0) i.e. the universe 
at its early stage can be assumed to be flat. In order 
to find TC, Λ is assumed to be constant factor at the 
early universe although it is not really constant which 
was inferred through the observations recently [34, 
35]. To determine TC, we consider energy 
conservation ; 0i

j jT =  which gives the following 
equation. 

 𝜌̇𝜌𝜌𝜌 + (𝜌𝜌𝜌𝜌 + 𝑝𝑝𝑝𝑝)3H = 0                   (10) 
 
Substituting k=0 and constant Λ in equation (4) 

and solving it with Eq. (10) we get, 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅

(𝜌𝜌𝜌𝜌𝑅𝑅𝑅𝑅3) + 3𝑝𝑝𝑝𝑝𝑅𝑅𝑅𝑅2 = 0                   (11) 
 
For radiation dominated Universe , p = 1/3ρ, 

substituting p in above equation and solving it, we get 
ρ ∝ R-4. let us consider radiation density ρ = U for 
past epoch in the early era. The radiation density for 
past epoch R is given by 𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈0

𝑅𝑅𝑅𝑅04

𝑅𝑅𝑅𝑅4
  (where U0, R0 

are the initial radiation energy density and initial 
epoch at t=0 respectively.   

If we consider the early universe as perfect black 
body then Energy density in the perfect black body is 
given by  

U= σT4 ,where σ is radiation constant and T is the 
Temperature of it . In this situation we obtain = 𝐾𝐾𝐾𝐾

𝑅𝑅𝑅𝑅
 , 

where K is constant depending upon σ  and constant 
of proportionality. At very early epoch we neglect Λ 
as compared to very high temperature. Substituting ρ 
= U =σT4 , Eq.(6) is  rewritten as, 

   
𝑅̇𝑅𝑅𝑅2

𝑅𝑅𝑅𝑅2
= 8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑇𝑇4

3
                          (12) 

 
On substitution of T = A/R and assuming at t=0 

R=0,  

𝑅𝑅𝑅𝑅 = 𝐴𝐴𝐴𝐴 � 3
32𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

�
−1
4 �𝑡𝑡𝑡𝑡

1
2�                    (13) 

So, 

𝑇𝑇𝑇𝑇 = 𝐴𝐴𝐴𝐴 � 3
32𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

�
1
4 �𝑡𝑡𝑡𝑡−

1
2�                     (14) 

 
Above equation gives direct relation between T 

and t. It is known to us that at early stage of the  
 

Universe, the particles are relativistic and it is 
assumed to behave as relativistic gas at high 
temperature. If particle interaction is slower than 
expansion rate H [20,21], density is modified as  

 
𝜌𝜌𝜌𝜌 = 𝜋𝜋𝜋𝜋2

30
𝑔𝑔𝑔𝑔∗𝑇𝑇𝑇𝑇4                           (15) 

  
From Eq. (8) considering k=0 and neglecting  Λ , 

we write Eq. (8) as  
 

3𝐻𝐻𝐻𝐻2 = 8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌(𝑇𝑇𝑇𝑇)                        (16) 
 
Assuming Plank’s mass 𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1

√8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
 

 

𝐻𝐻𝐻𝐻 = 𝑅̇𝑅𝑅𝑅
𝑅𝑅𝑅𝑅

= �𝜋𝜋𝜋𝜋
2

90
�
1
2  (𝑔𝑔𝑔𝑔∗)

1
2  𝑇𝑇𝑇𝑇

2

𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2                 (17) 

 
As found earlier T∝ 1/R and we can get an 

expression, 
 

𝑅𝑅𝑅𝑅𝑅̇𝑅𝑅𝑅 = �𝜋𝜋𝜋𝜋
2

90
�
1
2  (𝑔𝑔𝑔𝑔∗)

1
2  1
8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

                  (18) 
 
Assuming 8πG =1, integrating and rearranging 

the terms in above equation, we get, 
Solving above equation we obtain the following 

relation between time and temperature 
 

𝑡𝑡𝑡𝑡 = �90
𝜋𝜋𝜋𝜋2

1
�𝑔𝑔𝑔𝑔∗

� 1
𝑇𝑇𝑇𝑇2
�                         (19) 

 
In above equation, g* is number of degrees of 

freedom of the particles. 
Direct information of the critical temperature 

could not be revealed from Eq.(14) and (19), but 
Calculations of TC can be made simple by knowing 
g* at the phase transitions. Consider the GUT 
transition, g* =gb +gf where gb and gf are internal 
degrees of freedom for bosons and fermions 
respectively. From the Particle Data group [36,37] g* 
is calculated as 106.75 at the time of GUT transition 
while g* = 17.25 at QCD transition. For different g* 
at the phase transitions, temperature TC’s are 
calculated which are different at GUT, electroweak 
and QCD transitions. The relation (14) is not obeyed 
strictly at the transitions as it represents continuous t-
T variations. In the next section, we obtain the 
relation between time and temperature for Kaluza-
Klein cosmological model. 
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Time – Temperature relation in Kaluza- Klein 
Cosmological model 

 
The Kaluza-Klein metric is the 5D FRW metric 

i.e. four dimensional FRW metric with an extra 
dimension [38,39] which is as given below: 

 
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = −𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2 + 

+𝑅𝑅𝑅𝑅2(𝑡𝑡𝑡𝑡) �
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟2

1 − 𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟2
+ 𝑟𝑟𝑟𝑟2𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃2 + 𝑟𝑟𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑2� + 

+𝐴𝐴𝐴𝐴2(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝜓𝜓𝜓𝜓2                             (20) 
 

where, k is a curvature constant equal to 0, 1 , -1 for 
flat , closed and open universe, respectively.  R(t) and 
A(t) are fourth and fifth dimensional scale factors. 
The five-dimensional coordinates in above equation 
are given by x0 = t, and x1, x2, x3, x4 = r, θ, ϕ, ψ, 
respectively. Following the Eqs. (3-5) for Kaluza-
Klein metric, the field equations are obtained as given 
below. 

3 𝑅̇𝑅𝑅𝑅2

𝑅𝑅𝑅𝑅2
+ 3 𝑅𝑅𝑅𝑅𝐴̇̇𝐴𝐴𝐴

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴
+ 3 𝑘𝑘𝑘𝑘

𝑅𝑅𝑅𝑅2
= 8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌 + Λ           (21) 

 

2 𝑅̈𝑅𝑅𝑅
𝑅𝑅𝑅𝑅

+ 𝑅̇𝑅𝑅𝑅2

𝑅𝑅𝑅𝑅2
+ 𝑘𝑘𝑘𝑘

𝑅𝑅𝑅𝑅2
+ 2 𝑅𝑅𝑅𝑅𝐴̇̇𝐴𝐴𝐴

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴
+ 𝐴̈𝐴𝐴𝐴

𝐴𝐴𝐴𝐴
= −8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑝𝑝𝑝𝑝 + Λ     (22) 

 
3 𝑅̈𝑅𝑅𝑅
𝑅𝑅𝑅𝑅

+ 3 𝑅̇𝑅𝑅𝑅2

𝑅𝑅𝑅𝑅2
+ 3 𝑘𝑘𝑘𝑘

𝑅𝑅𝑅𝑅2
= −8𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑝𝑝𝑝𝑝 + Λ             (23) 

 
In above field equations A is the extra dimension. 

For early Universe k can be taken as zero as The 
Universe is almost flat at very early Universe and 
assuming Λ is constant, Field equations can easily be 
solved to get the relation between R and A. In order 
to get an expression for density, we consider five 
dimensional energy momentum tensor as Ti

j = (-ρ, p, 
p, p,p). Energy conservation relation hence obtained 
as given below.  

 
𝜌̇𝜌𝜌𝜌 + (𝜌𝜌𝜌𝜌 + 𝑝𝑝𝑝𝑝) �3 Ṙ

𝑅𝑅𝑅𝑅
+ 𝐴̇𝐴𝐴𝐴

𝐴𝐴𝐴𝐴
� = 0              (24) 

 
As per Cosmological Principal the Universe is 

filled with perfect fluid so Equation of State for it is 
given by p= (γ-1) ρ  so we get an expression as 
follows 

 
𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌0𝑅𝑅𝑅𝑅−3𝛾𝛾𝛾𝛾𝐴𝐴𝐴𝐴−𝛾𝛾𝛾𝛾                       (25) 

 
Here, we assume ansatz A = Rn (‘n’ is constant ) 

[The universe is anisotropic at its early stages, so  
σ2 ∝ θ , where σ is shear scalar and θ is expansion  
 

scalar. Due to this the metric potentials are related by 
power relations [40]]. Substituting A in Eq. (25), we 
get,  

 
𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌0𝑅𝑅𝑅𝑅−𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛+3)                       (26) 

 
In this case Temperature dependence on scale 

will be given by 
 

𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇0𝑅𝑅𝑅𝑅
−𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛+3)

4                         (27) 
 

[[𝑇𝑇𝑇𝑇0 = �𝜌𝜌𝜌𝜌0
𝜋𝜋𝜋𝜋
�
1
4� ], σ is the Stefan’s constant.] 

 Assuming 8πG =1 and neglecting Λ as compared 
to density and pressure of the universe, Solving field 
equations (21) – (23) we get,  

 

𝑅𝑅𝑅𝑅 = 𝑑𝑑𝑑𝑑 �𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛+3
2

𝑡𝑡𝑡𝑡 − 𝐶𝐶𝐶𝐶�
2

𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛+3)                 (28) 
 
If we assume initial conditions i.e. at t = t0, R= 

R0, H=H0 we obtain 
 

𝐶𝐶𝐶𝐶 = 𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛+3)
2

𝑡𝑡𝑡𝑡0 −
1
𝐻𝐻𝐻𝐻0

, 
 

𝑑𝑑𝑑𝑑 = (𝐻𝐻𝐻𝐻0)
2

𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛+3) 𝑅𝑅𝑅𝑅0 
 
So time-temperature relation can be obtained as, 
 

𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇0 �
𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛+3)

2
𝐻𝐻𝐻𝐻0(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0) + 1�

− 2
𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛+3)    (29) 

 
From above equation, temperatures at Radiation 

dominated phase, matter dominated phase can be 
determined. 

 
Discussion 
 
Comparing Eq. (14) and Eq. (29) it is observed 

that in FRW model T∝ t-1/2 while in K-K 
cosmological model, temperature of the universe 
depends upon n which is an index factor for extra 
dimension. Since early Universe is supposed to be in 
radiation dominated phase, so, for radiation 
dominated phase time-temperature expression 
depicts dependency of temperature on time. To 
determine it, consider  γ = 4/3 as universe is radiation 
dominated at its early stage, therefore equation (23) 
is modified in the following form. 
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𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇0 �
3(𝑛𝑛𝑛𝑛+3)

2
𝐻𝐻𝐻𝐻0(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0) + 1�

− 3
2(𝑛𝑛𝑛𝑛+3)      (30) 

 
Irrespective of constants in equations (14) and 

(29), it is observed that temperature in five 
dimensional model is lower than that four 
dimensional model. The temperature in FRW model 
is proportional to t-1/2 while it is proportional to t -

3/2(n+3). This can be due to the presence of extra 
dimension in the early Universe. We also observe that 
T depends upon γ. Hence at different phases, 
temperatures of the universe can be calculated. 
Although above expression explains Time-
temperature relation in higher dimension but it does 
not provide any clue to find critical temperature at the 
phase transition. To determine critical temperature in 
five-dimensional Universe, it is necessary to account 
number of degrees of freedom in five-dimension for 
both Fermions and Bosons which were supposed to 
be major Constituents at early stage of the Universe. 
The work by Dienes et.al, Emel’Yanov [37, 41] had 
explained the implications of extra dimension for t-T 
relation in higher dimension by calculating effective 
potential for four as well as in five-dimensional 
physics. They have shown that effective potential in 
four-dimensional has been quite different than that of 
five-dimensional models. Consequently, critical 
temperature in five dimensional model has been 
modified and can be compared with that of in five-
dimensional model. Critical temperatures in four-
dimensional model and in five-dimensional model 
have been obtained [41]as: 

 
(𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶)𝐷𝐷𝐷𝐷=4 = 2 𝜇𝜇𝜇𝜇

√𝜆𝜆𝜆𝜆
                        (31) 

and, 

(𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶)𝐷𝐷𝐷𝐷=5 = � 2𝜋𝜋𝜋𝜋
3𝜁𝜁𝜁𝜁(3)

𝜇𝜇𝜇𝜇2

𝜆𝜆𝜆𝜆𝑟𝑟𝑟𝑟
�
1
3                 (32) 

 
In above equations μ, and λ are the bare mass 

term for fermions and bosons and coefficient of 
quadratic quantum field associated with effective 
potential respectively. Above equations clearly 
demonstrates the difference in critical temperatures 
in four and five dimensional physics.  

  
Conclusions 
 
The Universe at early stages had gone through 

several phases. Phase transition and Critical 
temperature at different phases in four as well as five 
dimensional model are obtained and compared in this 
paper. It is observed that temperature decreases faster 
with time in Kaluza-Klein model. The extra 
dimension plays a very important role during phase 
transition.  It is also observed that that constant 
lambda Λ (cosmological constant) does not affect 
time-temperature relation as such at the early stage of 
the universe. It is well known that the present 
Universe is expanding and accelerating, so, 
determination of time – temperature relation for 
Kaluza-Klein cosmological model with variable 
cosmological constant can reveal the present universe 
scenario.  
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The specificity of photoluminescence n-CdS/p-CdTe  
in semiconductor heterostructures

Abstract. The low-temperature (4.2 K) near-band-edge photoluminescence spectrum of a thin fine-grained 
(h, dcr≤1μm) polycrystalline CdTe layer in an n-CdS/p-CdTe film heterostructure subjected to frontal 
excitation by an Ar+ laser with an intensity of ∼44 W/cm2 consists of a dominant intrinsic (e-h) emission 
band with a half-width ΔA=10-12 meV and a blue shift ΔEr ≈ 25 meV of the red edge with respect to 
Eg, its LO+nLA phonon replica (ΔB≈40 meV) with a weak doublet structure, and a wide (ΔD≈100 meV) 
surface-interface luminescence band peaking at a frequency ħω≈1.49 eV. Rear-side illumination of the 
photoresistive CdS layer in the intrinsic absorption range with an intensity Lill ≈ 5.102 lx almost completely 
destroys the e-hband and all related luminescence lines, which are replaced with an asymmetric polariton 
emission doublet having an exciton resonance frequency ħω≈1.59 eV(Δex≈ 25 meV) and a wide line of 
shallow donor–acceptor pairs (ΔDAP≈40 meV) at a frequency of ħω≈1.54 eV, whose maximum intensity is 
almost two orders of magnitude lower than that of the A line in the absence of illumination.
Keywords: photoluminescence, intensity,exiton, polariton, resonance, frequency,asymmetric, emission 
band.
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The specificity of photoluminescence n-CdS/p-CdTe in semiconductor heterostructures 
 
 
Abstract. The low-temperature (4.2 K) near-band-edge photoluminescence spectrum of a thin fine-grained (h, 
dcr≤1μm) polycrystalline CdTe layer in an n-CdS/p-CdTe film heterostructure subjected to frontal excitation 
by an Ar+ laser with an intensity of ∼44 W/cm2 consists of a dominant intrinsic (e-h) emission band with a half-
width ΔA=10-12 meV and a blue shift ΔEr ≈ 25 meV of the red edge with respect to Eg, its LO+nLA phonon 
replica (ΔB≈40 meV) with a weak doublet structure, and a wide (ΔD≈100 meV) surface-interface luminescence 
band peaking at a frequency ħω≈1.49 eV. Rear-side illumination of the photoresistive CdS layer in the intrinsic 
absorption range with an intensity Lill ≈ 5.102 lx almost completely destroys the e-hband and all related 
luminescence lines, which are replaced with an asymmetric polariton emission doublet having an exciton 
resonance frequency ħω≈1.59 eV(Δex≈ 25 meV) and a wide line of shallow donor–acceptor pairs (ΔDAP≈40 
meV) at a frequency of ħω≈1.54 eV, whose maximum intensity is almost two orders of magnitude lower than 
that of the A line in the absence of illumination. 
Keywords: photoluminescence, intensity,exiton, polariton, resonance, frequency,asymmetric, emission band. 

 
 
 
Introduction 
 
Low-temperature photoluminescence (LTPL) 

spectroscopy is a rapid nondestructive method for 
studying the electronic, optical, and photoelectric 
parameters of polycrystalline semiconductor film 
structures having photovoltaic properties [1–
3].Recently this technique has successfully been 
applied in fine studies of the characteristics of thin-
film n-CdS/p-CdTe heterojunctions in solar cells, 
which were aimed at increasing the efficiency and 
improving the fabrication technology of the cells[4–
8] (the polycrystalline p-CdTe film is the main 
absorbing layer in these structures).In particular, the 
LTPL spectra of the CdTe layer in a CdS/CdTe 
heterostructure (photocell with an efficiency of 
∼12%) in dependence of the laser excitation power 
and temperature were studied in [1-5]. 

The luminescence was found to shift to the red 
region of dominant impurity–defect emission at low 
excitation powers and be located mainly near the 
exciton emission edge at higher excitation 

levels.Tuteja M. et al.[1], who usedrear-side 
illumination by a He–Ne laser (λ =0.6328 µm) of a 
polycrystalline CdTe/CdS solar cell, observed three 
characteristic regions in the LTPL (10 K) spectra: (a) 
radiative transitions of bound excitons in the range 
from 1.58 to 1.60 eV, (b) a wide band of donor–
acceptor pairs (DAPs) near 1.53 eV, and (c) a wide 
emission band of group defects with multiple phonon 
replicas in the range from 1.4 to 1.46 eV. 

I.Caraman et al. [3] investigated the LTPL (78 K) 
spectra of thin (3–7 µm) CdTe films (both as-
prepared and annealed in the presence of CdCl2 
saturated vapor) in a SnO2/CdS/CdTe/Ni solar cell 
upon excitation by He–Ne laser radiation with an 
intensity of ∼12 kW/cm2. They showed that the 
illumination both from the side of the free CdTe 
surface and through the interface (heterojunction) 
gives rise to a wide impurity band peaking at 1.45 eV 
and a narrower band due to free (1.57–1.58 eV) and 
localized (1.558 eV) excitons. The exciton emission 
is barely present upon excitation through the 
interface, which is explained by the high 

https://orcid.org/0000-0002-7451-267X
https://orcid.org/0000-0002-5592-8186
https://orcid.org/0000-0001-9638-9046
https://orcid.org/0000-0002-6811-072X
https://orcid.org/0000-0003-3635-0419
mailto:bakhtiyorp@mail.ru


13B.Z. Polvonov et al.

International Journal of Mathematics and Physics 13, №2 (2022)                                         Int. j. math. phys. (Online)

concentration of mechanical and structural defects in 
the latter. An analysis of the photoluminescence 
spectra made it possible to determine the spectrum of 
recombination levels and estimate the composition of 
the CdSх/CdTe1-х interface layer: x = 0.06. 

Interface emission was also observed in other 
studies [4–7]. LTPL measurements [4, 5, 7] and LTPL 
study with electric-field modulation [6] proved the 
existence of a mixed crystalline CdSxTe1-xlayer with 
a thickness of ∼15 nm (with a low density of 
nonradiative recombination centers, the formation of 
which in the high-efficiency CdS/CdTe film solar cell 
is facilitated to a greater extent by the annealing in 
the presence of CdCl2 vapor. The wide luminescence 
line at 1.42 eV is assigned to defect complexes 
involving the cadmium vacancy VCd, and the narrow 
line peaking at 1.59 eV is related to the exciton bound 
on the neutral acceptor [5-10]. 

In all the aforementioned studies, the thickness h 
of polycrystalline CdTe films and the crystallite sizes 
dcr greatly exceeded the light wavelength λ in the 
luminescence spectral range under study. However, 
many recent studies (see, e.g., [8–10]) have shown 
thin-film n-CdS/p-CdTe heterostructures with 
characteristic sizes h, dcr ~ λ to be promising elements 
for solar cells.In this case, thin fine-grained CdTe 
films obviously acquire properties of photonic 
microcrystals, theLTPL of which has barely been 
analyzed to date. 

Recently we have investigated [11-14] the 
mechanisms of the formation of LTPL (T = 4.2 K) 
spectra of thin (ℎ ≈ 0.5 − 0.8μm) polycrystalline 
pure CdTe films and indium-doped (CdTe:In) films, 
obtained by thermal vacuum deposition on glass 
substrates, in dependence of the presence of point and 
structural defects. It was shown that, in contrast to 
single crystals [12] and large-crystallite polycrystals 
[13, 15], the LTPL spectra of fine-grained  
(𝑑𝑑𝑑𝑑cr ≤ 1μm) films do not exhibit any channels of 
exciton and DAPs emission. This is obviously caused 
by the following reasons. First, in the case under 
consideration, the crystallite size dcr is on the same 
order of magnitude as the Debye screening length 

ℓ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = � 2𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀0𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒2|𝑁𝑁𝑁𝑁𝐷𝐷𝐷𝐷−𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴|
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 (where ε is the permittivity; ε0 
is the permittivity of free space; e is the elementary 
charge; ND and NA are, respectively, the donor and 
acceptor concentrations; and ϕi is the height of the 
surface potential barrier at the crystallite boundaries), 
and the contribution of the small quasi-neutral 
crystallite volume to the film LTPL is insignificant. 
Second, the surface potential barriers of crystallites 

form internal built-in electrostatic fields in the space 
charge region (SCR), which leads to spatial 
separation of photogenerated electron–hole pairs in it 
and, correspondingly, generation of surface 
photovoltage and intrinsic luminescence (interbond 
e h−  recombination), correlated by these pairs, of hot 
photocarriers under the condition 

 
𝜏𝜏𝜏𝜏𝑟𝑟𝑟𝑟 ≤ 𝜏𝜏𝜏𝜏0, 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀                           (1) 

 
where τr, τ0, and τM are, respectively, the radiative, 
nonradiative, and Maxwell lifetimes. Since the total 
lifetime of nonequilibrium electron is defined as 
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are the electron relaxation times from this energy state 
with the formation of excitons and DAPs, 
respectively; рτ  is the momentum relaxation time; 
etc., it is natural that, if the condition 

 
τr « τex, τDA                                             (3) 

 
is satisfied, the exciton and DAPs emission channels 
should be absent in the LTPL spectra in the first 
approximation; i.e., these channels remain 
experimentally unobserved against the strong 
background of the e−h luminescence. However, the 
situation changes when the condition 

 
𝜏𝜏𝜏𝜏𝑟𝑟𝑟𝑟 ≥ 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀                               (4) 

 
is implemented. The main mechanisms of 
photocarrier removal are nonradiative (e.g., electrical 
conductivity or surface recombination). Then the 
direct essential contribution of the radiative 
recombination of SCR-separated free electrons and 
holes to the LTPL is weakened, and one can observe 
weak exciton and DAPs lines in the spectra of thin 
fine-grained semiconductor films. Here, we propose 
a nontrivial method for implementing this possibility 
in an n-CdS/p-CdTe film heterostructure. 

 
Materials and Methods 
 
The purpose of this study was to analyze the 

mechanisms of the formation of the edge 
photoluminescence spectrum of thin polycrystalline 
CdTe layer in an n-CdS/p-CdTe film heterostructure 
and develop a new optical photoelectric method for 
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detecting weak channels of exciton and DAPs 
emission. This approach makes it possible to 
investigate the interface composition and structure 
for nondestructive monitoring and diagnosing the 
properties of photovoltaic elements. We observed for 
the first time the build-up of exciton–polariton and 
shallow-Daps emission lines for the CdTe layer in the 
n-CdS/p-CdTe heterostructure, induced with the aid 
of additional illumination of the photoresistive CdS 
layer with intensity Lill≈ 5⋅102lx.It is believed that 
illumination of CdS reduces the shunting efficient of 
the CdTe resistance, weakening the heterojunction 
electric field and the corresponding exciton Stark 
effect [15] in the SCR surface crystallites. The 
Maxwell relaxation time τM=εε0/σph (σph is the 
photoconductivity) of separated photocarriers in the 
CdTe crystallite volume decreases as well, due to 
which they leave no radiatively via surface interface 
levels or due to longitudinal photoconductivity 
before the radiative e–h recombination occurs (τM < 
τR). Specifically this circumstance leads to quenching 
of all emission lines detected in the absence of 
illumination and build-up of free-exciton and 
shallow-DAP lines under additional illumination of 
the photoresistive CdS substrate. 

  
Results and Discussion 

 
A sharp-interface n-CdS/p-CdTe film 

heterostructure (Figure 1) with an active absorbing p-
CdTe layer was fabricated by thermal vacuum 
deposition on transparent glass substrate 1 in a 
unified technological cycle [16]. The lower 
photoresistive CdS layer (2) with an area of 20 × 5 
mm2 and thickness of 0.2–0.4 µm had an electronic 
conductivity. The multiplicity 𝐾𝐾𝐾𝐾 = 𝑅𝑅𝑅𝑅dark/𝑅𝑅𝑅𝑅light of the 
change in its resistance under illumination by a 
mercury lamp with L ≈ 104 lx reached ≈102–103 rel. 
units. According to the electron micrography data on 
the transverse cleavage and surface of the CdS film, 
the latter had columnar structure without pores, the 
crystallite sizes along the substrate surface turned out 
to be dcr≈1–3 µm.The upper p-CdTe layer (3) of 
thickness h= 0.5 – 0.8 µm grew at a rate of 1.5–2.0 
Å/s at a substrate temperature Ts=423–573 K and had 
a fine-grained structure (crystallites of cubic 
modification with sizes dcr ≈ 0.8–1.0 µm).The active 
area of the n-CdS/p-CdTe heterostructure was 70–80 
mm2. 

 
 

 

 
Figure 1 – Schematic diagram of the photoluminescence 

excitation in the thin CdTe film (hf≈ 0.8 µm) of an  
n-CdS/p-CdTe heterostructure: (1) transparent glass substrate, 
(2) CdS photoresistive film (hCdS≈0.3 µm), (3) photovoltaic 
layer (CdTe), and (4, 4′) current-collecting ohmic contacts. 
 
To measure the LTPL spectra, the n-CdS/p-CdTe 

film heterostructure was directly immersed in 
pumped liquid helium at a temperature of 4.2 K. 
Spectra were recorded on a setup based on a DFS-24 
spectrometer, operating in the photon-counting mode 
at a minimum band gap of 0.04 meV. Frontal 
luminescence excitation (from the free-surface side) 
of the CdTe layer was performed at a wavelength λ = 
476.5 nm by an Ar+ laser beam focused on the CdTe 
layer surface into a spot 0.4 × 4 mm in size; the laser 
power was ∼7 mW. The experiment was performed 
in the geometry of normal illumination and close-to-
normal emission. The rear-side (through the glass 
substrate, see Figure 1) additional illumination of the 
CdS layer at different intensities was implemented in 
the intrinsic absorption range. 

Figure 2 shows the photoluminescence spectra of 
(a)the CdTe layer in an n-CdS/p-CdTe 
heterostructure subjected to frontal excitation 
without CdS illumination and (b) the CdTe layer 
formed on a pure glass substrate (from [11]); both 
CdTe layers were grown under identical 
technological conditions. Note that, in contrast to 
single crystals [12] and large-crystallite polycrystals 
[13, 14], theLTPL spectra of fine-grained films 
exhibit neither exciton nor DAPs emission. 
Comparison of the spectra in Figures. 2a and 2b show 
that the presence of a thin polycrystalline CdS layer, 
which plays a role of a conditional substrate with a 
heterointerface, is pronounced in only the far edge 
region. 
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Figure 2 – Photoluminescence spectra of the CdTe layer (a)  
in an n-CdS/p-CdTe heterostructure in the absence of CdS 
illumination and (b) on a pure glass substrate; T =4.2 K. 

 
The luminescence spectra of these samples in the 

range of 750–760 nm qualitatively coincide and 
consist ofa dominant e–h emission band (A line) with 
a half-width of ΔЕА ≈ 11.2 ± 0.1 meV and ΔЕА ≈ 
14.2±0.1 meV, respectively. The sharp long-
wavelength edges of the A lines indicate that the 
crystallites of the CdTe films grown on both glass and 
photoresistive substrates have a fairly high bulk 
structural quality. These edges are shifted above with 
respect to the bottom of the conduction band (vertical 
dash-and-dot line) of single crystal at 4.2 KT =  
(𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔 = 1.606eV) by energies ΔЕr ≈ 24.4±0.1 meV and 
ΔЕr ≈ 21.4±0.1 meV, so that the sum ΔЕr +ΔЕА = ϕ0 ≈ 
35.6±0.2 meV remains practically the same for both 
A lines. The latter is clearly evidenced by the short-
wavelength wings of these lines in Figures 2a and 
2b.Hence, the following conclusion can apparently 
be drawn: the ϕ0 andϕ = ΔЕr values are nothing more 
but the heights of the surface potential barrier at the 
crystallite boundary before and after illumination, 
and ΔЕА is the surface photo-emf, generated by the 
SCR built-in field (see also [11]).Thus, we have a 
correlation between the micro photovoltaic property 
and the intrinsic luminescence of crystallites in thin 
fine-grained films. Here, we should emphasize the 
detection of the blue shift of the A-line red edge [11], 
which related to the e–h recombination of the hot 
photocarriers separated by the electric field of 
interfacial SCR crystallites; this shift is absent in 
coarse-grained structures [13, 14]. 

The spectral dependence of the A-line intensity can 
be presented as [11] 

 
L(ω) = A0(ħω − E′g)1/2 exp(-(ħω − E′g)/kTeh)   (5) 

 
where А0 is a constant, dependent on the type of the 
film and its photoexcitation conditions;  
E′g = Eg + ΔEr is the energy of the A-line red edge; k  
is the Boltzmann constant; and 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒ℎ is the mean 
characteristic temperature of photocarriers. 
Obviously, the second and third factors in the right-
hand side of (5) are due to the densities of states in 
the simple quadratic bands and the quasi-equilibrium 
photocarrier distribution functions. 

As can be seen in Figure 2, the luminescence 
spectrum of the CdTe layer in the n-CdS/p-CdTe 
heterostructure, in contrast to the spectrum of the CdTe 
monolayer, does not contain any hot-luminescence 
region in the wavelength range λ < 750 nm; however, 
it exhibits an additional relatively strong and wide D 
line of edge luminescence in the range of 790–870 nm, 
with a half-width ΔЕD ≈ 120 meV and a maximum at 
a frequency ħω ≈ 1.49 eV. The energy of this line is 
lower than Eg by ∼40 meV, which is of the same order 
of magnitude as the ΔЕс value (the discontinuity of the 
CdTe and CdS conduction band bottoms at the 
heterojunction interface). 

Naturally, one would expect the occurrence of the 
D line of CdTe edge luminescence in n-CdS/p-CdTe 
to be due to the contact electric field of the 
heterojunction, which extracts some part of generated 
photoelectrons from the p-CdTe layer to the surface 
region of the n-CdS layer. These transferred electrons 
relax in energy to reduce the potential barrier of the 
heterojunction and undergo radiative tunnel 
recombination with holes from the p-CdTe region or 
via surface levels Es (Figure 3); these processes 
determine the strong broadening of the D line, which 
possesses a long short-wavelength tail and horizontal 
background. It should be noted that, although the 
luminescence through the D channel is related to only 
the interface and occurs at a depth equal to the p-
CdTe layer thickness, it is nevertheless directly 
correlated by the A line, because separated 
photocarriers in the SCR of p-CdTe crystallites 
contribute to both lines. The quenching of hot 
luminescence in the spectrum in Figure 2b is also due 
to the influence of the contact field, possible 
heterojunction defects, and related crystallite bulk 
defects on the energy relaxation of hot photocarriers.
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Figure 3 – Schematic energy band diagram of a sharp n-CdS/p-CdTe heterojunction  
under illumination from the CdTe side and a schematic diagram  

of the radiative recombination processes (1, 2) leading to the formation  
of the luminescence D line; T = 4.2 K. 

 
 
Figure 2a shows also that the long-wavelength 

wing of the A line with a weak doublet fine 
structure (B and B′ lines) somewhat differs from 
the similar structure (B and C lines) of the CdTe 
monolayer spectrum. The maxima of the B and B′ 
lines are located at wavelengths of 770 and 762 nm, 
respectively, and their intensities are almost an 
order of magnitude lower than the maximum 
intensity of the A line.The mechanisms of the 
formation of these lines are rather complex. The B 
and C lines are most likely the one- and two-LO-
phonon replicas of theA line [11], although 
radiative transitions of the "c-band → shallow 
acceptor," "shallow donor → v band,"and "band 
→crystallite interface levels" types may contribute 
to their formation. At the same time, it should be 
noted that, first, the A,B,B′, and D lines in the 
luminescence spectrum of the p-CdTe layer in an  
 

n-CdS/p-CdTe heterostructure have not been 
observed previously by other researchers and, 
second, their formation obviously involves the 
luminescence emerging from different depths and 
the contributions of different structural parts 
(interface, bulk, surface, barrier regions) of the 
crystallites forming the fine-grained film. 

The illumination of CdS with an intensity Lill = 500 
lx leads to a significant transformation of the 
luminescence spectrum of CdTe layer (Figure 4a). 
The A,B,B′, and D luminescence lines practically 
disappear. The free-exciton luminescence range of 
770–790 nm with a pronounced doublet structure and 
the DAPs luminescence range of 790.0–820.0 nm can 
clearly be distinguished. A similar pattern is observed 
in thereflection spectrum (Figure 4b): the exciton 
resonance (λex=782.5 nm, exω =1.585 eV) and the 
DAPs range of 800–812.5 nm.
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Figure 4 – (a) Photoluminescence spectra of the CdTe layer in an n-CdS/p-CdTe heterostructure  
with CdS illumination intensity (Lill ≈ 500 lx) and (b) the reflection spectrum of CdTe at T =4.2 K.  

The inset in panel a shows the photoluminescence (PL) and specular reflection (R) spectra  
of a CdTe crystal of stoichiometric composition, recorded at T = 77 K [17]. 

 
 
Naturally, the illumination of the CdS region 

transforms then-CdS/p-CdTe heterojunction with 
frontally excited p-CdTe layer into a state similar to 
that of short-circuited photocell. Depending on the 
illumination intensity Lill, the surface-barrier height 
decreases and a short-circuit current arises; 
specifically this current is responsible for the 
weakening of the e–h emission (luminescence line A) 
and other related emission channels (B,B′, and D).At 
a sufficiently high illumination intensity (Lill≥500 
lx),due tothe high photoconductivity of the CdS layer 
(the condition τМ < τris implemented), free 
photocarriers with energies ħω≥E′g are almost 
completely involved in the short-circuit current 
through the heterojunction. In addition, the CdS 
illumination weakens the contact electric field of the 
heterojunction (because of the charge exchange in the 
surface states), as well as the surface potential 
barriers of crystallites in the p-CdTe layer. As a result, 
the exciton and impurity Stark effects (which lead to 
the luminescence build-up in the exciton and DAPs 
channels) are weakened. Noteworthy features are the 
symmetric Lorentzian profile of the DAPs 
luminescence asymmetric doublet structure of the 
exciton emission. 

For comparison, Figure 4с shows the 
photoluminescence and reflection spectra of a CdTe 
crystal with a close-to-stoichiometric composition in 
the vicinity of free exciton at a temperature of 77.3 
K, taken from [17-18].We can see a rather good 

qualitative coincidence of two spectral lines, 
although they were recorded for different crystal 
structures at different temperatures. The spectrum in 
Figure 4c is adequately described in terms of the 
quantum polariton luminescence theory developed in 
[12] with the following values of the main parameters 
of the exciton resonance 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛=1 in CdTe crystal: 
ℏ𝜔𝜔𝜔𝜔0 = 1.585eV, ℏ𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1.0meV, ℏГ = 0.62meV,
𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.5𝑚𝑚𝑚𝑚0 (𝑚𝑚𝑚𝑚0 is the free-electron mass), 
background permittivity 𝜀𝜀𝜀𝜀𝑏𝑏𝑏𝑏 = 9.65, and “dead layer” 
thickness l = 75 Å. The 11-meV red shift of the 
exciton resonance in the polycrystalline CdTe film 
under study is explained by the strong damping of 
mechanical excitons Г ,which is caused by the 
scattering from impurities and grain-boundary 
potential barriers. Thus, the doublet structure of the 
exciton luminescence in Figure 4a is described within 
the polariton model [12-15]. The stronger long-
wavelength component peaking at a frequency 
ħωd=1.584 eV corresponds to the lower branch 
polariton emission, and the decisive contribution to 
the weaker blue satellite peaking at ℏ𝜔𝜔𝜔𝜔𝑢𝑢𝑢𝑢=1.590 eV is 
from the upper branch polariton emission. The dip 
("longitudinal") frequency ℏ𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿=1.588 eV determines 
the minimum energy of longitudinal excitons. 

The symmetric DAPs luminescence profile 
peaking at the frequency ℏ𝜔𝜔𝜔𝜔DA = 1.540 eV (λ = 805 
nm) has a half-width ℏΔ𝜔𝜔𝜔𝜔DA = 33meVand, in 
contrast to the spectra of pure crystals [14-19] and the 
spectra recorded without CdS illumination (Figure 
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2b), does not contain any inhomogeneous broadening 
due to the LO replicas. The transitions in a DAPs 
formed by a shallow donor and a shallow acceptor, 
whose activation energy is 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔 − ℏ𝜔𝜔𝜔𝜔DA = 1.606 −
1.540 = 0.066 eV, is responsible for this profile, 
while the strong homogeneous broadening is due to 
the strong donor–acceptor interaction in the field of 
grain boundary potential barriers (and, 
correspondingly, as a result of the formation of DAPs 
clusters). The DAPs luminescence occurs mainly in 
the crystallite barrier regions and in the 
heterojunction (the CdTe region where photocarriers 
are separated and, therefore, radiative e–h transitions 
barely exist). The grain boundary potential barriers 
and donor–acceptor interactions are responsible for 
the homogeneous broadening of the DAPs emission 
line. 

 
Conclusions 
 

Thus, using illumination (Lill ≈ 5 × 102 lx) of the 
CdS layer in an n-CdS/p-CdTe heterostructure, we 
could detect polariton and shallow-DAPs emission 
lines from the thin fine-grained CdTe layer. At low 
illumination levels (Lill ≤5 × 102 lx), they cannot be 

clearly selected against the background of the 
stronger band-to-band emission of the photocarriers 
separated by the intercrystallite energy field of the 
high-resistivity polycrystal. The illumination of the 
CdS layer reduces its shunting resistance, and, 
correspondingly, the Maxwell relaxation time of 
separated photocarriers in the crystallite bulk, due to 
which the photocarriers are pulled in by the 
heterojunction field before recombining radiatively. 
Specifically, this circumstance leads to the quenching 
of the emission lines detected in the absence of 
illumination and the build-up of the free-exciton and 
shallow-DAPs lines under illumination. 

The n-CdS/p-CdTe structure elaborated in this 
work opens new prospects for not only its practical 
application as a light converter but also for 
developing new methods of studying photoelectric 
phenomena in semiconductor micro- and 
nanostructures. 
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A method to determine exact wave parameters of tid 

Abstract. Total electron content measurements by using dual-frequency signals of global navigation satellite 
systems (GNSS) makes it possible to obtain the global distribution of electron density of ionosphere with 
high spatial and temporal resolution. Such high spatial and temporal resolution allows to explore of small-
scale traveling ionospheric disturbances generated by terrestrial geophysical events, including seismic 
activity, solar terminator passage, and atmospheric cyclones. One of the features of measuring the total 
electron content of the ionosphere with GNSS is that the measurements are made at the line of intersection 
of the satellite-receiver beam with the layer of maximum ionization of the ionosphere at height of ≈ 300 
km. At the same time, due to the orbital motion of the satellites and the Earth rotation, the ionospheric 
points at which the measurements are providing carrying out a movement relative to each other, relative to 
the Earth and relative to the traveling ionospheric disturbances. Such a relative motion of the measurement 
points causes the occurrence of the Doppler effect and leads to a distortion of the wave parameters of the 
total electron content variations. In particular, the determination of the period of traveling ionospheric wave 
disturbances on the basis of time series leads to large distortions depending on the used satellite, the time 
and coordinates of the receiver. This paper describes a method for determining the exact wave parameters 
–frequency, wavelength, and propagation velocity of traveling ionospheric wave disturbances, based on the 
use of godochrones to analyze TEC variations. The difference between the wave parameters measured by 
the proposed method and from the time series of TEC data is shown on an example of wave disturbances 
generated by the passage of solar terminator.
Keywords: GPS TEC, ionosphere, data analysis, traveling ionospheric disturbances.

Introduction

The method of measuring the total electron 
content (TEC) of the ionosphere using navigation 
satellite systems, also known as the GPS TEC 
method, has been widely used in recent decades to 
monitor the influence of various sources of space and 
terrestrial origin on the Earth’s ionosphere. Using 
this method, the global behavior of the electron 
density [1,2], the nature of the change in the electron 
density due to changes in solar activity [3] and 
other factors have been studied so far, the influence 
of ground-based sources of disturbances, such as 
earthquakes [4], powerful explosions, meteorological 
phenomena, has been discovered [5,6]. A number of 
anomalous ionospheric disturbances associated with 
the preparation of powerful earthquakes have been 
registered [7-9]. All the above sources are presented 
in TEC data in the form of periodic oscillations of the 
electron content level, which have a small amplitude 
relative to the daily TEC change and propagate in 

horizontal direction, called traveling ionospheric 
disturbances (TID) [5,10].

The problem of determining the wave 
characteristics of TID lies in the fact that the 
ionospheric points at which the TEC is measured 
move in the horizontal plane during the orbital 
movement of the satellites and the rotation of the 
Earth. The ionospheric points for which the TEC is 
calculated are located at the intersection of the layer 
of maximum electron density of the ionospheric F2 
layer (altitude about 300 km) and the radio beam 
line from the satellite to the stationary GPS receiver 
are not fixed relative to the Earth, and their position 
depends on the orbital motion of satellites and Earth 
rotation. (Figure 1). The orbits of GPS satellites are 
located at altitude of about 20000 km, and the orbital 
period of satellites is about 12 hours [5]. Given this 
factor, the horizontal speed of the ionospheric points 
in which the measurement is made can reach 500 
km/h, which, due to the Doppler effect, makes it 
difficult to determine the true period and wavelength 
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of ionospheric disturbances based on data from 
individual GPS receivers, since the ionospheric point 
can move along the moving wave disturbance of the 
ionosphere, in the same or reverse direction, more 
than doubling the values of its period and wavelength. 
This effect is determined by the geometry of satellite 
orbits, geographic latitude and measurement time, 
i.e. depends on the specific satellite used, time and 
receiver coordinates [11].

Figure 1 – Illustration of the occurrence of the Doppler effect 
during TEC measurements

Materials and Methods 

The technique proposed in the present study 
makes it possible to measure the true values of the 
wave parameters of traveling ionospheric distur-
bances, its frequency (periods), wavelength, and 
horizontal velocity. The methods is based on the use 
of range-time diagrams, also known as hodochrones. 
Hodochrones are plots on which time is plotted along 
the abscissa axis, distance is plotted along the ordi-
nate axis. In this case, the range is calculated as the 
distance between the ionospheric point at a given 
time and a given point on the Earth’s surface. The 
time series of TEC variations, after removing the 
regular trend associated with the daily variation of 
TEC, are plotted with the color of the line, in accor-
dance with the selected color scale. These diagrams 
are built for all tracks observed for the studied period 
of time, time series of TEC variations for each pair 
of satellite-receiver. The distance is plotted along the 
abscissa axis and calculated by different methods, de-
pending on the type of the studied disturbance source. 
For quasi point sources (earthquakes, local meteoro-
logical phenomena, explosions, etc.), the distance 
from the point of the epicenter of the earthquake, ex-
plosion, cyclone center, etc. to the ionospheric point 
is calculating. In the case of a point source and in 
the approximation of spherical wave propagation, 
the synchronous phases of the wave disturbance will 

move along the radius vector constructed from the 
source center, forming a coherent wave pattern on the 
hodochrone. For extended sources (passage of the so-
lar terminator, global atmospheric phenomena), the 
“Range” coordinate is calculated as the distance from 
the ionospheric point to the horizontal line passing 
through the center of the study area in the direction 
of propagation of the ionospheric disturbance. In this 
case, in the case of approaching the propagation of 
an ionospheric disturbance by a flat wave, a coher-
ent wave pattern will be observed on the hodochrone 
(Figure 2). In this case, the horizontal cut of the ho-
dochrone gives a temporal sweep of TEC variations, 
the vertical cut gives a spatial sweep of TEC varia-
tions, i.e. wavelength, and the TID velocity is equal 
to the tangent of the slope angle α of the coherent 
lines of the TEC variation maxima (Figure 2).

Figure 2 – Information available in the analysis  
of TEC variations hodochrons

The data used in this work is the data of 
permanent dual-frequency GNSS receivers (CORS 
– Continuously Operating Reference Stations), 
organized into global and regional networks of IGS, 
UNAVCO, GEONET, etc.

Results and discussion

The following is an example of time series of 
TEC variations calculated for individual satellites 
at a given moment and at a given point, and a time 
series of TEC variations along the horizontal cut of 
the hodochrone.

Figure 3 shows an example of a hodochrone, 
which allows illustrating the problem of determining 
the parameters of wave disturbances. This 
hodochrone is drawn according to data for April 
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17, 2018, based on data from GNSS receivers on 
the US West Coast, and contains a coherent wave 
pattern of TIDs that arose after the passage of the 
evening solar terminator. This hodochrone was built 
for the azimuthal direction 55°, i.e. the distance axis 
corresponds to the distance along the azimuth of 55°, 
which coincides with the direction of motion of the 
considered TIDs. This day is characterized by very 
low geomagnetic activity, the maximum daily value 
of the Ap-index was 5, and for the previous day – 
4. Low geomagnetic activity causes the absence of 
irregular disturbances in the data. The disturbance 
from the solar terminator is directly observed in the 
interval of 700-800 minutes UT, after which, for nine 
hours, a coherent TID wave pattern is observed [12]. 
This hodochron is constructed from the data of all 
observed GPS satellites. 

Figure 3 – Fragment of the TEC variations  
for April 17, 2018

In Figure 3, the red cross indicates the position 
and time at which the tracks of two GPS prn-26 and 
GPS prn-7 satellites intersect. The trajectories of 
these satellites at a given moment of time are such 
that the ionospheric point for the sounding beam to 
the prn-26 satellite moves in the same direction as the 
direction of the TID propagation, and the ionospheric 
point for the sounding beam to the prn-7 satellite 
moves in the opposite direction to the direction of the 
TID propagation direction. Thus, if we consider the 
ionospheric point at which TEC is calculated as the 
measurement point, then we have moving receivers, 
and we observe the Doppler effect. This effect leads 
to the fact that the time series of TEC variations for 
these satellites have different observed oscillation 
periods [13]. Figure 4 shows fragments of the time 
series for the satellite prn – 26 (upper graph), for 
the satellite prn – 7 (lower graph), and a slice of the 
hodochrone along the horizontal line of the red cross 
in Figure 3. Figure 4 also shows the values of the 
periods of the first harmonics for all three graphs. 
It can be seen from the figure that the periods of 
oscillations of TEC variations for the prn–7 satellite 
are two times less than the periods for the prn–26 
satellite, and are 10.4 and 20.5 minutes, respectively. 
The oscillation period obtained from the horizontal 
cut of the hodochrone is 15.7 minutes, and since the 
Doppler effect is excluded when it is obtained, this 
period value can be considered true for a given time 
and place.

Figure 4 – Time series and time slice according  
to the hodochrone of TEC variations for April 17, 2018
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A similar result is observed for any satellites, 
since the trajectories of the movement of ionospheric 
points in which the TEC is calculated depend on 
the complex orbital motion of the satellites and the 
Earth’s rotation (Figure 5).

The TID wavelength is determined in a similar 
way. To determine it, a vertical (along the distance 
axis) slice of the hodochrone is taken. So, for the area 
indicated in Figure 3, the horizontal wavelength of 
the TID is 170 kilometers.

The horizontal TID velocity is defined as the tan-
gent of the slope angle α of the coherent lines of the 
TEC variation maxima. Figure 7 shows the depen-
dence of the signal-to-noise ratio of TEC variations 
depending on the speed and direction of TID propa-

Figure 5 – Trajectories of ionospheric points  
for various satellites of GPS navigation system.

Figure 6 – TEC variations for seven simultaneously 
 visible GPS satellites

gation for April 17, 2018 for 15-16 hours UT, which 
corresponds to the time specified in Figure 3. The 
maximum signal-to-noise value corresponds to the 
horizontal velocity of TID propagation ≈ 300 km/h, 
and direction of propagation 50-60°.

Figure 7 – Distributions of the signal-to-noise ratio of TEC variations depending  
on the speed and direction of TID propagation for April 17, 2018 for 15-16 hours UT
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This signal-to-noise ratio distribution was 
constructed using the developed system for collecting 
and analyzing data from GNSS stations [14].

Conclusions

Thus, the applicability of the proposed method 
for determining the exact wave parameters of 
moving ionospheric wave disturbances based on the 
construction of hodochrons – range-time diagrams of 
TEC variations is shown. It is demonstrated that the 
direct time series of TEC variations have strong phase 
and frequency distortions caused by the Doppler 
effect and are unsuitable for analyzing the frequency 

characteristics of traveling ionospheric wave 
disturbances. The proposed method for determining 
the exact wave parameters of traveling ionospheric 
wave disturbances is applied in the developing 
GNSS TEC monitoring system to analyze wave 
disturbances of the ionosphere from the passage of 
the solar terminator and other sources.
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Physical bases of meteor registration methods and  
the instrument complex of the NKU Observatory

Abstract. One of the actual directions of studying the physical characteristics of near–Earth space is the 
assessment of the concentration of meteoroids in it, and the time change of this parameter. In this regard, 
the principles of setting and implementing meteor observations at the observatory of the North Kazakhstan 
university named after Manash Kozybayev are considered in chronological order. Meteor observations 
were carried out on the basis of an integrated approach, including the use of meteor patrols, an All Sky 
camera, a system for recording radio wave reflections from a remote station from meteor tracks, and a 
camera based on an optical image intensifier. Based on the analysis of the practical experience of using this 
equipment, the advantages and disadvantages of each of the methods of meteor registration are revealed. 
It is shown that the use of the latest image brightness amplifiers and wide–angle cameras with the highest 
possible sensor sensitivity is the most progressive for their optical observations. The closest attention is 
paid to the analysis of the experience of implementing the registration of plasma meteor tracks in the 
radio range. The method is based on the selection of reflected (scattered) musical–speech signals of a 
remote radio station having a specific pulse structure. Comparison of the obtained results on the frequency 
of meteor phenomena with the data of known observation points allows us to speak about the effective 
operation of the newly created meteor monitoring system in the radio range. In the final part of the work, 
ways to improve the efficiency of recording meteor phenomena in the optical range based on the use of the 
latest radiation receivers are considered.
Keywords: meteoroids, meteor phenomena, monitoring methods, optical registration, radio observations, 
instrument complex.

Introduction

Meteor phenomena in the earth’s atmosphere 
that occur when relatively small solid celestial bod-
ies (meteoroids) moving at cosmic speeds invade it 
have been the subject of scientific research since the 
end of the XVIII century to the present, and scien-
tific interest in them has not weakened. At the same 
time, despite significant progress in the development 
of methods and material base of meteor astronomy, 
and, as a result, a significant increase in knowledge 
about the nature and statistics of meteor phenomena, 
there are a considerable number of important issues 
that need to be considered.

To a large extent, the existence of such issues 
(and approaches to their resolution) is due to the sto-
chasticity of the phenomenon. Meteors and fireballs 

are distinguished by the suddenness of their appear-
ance, which, together with the unpredictability of 
the direction and the high angular velocity of their 
movement across the celestial sphere, creates specific 
problems for their registration and, moreover, for de-
tailed study [1–4].

One of the most important practical tasks of me-
teor astronomy is the determination of the spatial 
concentration of meteoroids in the vicinity of the 
Earth’s orbit and its changes in time [5–7]. The value 
of this quantity is influenced by many cosmic factors. 
At the same time, knowledge of its magnitude is very 
important, first of all, from the point of view of the 
safe functioning of the space infrastructure of mod-
ern civilization. In addition to this practically signifi-
cant task, the problem of the most efficient registra-
tion of fireballs for organizing the subsequent search 
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for samples of extraterrestrial matter that fell on the 
Earth’s surface in the form of meteorites remains 
topical [3, 8 – 9].

It is impossible to ignore such a promising task 
as the registration of meteors generated by extremely 
friable bodies, as well as icy meteoroids. The fact of 
the existence of friable meteoroids is confirmed by 
the data of space missions, and ice bodies − by re-
peated finds of ice meteorites that fell to the Earth. 
However, the registration of meteors generated by 
friable, easily evaporated bodies is hardly possible 
using the instrumentation of modern meteor astrono-
my [1–2, 10]. The fact is that in the optical range they 
are not able to radiate intensely enough. And to apply 
the method of reflection of radio waves, one should 
hardly expect from them the appearance of plasma 
tracks with a sufficiently high concentration of free 
electrons.

It is quite obvious that the complex of these sci-
entific problems and tasks is interconnected. It is also 
obvious that their solution should be sought through 
the development and application of various new 
methods of monitoring the celestial sphere, and mon-
itoring to the maximum extent automated. Our work 
is devoted to the consideration of the results of efforts 
to create and material base for monitoring meteor ac-
tivity and the subsequent study of its capabilities.

Materials and methods 

А. Optical observations of meteors at the NKU 
Observatory

It is paradoxically, but only very recently real al-
ternatives to the human eye in terms of the efficiency 
of meteor detection appeared. At the same time, the 
use of visual methods for observing meteors, despite 
their historical merits, is a thing of the past. The rea-
sons for this are as the high laboriousness of such an 
observation process, and, unfortunately, the sufficient 
subjectivity of the data obtained. Therefore, today vi-
sual observations can at best be useful in testing the 
effectiveness of newly created instrument systems. 

On the market of scientific instruments, it is dif-
ficult to find equipment, which ready for use for me-
teor observations. Therefore, researchers, as a rule, 
use for this purpose either astronomical CCD arrays 
or digital cameras with appropriate short focus op-
tics [11–12]. One of the traditional approaches to 
the registration of meteors in the optical range is the 
use of meteor patrols of various designs. The Cen-
ter for Astrophysical Research (CAR NKU) used a 
specially made similar equipment. The appearance of 
the equipment and its scheme are shown in Figure 1. 
The basis for creating the equipment (Fig. 1) was the 
Canon 1000D digital cameras [13].

                                                 (a)                                                                                                          (b)

Figure 1 − Model (a) of the NKU Observatory meteor patrol and scheme (b) of the equipment: 
1 − Canon 1000D camera; 2 − exposure control unit; 3 − thermostat; 4 − storage device.
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The purpose of the patrol device elements is quite 
clear. Note that all elements were placed in a case 
with thermal insulation. At the same time, the ther-
mostat ensured the operation of the equipment at low 
temperatures, in particular, it protected the optical 
window from fogging. 

The experience of using the installation showed 
the insufficiently high sensitivity of the cameras, 
which recorded meteors no weaker than 4 magni-
tude. In addition, at least 7 recording devices are 
needed to cover the celestial sphere. This requires 
the creation of a bulky equipment. This forced us 
to abandon the further application of the considered 
construction.

Somewhat later, devices of the celestial sphere 
(or a significant part of it) panoramic viewing were 
used in monitoring the celestial sphere. One of them 
is the Arecont Vision Surround Video 180 panoramic 
camera, which is used in summer for video recording 
of the twilight segment of the sky and fields of noc-
tilucent clouds. To eliminate the influence of urban 
development, the camera was installed on a mast 18 
meters high.

The image of objects received by the camera can 
be output to a computer for real–time observation or 
recorded in video format. Figure 2 shows the snap-
shot of the twilight segment taken with the Arecont-
Vision SurroundVideo 180 series panoramic camera.

Figure 2 − The snapshot of the twilight segment taken with the ArecontVision 
SurroundVideo 180 series panoramic camera

However, despite the large viewing angle (180 
degrees in azimuth and 33 degrees in altitude), due to 
insufficient sensor sensitivity the camera proved to be 
of little use for detecting meteor tracks of moderate 
brightness. Increasing the sensitivity of this device 
is achievable by changing the settings of the camera 
control system to a lower frame rate. In normal mode, 
the camera frame rate is 1.5 frames per second. In this 
mode, luminaries with a brightness of at least – 3m 
(Venus, Jupiter) are clearly registered. When the fre-
quency is reduced to 0.1 frames per second, it is quite 
possible to get images of stars and bright meteors. In 
this case, it is advisable to use at least two panoramic 
cameras aimed at the zenith, with sensitivity bands 
orthogonal to one another. Under this condition, most 
of the meteors with extended tracks will be registered 
by the system.

Digital photographic cameras with an extremely 
wide field of view are used to monitor bright meteors 
and fireballs, during the passage of which meteorites 
can fall to Earth. To implement this approach, a fish-
eye lens (Sigma AF, focal length 10 mm, aperture 
f/2.8) was purchased. This lens used as a feeding op-
tics for the ST 3200 ME matrix (Fig. 3) [14]. The 
same picture shows a snapshot obtained using this 
system.

Figure 3 − a) Fisheye lens (top) and ST 3200 ME matrix;  
b) The image obtained by the camera. 

The tower of the RC–30 telescope is visible. A meteor is high-
lighted with a dotted line.

The use of this registration system is most effec-
tive in suburban conditions as far as possible from 
urban illumination. Therefore, the camera was used 
to shoot meteors by students and undergraduates liv-
ing in rural areas during the summer holidays.

The most effective in studying the activity of 
meteor showers was the use of an optical brightness 
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amplifier (due to the possibility of registering weak 
meteors). It is known, that even the expression of the 
brightness of meteors in stellar magnitudes (usual 
for an astronomer) is fraught with difficulties. Their 
cause is the movement of meteors. At the same time, 
visual estimates of the meteors brightness (for all their 
subjectivity) are closer to reality compared to photo-
graphic ones. The explanation lies in the inertia of the 
visual sensation of the eye, which is not characteristic 
of most physical light receivers. The light of the star 
and the part of the meteor track acts on the surface 
of the radiation receiver during completely different 
time intervals. For stars, this interval is determined 
only by the choice of exposure. But the image of the 
meteor track consists of elements, each of which was 
exposed to light for a much shorter time. Let’s imag-
ine that the meteor track fit on 1000 pixels. The dura-
tion of the phenomenon was 0.1 seconds. Then the 
light acted on each of the pixels for no more than 10−4 
seconds. In any situation, the effect of the action of 
a fixed light source will be more pronounced. That 
is, in order to objectively compare the brightness of 

meteors and stars, you need to take pictures of stars 
with exposures of approximately the same duration. 
In this case, only the rare brightest stars will be dis-
played on the images. Therefore, photographically 
we can register only the brightest meteors.

Thus, the study of meteor activity requires the use 
of either large lenses or technical means (sometimes 
quite complex in amplifying the light flux [11, 15]). 
At a certain stage of research, we tried to implement 
the latter direction by proposing to use an electron–
optical converter (EOC) on a microchannel plate 
MPN–8KM to obtain images of meteor tracks [16].

This is one of the best examples of this type 
equipment, manufactured by the Novosibirsk Instru-
ment–Making Plant (Fig. 4). The device is designed 
to observe objects in the dark, with natural illumina-
tion from the Moon and stars. Interchangeable lenses 
allow you to change the magnification from 1× to 4×. 
The electronic circuit of the device provides protec-
tion of the EOC from short–term illumination by in-
tense sources. The device can operate in the tempera-
ture range ± 40° C.

 
  Figure 4 − General view of the MPN–8KM device − on the left (1 − eyepiece with eyecup; 2 − lens;  

A − lens focusing unit; 3  infrared filter; 4 − battery pack), on the right is a device with a CANON–600D camera.

Important features of the device, which deter-
mine the prospects for its application in meteor ob-
servations, are the use of the EOC 2+ generation 
(microchannel image brightness amplifier), as well 
as the presence of adapters for attachment to photo 
and video cameras. According to the passport data 
of the device, the increase in the brightness of the 
image reaches 20,000 – 30,000 times. From the point 
of view of the penetrating power of the optics, this is 
equivalent to increasing the aperture by hundreds of 

times. In this case, the field of view is about 36 de-
grees! This value is comparable to the viewing angle 
of the human eye in visual observations of meteors.

The first observations with the help of the MPN–
8KM instrument were carried out on the night of 
August 12–13, 2015. The date, the epoch of the Per-
seid maximum, was chosen in order to obtain im-
ages of meteor tracks with the highest probability. 
The receiver was a CANON–1000D camera. The 
instruments were placed on an azimuthal tripod, 
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since compensation for the daily movement of the 
luminaries is not required at short exposures. The 
survey was conducted with the onset of astronomi-
cal night, in the absence of clouds at a point located 
at a distance of about 6 kilometers from Petropav-
lovsk. When shooting, exposures from 1.6 to 15 
seconds were used.

20 images of satisfactory quality were selected 
for analysis. At the same time, meteor tracks were 

confidently detected in 6 images (Fig. 5). It is inter-
esting that in two cases the same meteor was record-
ed on consecutive images. Perhaps this was possible 
because thanks to the significant amplification of the 
MPN8KM device. The system allows you to register 
the afterglow of a meteor trail, despite the short dura-
tion of the phenomenon. When using photographic 
emulsions, this is practically impossible, due to their 
low sensitivity.

Figure 5 − Image of the starry sky section (the constellation Perseus) 12.08.2015 18h.45m.12s. UTC 
 (exposure 6.0 s). A section with a meteor track is highlighted.

The expected number of meteors in visual ob-
servations can be estimated based on the maximum 
activity of the shower and the height of the radiant 
[1, 3]. In this case, this number was about 1.3 mete-
ors per minute [16]. Taking into account the size of 
the observed area (about 30 degrees), this estimate 
should be reduced to 0.3 meteors per minute. Dur-
ing the total exposure time (159 s), we can expect 
the registration of approximately one meteor with 
the naked eye. Photographing meteors on an emul-
sion would reduce this value by about 4–5 times. It 
is more difficult to estimate the efficiency of meteor 
registration by digital cameras. It can be based on 
a comparison of their sensitivity with photographic 
emulsions. When shooting the sky, the sensitivity 
of cameras at the level of 400 – 800 ASA units is 
used. Taking into account that the sensitivity of astro-
nomical films during long exposures is about 50 ASA 
units, the number of meteors recorded by a conven-
tional digital camera would be approximately twice 
as large as in visual observations.

Thus, in the considered experiment, the number 
of registered meteors exceeds their expected number 
in visual observations by about 10 times. In com-
parison with ordinary photographic observations, the 
gain would be from 30 to 40 times. Even compared 
to observations with digital cameras, the gain can be 
up to 4–6 times.

Registration of meteor phenomena in the radio 
range

Optical methods for observing meteor phenom-
ena are rapidly improving. However, these methods 
have fundamental limitations − the influence of neg-
ative meteorological conditions and illumination of 
the sky by the Moon. In addition, optical registration 
of meteors is completely impossible during daylight 
hours. At the same time, there are quite a lot of me-
teor showers operating during the daytime [1, 4, 17].

When studying meteor phenomena, their obser-
vations in the radio range are most free from pho-
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tometric and meteorological interference [1, 18–20]. 
Therefore, in the process of developing the instru-
ment base for meteor observations, a complex, which 
makes it possible to record meteor tracks in the radio 
range, was created at the CAR NKU [21].

The physical basis of the method is the existence 
of a plasma track along the meteor flight path. Such 
plasma track at altitudes ranging from 100 to 60 km 
can exist from fractions of a second to tens of sec-
onds, depending on the mass and speed of the body 
that created the meteor. This is enough to detect a 
plasma track due to the effect of radio waves reflected 
from it. Moreover, it becomes possible to study the 
temporal evolution of the track associated with atmo-
spheric effects on it at high altitudes [1–4]. The ideal 
for this would be the use of radars. Meteor radar is a 
good technological approach both for registering the 
occurrence of a phenomenon, but also for determin-
ing the coordinates of an object on the celestial sphere 
and its speed. However, the required equipment is 
very specific, its use requires the permission of the 
special services, and its use in the city is completely 
prohibited. Therefore, in the practice of a university 
observatory located in the city, radar observations of 
meteors are excluded.

There is another approach to the registration of 
meteor phenomena in the radio range. The functions 
of the radiation source and the receiver can be sepa-
rated. The source of radio waves (emitter) can be 
a powerful radio station operating in the range in 
which the ionosphere is transparent to radio waves. 
The observation method is as follows. The transmit-
ting station emits radio waves that scatter on the 
plasma tracks of meteors. The signal, partially re-
flected from the track, is accepted by the receiver 
in the form of a radio pulse, which is then analyzed 
[18–20, 22].

Then, to register meteors, it is enough to have an 
external antenna, a sensitive FM (65–108 MHz) ra-
dio receiver, a computer for recording and processing 
information obtained during the observation. Besides 
that, it is necessary to select the optimal frequencies 
of the radio range, where there is no permanent pres-
ence of local stations, but there are powerful distant 
stations at distances convenient for meteor reflec-
tions. The choice of frequency depends on the geog-
raphy and the location of the antenna and receiver. 
The radio station should be located at a distance of 
500 – 2000 km from the receiver outside the zone of 
its direct hearing (up to 50 km).

The reception of the reflected signal of the radio 
station lasts from fractions to units of seconds, and 
the time profile of this musical–speech signal (MSS) 
is characterized by an instantaneous appearance and 
a smooth decline (signal attenuation). This makes it 
possible to separate meteor signals (MSS) from sig-
nals of a different nature that may appear on the air. 
Note that the number of MSS depends not only on 
meteor activity, but also on other factors. These in-
clude the number and time of operation of radio sta-
tions on this wave, the state of the ionosphere, factors 
of solar activity.

The instrument complex for recording meteors in 
the radio range, created at the SKU, includes a dipole 
antenna 12 meters long, oriented in the north–south 
direction, a USB FM tuner and a laptop (Fig. 6). In 
Figure 6, the number 1 indicates the monitor for dis-
playing the status of the workstation. The HDTV 
program is visible on it, with the help of which the 
desired FM station is selected. The current waveform 
record is shown on the laptop screen in real time. 
Bursts of meteor reflections and interference are visi-
ble. Number 2 denotes a network drive that stores ob-
servational material in real time for further process-
ing. Number 3 indicates the speakers that allow you 
to hear the signal from the FM tuner. FM receiver 
(indicated by number 4) is connected to a laptop that 
processes data using the standard HDTV program 
that comes with it. It also serves as a filter that re-
moves most of the interference. The reception was 
tuned to the transmission frequency 89.8 MHz of the 
FM station located in Perm, at a distance of 1262 km 
from Petropavlovsk. To select a station, the program 
http://www.fmlist.org/ [23] was used, which displays 
information about all AM and FM transmitters in the 
world. The number 5 indicates a USB – oscilloscope 
connected to a laptop. It was used to record oscillo-
grams using the Data Recorder module of the Multi 
VirAnalyser program.

Observations at the indicated frequency were 
carried out during the daytime and at night during 
the seasons of 2019 and 2020 and gave interesting 
results. A large number of events similar to me-
teor phenomena have been registered. The average 
number of such phenomena per day was about a 
hundred, with an average pulse duration of about 
0.4 seconds. The most important was to obtain 
evidence that the recorded pulses are associated 
precisely with the reflection of radio waves from 
plasma meteor tracks.
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Results and discussion

In optical observations of meteors, it is quite easy 
to identify their images. In addition to them, only fly-
ing apparatuses are fast moving objects in the celes-
tial sphere: satellites and airplanes. Both of them in 
the pictures are quite different from meteors, and they 
do not appear in the sky often.

When registering radio waves reflected from 
plasma meteor tracks, there are difficulties associ-
ated with various kinds of interference: natural and 
technogenic. Important criteria for difference are the 
temporal structure of the radio pulse and its duration. 
In this case, it should be taken into account that the 
parameters of the reflected pulse are determined by 
the concentration of free electrons per unit length of 
the plasma track. “Saturated tracks” with an electron 
density of more than 2∙1014 electrons per meter re-
flect radio waves most effectively (virtually mirror 
image). Such tracks are created by quite massive par-
ticles that generate meteors brighter than 5 magni-
tude. In this case, radio waves are reflected in much 
the same way as from a metal surface. 

At lower concentrations of free electrons, they 
talk about “unsaturated” meteor tracks. In this case, it 
is more correct to talk not about reflection, but about 
the scattering of radio waves. In both cases, there is 
an increase in the intensity of the reflected signal, and 
after it reaches a maximum, a decrease. At the same 
time, the duration of the reflected pulse is noticeably 
longer for “saturated” tracks; it can be up to ten sec-
onds. Here, the intensity of the reflected signal gradu-
ally increases at the beginning, while its maximum 
has the character of a plateau. For “unsaturated” me-
teor tracks, the duration of the reflected pulse does 
not exceed 1 second. 

They are characterized by a very rapid increase 
in signal intensity, a sharp maximum and its rapid 
fall according to an exponential law. The relaxation 

time is 0.3 – 0.5 seconds. In both cases, the reflected 
radio pulses are characterized by a discontinuous 
structure (with a characteristic time of hundredths 
of a second), which is explained by the interference 
of radio waves reflected from different parts of the 
meteor track [21].

These signs made it possible to identify meteor 
radio echoes in the records and study the statisti-
cal daily and seasonal patterns of their appearance. 
Comparing the results obtained with the data of many 
other observers, it is possible to estimate the effec-
tiveness of the newly created installation and the ad-
equacy of the applied research methodology.

Important features of the daily course of meteor 
activity are the presence of a morning (about 06:00 
local time) maximum and an evening (about 18:00 
local time) minimum in the number of meteors. In 
this case, the time dispersion of the maximum and 
minimum positions is about 2 hours. It’s clear that 
sporadic meteors are considered in this case, since 
the presence of an active meteor shower at the mo-
ment can radically change the picture. It is especially 
important to take this into account for meteor show-
ers with circumpolar radiants (Cassiopeids, Perseids, 
Draconids, and others). Figure 7 shows the daily dis-
tribution of meteor reflections on August 13, 2019, 
obtained at the CAR NKU.

This distribution compares well with the data of 
other observers shown in Figure 8.

The dynamics of the daily course of meteor phe-
nomena recorded in the radio range throughout the 
month is shown in Figures 9 and 10. It is obvious 
that the month with an active meteor shower will be 
the most indicative for the study of the correct opera-
tion of the system. In this case, an excess of the daily 
number of meteors in the epoch of maximum will be 
detected. One of the best periods in this case should 
be considered August with its giant shower, the Per-
seids [25].

Figure 6 − Antenna (upper part) and an instrument complex  
for registering meteors in the radio range.
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Figure 7 − The daily distribution of meteor reflections on August 13, 2019, 
CAR NKU, Petropavlovsk

Figure 8 − Daily distribution of meteors for 13.08.2019, data from Mario Bombardini, Italy [24].

	 Figure 9 − Distribution of the daily number of meteors for August 2019  
according to radio observations at the CAR NKU, Petropavlovsk.
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Figure 9 clearly shows a wide maximum of 
Perseid activity from August 12 to 16 with a sharp 
peak on August 13. The relatively high meteor 
activity on August 1 can be associated with the 
combined action of the Cassiopeid and δ – Aquarid 

showers near this date, and the increase in meteor 
activity on August 23 with the simultaneous action 
of several weak meteor showers. Among them, the 
poorly studied ϰ–Cygnids meteor shower is best 
known [25].

Figure 10 − Distribution of the daily number of meteors for August 2019  
according to radio observations by F. Verbelen, Kampenhout (Belgium)  

at a frequency (49.99 MHz) [26].

Comparison of the radio observations results of 
the meteor phenomena frequency presented in Fig-
ures 9 and 10 shows their good mutual agreement. 
Thus, it can be argued about the achievement of a 
fairly confident registration of meteors by the radio 
echo method with the help of instruments available 
at CAR NKU.

Conclusions 

We think that the combination of both optical 
and radio observations of meteor phenomena will be 
most effective in studying the features of the distribu-
tion of meteoroids in the vicinity of the Earth’s orbit. 
At the same time, as noted, the methods of optical 
registration of meteors require their further develop-
ment. And there are several possibilities here.

So the use of the new camera CANON 2000 D 
[27] could be an alternative to installing a meteor pa-
trol. This camera in combination with a wide–angle 
lens CANON ZOOM LENS EF–S 10–22 mm has 
proven itself in the implementation of a panoramic 
view of the twilight segment in the summer. The field 
of view of a CANON 2000 D camera with a wide–
angle lens is more than 90 degrees in azimuth. The 
camera has a higher sensitivity compared to previous 
models. With its help, an extensive set of high–qual-
ity images of noctilucent clouds in the 2021 season 

was obtained. In the same season, test observations 
of the Perseids were also carried out (Fig. 11), which 
made it possible to obtain high–quality images of 
meteors. 

 

 
 

Figure 11 − Perseid meteors images taken with CANON 2000 
camera with CANON ZOOM LENS EF–S 10–22 mm lens.
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These results give good prospects for the imple-
mentation of new generation meteor patrols. In the 
future, it is planned to install three such cameras on a 
common tripod using a tracking module.

The use of an optical image brightness am-
plifier in the investigation of little–studied weak 
meteor showers is very promising. At the same 
time, observations of meteors of the ϰ–Cygnids 
shower are the most promising. In addition, with 
the use of this amplifier, it is planned to conduct 
experiments on the registration of meteors in the 

near infrared range. This is associated with the 
possibility of the registration of the meteors gen-
erated by extremely friable bodies, as well as icy 
meteoroids.

In addition, to register bright meteors and fire-
balls, a new All Sky camera ASI224VC with an 
Arecont 1.55 lens was purchased (Fig. 12 on the left). 
The camera is equipped with a protective acrylic 
dome and can work offline with recording informa-
tion on a micro SD card. The field of view of this 
camera is 180 degrees [28].

Figure 12 − All Sky ASI224VC camera with Arecont 1.55 lens.

However, the highest expectations are associated 
with the new highly sensitive CANON RF camera 
[29], the use of which will make it possible to per-
form video recording of meteor phenomena with 
characteristics that are noticeably superior to their vi-
sual observations. Unlike previous models, this cam-

era is distinguished by a very high light sensitivity, 
which makes it possible to register meteors up to 7–8 
magnitudes. The use of this camera in conjunction 
with the tracking device Sky–Watcher Star Adven-
turer will greatly expand the possibilities of optical 
monitoring of meteor phenomena.
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Abstract. A nonlinear wave is one of the basic objects of physics. They are inherent to plasma physics 
and solid state physics, gravity and nuclear physics, field theory and optics, hydrodynamics and 
aerodynamics, kinetics of chemical reactions and population dynamics. It is well known that the constuction 
of explicit solutions for an integrable system plays a significant part in the definition and explanation of 
nonlinear phenomena. In this article, we will focus on integrable nonlinear Schrodinger and Maxwell-Bloch 
equations (NLS-MB) that represents the propagation of optical impulses in an inhomogeneous fibreglass 
with erbium-doped losses or amplification due to an external potential. Lax representation of NLS-MB will 
be given. Based on relevant Lax pair, Darboux transformation for NLS-MB will be obtained. Exact solutions 
will be derived through the Darboux transformation. Graphs of the obtained solutions will be constructed. By 
using our approach one can find also other differerent exact solutions of NLS-MB equations. 
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Introduction 
 
Nonlinear wave equations represent common 

and significant phenomena arising in different 
physical contexts, including plasma, acoustics, 
optics, and waves on water, and as a consequence 
they continue to attract considerable attention from 
researchers. Frequently nonlinear waves are 
mathematically defined by nonlinear partial 
differential equations. In certain physical modes, 
these PDEs are completely integrable and, as a 
consequence, have a remarkably deep mathematical 
structure. For instance, complete integrability is 
related to the existence of an endless number of 
conservation laws; the existence of a Lax pair makes 
it possible to develop and use different analytical 
tools. The behavior of solutions of integrable 
nonlinear equations shows a lot of interesting 
phenomena. These PDEs admit multiple types of 
exact solutions, including bound states, and 
solutions of finite kind and solitons. Furthermore, 
these equations are interesting not only from a 
mathematical viewpoint, but also significant from a 
practical point of view, since they determinate 
equations for many particular physical conditions. 

Over the past few years, long-range optical 
fiber communication has attracted great interest 
from scientists around the world. The transmission 
of soliton pulses in ultrafast communication systems 
plays an especially important role and is considered 
the tool of the future to achieve low loss, efficiency 
and high speed communication. Many equations 
have been studied by mathematicians and physicists 
as models for fiber optic communication.To take 
into account the influence of large pulse widths, the 
dynamics of the system is controlled by the coupled 
system of the nonlinear Schrodinger equation and 
Maxwell-Bloch equation (NLS-MB) [1]. The 
nonlinear Schrödinger equation (NSE) describes the 
propagation of optical pulses through nonlinear 
optical fibers in the picosecond range [2]. For 
soliton-based communication systems, fiber 
attenuation must be compensated for to be more 
competitive, reliable, and cost-effective than 
traditional systems. Maxwell-Block (MB) equations 
describe a type of pulse propagation called self-
induced transparency (SIT) [3]. This type of pulse 
reaches a steady state, where the width, energy and 
shape of the pulse remain unchanged after several 
classical absorption lengths, and the pulse velocity  
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is much lower than the speed of light in this 
medium. Together they are known as the NLS-MB 
equations.  

In this article we will construct the Darboux 
transform of the Lax pair of the NLS-MB equation, 
new exact solutions will be directly constructed 
starting from the seed solution. Because obtaining of 
exact solutions to the integrable equations is one of 
the most essential and meaningful topics.  

 
Materials and Methods  
 
There are some methods for constructing 

solutions, such as the inverse scattering 
transformation method [4], the Hirota bilinear 
transformation method [5], The Backlund [6] and 
Darboux transformation (DT) methods [7-11], the 
Fokas approach [12], the long-time asymptotic 
approach [13], and so on. Among them, the 
Darboux transformation is the most effective 
method for finding explicit solutions to integrable 
equations. The unique advantage of DT in solving 
integrable equations is that their solutions are 
constructed using a purely algebraic procedure.  

This article consists of three main sections. In 
the first section Lax representation of the integrable 
NLS-MB equations will be introduced. Then we 
will give the detailed proof of the Darboux 
transformation for NLS-MB equations in section 2. 
In section 3 we will derive new and different kind of 
solutions based on obtained Darboux transformation 
and construct their graphs. Last section devoted to 
conclusion. 

 
Literature review 
 
For the first time Maimistov and Manykin [4] 

derived the coupled NLS-MB system to consider the 
propagation of ultrashort pulses in a light guide with 
a two-level resonant medium with Kerr nonlinearity. 
Many scientists have worked on this, achieving 
significant results [5,6]. These equations has also 
been reduced using the Painleve analysis [7]. In 
addition, the Lax pair and the multisoliton solution 
of the NLS-MB equations were proposed by Kakei 
and Satsuma [8]. There has been a lot of research 
done on the NLS-MB equations recently. The 
multisoliton solution is given in reference [9]. 
Single soliton and single respiratory solutions of the 
NLS-MB equations were obtained using the 
Darboux transformation (DT) [10-12].  

The Darboux transform (DT) of an integrable 
system was first proposed by Matveev and Salle [6] 
. The main idea is that they construct a DT for a 
linear system and an adjoint system. They then join 
the two DTs together and find the double DT (i.e. 
BDT). Moreover, the BDT of some integrable 
equations was constructed in [14, 15]. Numerous 
successful implementations of Darboux 
transformation in various fields of physics and 
applied mathematics ensure its importance from an 
applied point of view [17, 18]. It is proved that this 
method, based on lax pairs, is one of the most 
productive algorithmic procedures for obtaining 
explicit solutions to nonlinear evolution equations. 
An effective way to create obvious solutions for 
many integrated systems is Darboux Transformation 
(DT) [6-10].  
 

1. Lax representation of the integrable NLS-
MB  

If an optical pulse propagates through a 
nonlinear waveguide, the evolution of the pulse is 
determined by the NLS-MB equations. The NLS-
MB equations are written as [1, 4].  

 
 𝑞𝑞� � 𝑖𝑖��� 𝑞𝑞�� � |𝑞𝑞|�𝑞𝑞� � 2𝑝𝑝,                (1) 
 
 𝑝𝑝� � 2𝑖𝑖𝑖𝑖�𝑝𝑝 � 2𝑞𝑞𝑞𝑞,                    (2) 
 
 𝜂𝜂� � ��𝑞𝑞𝑝𝑝∗ � 𝑞𝑞∗𝑝𝑝�.                  (3) 

 
where: 

𝑞𝑞 – the complex field envelope;  
𝑝𝑝 – measure of polarization of the resonant 

medium;  
𝜂𝜂 – inverse population between two levels of 

wave functions of two energy levels of resonant 
atoms;  

𝜔𝜔 – the real constant parameter, it corresponds 
to the frequency; 

∗ – is the complex conjugate. 
NLS-MB equations’ linear eigenvalue 

problem is expressed as 
 

 Ψ� � �Ψ                                 (4) 
  

 Ψ� � �Ψ                                 (5) 
where  

 Ψ � �Ψ�Ψ��                                (6) 
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𝑈𝑈 � � 𝜆𝜆 𝜆𝜆
�𝜆𝜆∗ �𝜆𝜆� ≡ 𝜆𝜆𝜆𝜆� � 𝑈𝑈�,                                                              (7) 

  

𝑉𝑉 � 𝑖𝑖 ��1 0
0 �1� 𝜆𝜆

� � � 0 𝑞𝑞
�𝜆𝜆∗ 0� 𝜆𝜆 �

�
� �
|𝑞𝑞|� 𝑞𝑞�
𝑞𝑞�∗ �|𝑞𝑞|��� �

� �
�����

� 𝜂𝜂 �𝑝𝑝
�𝑝𝑝∗ �𝜂𝜂� ≡ 𝑖𝑖𝑖𝑖�𝜆𝜆� � 𝑖𝑖𝜆𝜆𝑉𝑉� � �

� 𝑉𝑉� �
�

�����
𝑉𝑉��

                                  (8) 

 
 
here 

𝜆𝜆 – the complex eigenvalue parameter constant; 
𝑈𝑈 and 𝑉𝑉 – the Lax pair of NLS-MB equations. 
 
2. Darboux transformation for the NLS-MB 

equations. 
In this section Darboux transformation will be 

introduced for the integrable NLS-MB equations. 
Firstly, to construct Darboux transformation of 
NLS-MB equation, we consider the transformation 
about linear function Ψ.  

 
Ψ′ � 𝑇𝑇Ψ � �𝜆𝜆𝐼𝐼 � 𝑆𝑆�Ψ                     (9) 

 
therefore 
 

Ψ′� � 𝑈𝑈′Ψ′                               (10) 
 

Ψ′� � 𝑉𝑉′Ψ′                                (11) 
 
where 𝑆𝑆 � �𝑠𝑠�� 𝑠𝑠��𝑠𝑠�� 𝑠𝑠��� and 𝐼𝐼 � �1 0

0 1�. 𝑈𝑈𝑈 and 𝑉𝑉𝑉 
depend on 𝑞𝑞𝑞, 𝑝𝑝𝑝, 𝜂𝜂𝜂, 𝜆𝜆 and it dependence is the same 
as the dependence of 𝑝𝑝, 𝑝𝑝, 𝜂𝜂, 𝜆𝜆 on 𝑈𝑈 and 𝑉𝑉. To hold 
equations (10) and (11) , 𝑇𝑇 must satisfy 
 

𝑇𝑇� � 𝑇𝑇𝑈𝑈 � 𝑈𝑈′𝑇𝑇                             (12) 
 

𝑇𝑇� � 𝑇𝑇𝑉𝑉 � 𝑉𝑉′𝑇𝑇                              (13) 
 

The relation between 𝑞𝑞,𝑝𝑝, 𝜂𝜂 and new solutions 
𝑞𝑞𝑞,𝑝𝑝𝑝, 𝜂𝜂𝜂 which is called Darboux transformation can 
be got by using equations (12) and (13). From 
equation (12) we have  

 
�𝑆𝑆� � 𝜆𝜆�𝐼𝐼𝐼𝐼� � 𝜆𝜆𝐼𝐼𝑈𝑈� � 𝜆𝜆𝑆𝑆𝜆𝜆� � 𝑆𝑆𝑈𝑈� � 
�𝜆𝜆�𝜎𝜎�𝐼𝐼 � 𝜆𝜆𝜆𝜆�𝑆𝑆 � 𝜆𝜆𝑈𝑈′�𝐼𝐼 � 𝑈𝑈′�𝑆𝑆 � 0        (14) 
 

Collecting different degrees of 𝜆𝜆, we get the 
following set of identities 

 
𝜆𝜆: 𝐼𝐼𝐼𝐼� � 𝑆𝑆𝜆𝜆� � 𝜆𝜆�𝑆𝑆 � 𝑈𝑈′�𝐼𝐼 � 0           (15) 

 
which further leads to  
 

𝑈𝑈𝑈� � 𝑈𝑈� � �𝜆𝜆�, 𝑆𝑆�,                  (16) 
 

𝜆𝜆�:𝑆𝑆� � 𝜆𝜆�𝑆𝑆� � � 0 𝑞𝑞
�𝜆𝜆∗ 0� 𝑆𝑆 � 

�𝑆𝑆𝜆𝜆�𝑆𝑆 � 𝑆𝑆 � 0 𝑞𝑞
�𝜆𝜆∗ 0�,                   (17) 

 
from above several identities, we can get  
 

𝜆𝜆′ � 𝜆𝜆 � 2𝑠𝑠��,                    (18) 
 

𝑞𝑞∗� � 𝜆𝜆∗ � 2𝑠𝑠��,                   (19) 
 

and 𝑆𝑆 should have a condition 𝑠𝑠�� � 𝑠𝑠��∗ . By (13), 
following identity can be obtained  
 

�𝑆𝑆� � 𝑖𝑖𝜆𝜆�𝐼𝐼𝐼𝐼� � 𝑖𝑖𝜆𝜆�𝐼𝐼𝐼𝐼� � �
� 𝜆𝜆𝜆𝜆𝜆𝜆� �

�
�����

𝐼𝐼𝐼𝐼�� � 𝑖𝑖𝑆𝑆𝜆𝜆�𝜆𝜆� � 𝑖𝑖𝜆𝜆𝑆𝑆𝑉𝑉� � �
� 𝑆𝑆𝑆𝑆� �

� �
�����

𝑆𝑆𝑆𝑆�� � 𝑖𝑖𝜆𝜆�𝜎𝜎�𝐼𝐼 � 𝑖𝑖𝜆𝜆�𝜎𝜎�𝑆𝑆 � 𝑖𝑖𝜆𝜆�𝑉𝑉𝑉�𝐼𝐼 �
�𝑖𝑖𝜆𝜆𝑉𝑉′�𝑆𝑆 � �

� 𝜆𝜆𝜆𝜆𝜆�𝐼𝐼 �
�
� 𝑉𝑉𝑉�𝑆𝑆 �

�
�����

𝑉𝑉𝑉��𝐼𝐼 � �
�����

𝑉𝑉𝑉��𝑆𝑆 � 0
                     (20) 

 
 

Comparing the coefficient of 𝜆𝜆� �𝑖𝑖 � 0,1,2� of 
the two sides of equation (20) as we did before with 
equation (14), we have 

 
 

𝜆𝜆�: 𝐼𝐼𝐼𝐼� � 𝑖𝑖𝑆𝑆𝜆𝜆� � 𝑖𝑖𝜆𝜆�𝑆𝑆 � 𝑖𝑖𝑉𝑉′�𝐼𝐼 � 0         (21) 
which leads to  

𝑉𝑉𝑉� � 𝑉𝑉� � �𝜆𝜆�, 𝑆𝑆�,                  (22) 
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𝜆𝜆: �� 𝐼𝐼𝐼𝐼� � 𝐼𝐼𝑆𝑆𝐼𝐼� � 𝐼𝐼𝐼𝐼𝑉�𝑆𝑆 � �
� 𝑉𝑉𝑉�𝐼𝐼 � 0       (23)

𝜆𝜆�:𝑆𝑆� � 𝐼𝐼�� � 𝐼𝐼𝑉�� � �
� 𝑉𝑉𝑉�𝑆𝑆 �

�
� 𝑆𝑆𝑆𝑆�,       (24)

�
�����

: 𝑖𝑖𝑖𝑖�𝐼𝐼𝐼𝐼�� � 𝑆𝑆𝐼𝐼�� � 𝑆𝑆𝐼𝐼�� � 
�𝑖𝑖𝑖𝑖�𝑉𝑉���𝐼𝐼 � 𝐼𝐼���𝑆𝑆 � 0          (25) 

further it leads to 

𝑉𝑉𝑉�� � �𝑆𝑆 � 𝑖𝑖𝑖𝑖�𝐼𝐼�𝐼𝐼���𝑆𝑆 � 𝑖𝑖𝑖𝑖�𝐼𝐼��� (26) 

Thus, from the above identities, after 
simplifications, several important equations (16-19), 
(21-26) were obtained that lead to Darboux 
transformations for the NLS-MB system later. 

Now in order to determine the values of 𝑝𝑝𝑝, 𝑝𝑝∗� 
and 𝜂𝜂� we put into Eq. (26) values of 𝑆𝑆, 𝑉𝑉��, 𝑉𝑉𝑉�� 
and get 

𝑝𝑝𝑉 � ����������������∗���� ������������
△  (27) 

𝑝𝑝∗� � �����������������∗����������������
△ (28)

𝜂𝜂� �
������������������������������∗��������������������������

△  
(29) 

where 
△� �𝑠𝑠�� � 𝑖𝑖𝑖𝑖���𝑠𝑠�� � 𝑖𝑖𝑖𝑖�� � 𝑠𝑠��𝑠𝑠��.

The main step is to find the exact value of 𝑆𝑆 
expressed by solving the column of equations (4) 
and (5). Suppose, that 

𝑆𝑆 � 𝐻𝐻 �𝜆𝜆� 0
0 𝜆𝜆��𝐻𝐻

�� ≡ 𝐻𝐻𝐻𝐻𝐻��    (30) 

𝐻𝐻 � �Ψ��𝜆𝜆�, 𝑥𝑥, �� Ψ��𝜆𝜆�, 𝑥𝑥, ��
Ψ��𝜆𝜆�, 𝑥𝑥, �� Ψ��𝜆𝜆�, 𝑥𝑥, ���, (31) 

where 𝜆𝜆� and 𝜆𝜆� are complex constants, det H � 0. 
From equations (4) and (37) we have 

𝐻𝐻� � ��𝐻𝐻𝐻 � � 0 𝑞𝑞
�𝑞𝑞∗ 0�𝐻𝐻       (32) 

At the same time, from equations (5) and (31) 
can be derived:  

𝐻𝐻� � ��𝐻𝐻𝐻� � 𝑖𝑖𝐼𝐼�𝐻𝐻𝐻 � 𝑖𝑖
2𝑉𝑉�𝐻𝐻 � 

�𝐼𝐼��𝐻𝐻�
�

������
0

0 �
������

�         (33) 

Then we can verify by direct calculation that 
𝑆𝑆 defined by equation (30) actually satisfies 
equations (18) (24). To satisfy the 𝑆𝑆𝑆 and 𝑉𝑉𝑉�� 
constraints as above, we obtain 

𝜆𝜆� � �𝜆𝜆�∗       (34) 

𝐻𝐻 � �Ψ��𝜆𝜆�, 𝑥𝑥, �� �Ψ�∗�𝜆𝜆�, 𝑥𝑥, ��
Ψ��𝜆𝜆�, 𝑥𝑥, �� Ψ�∗�𝜆𝜆�, 𝑥𝑥, �� �  (35) 

Thus, we replacing equations (35) and (30) again 
to equations (18) and (26) and obtain the following 
Darboux transformations for NLS-MB. 

𝑞𝑞𝑉 � 𝑞𝑞 � 2 ������∗ �����∗
△         (36)

𝑝𝑝𝑉 � � ��
△� �|Ψ�|� �1 � ��

� � � � |Ψ�|� �1 � ��
� ���Ψ�Ψ�

∗ �
� �∗

△� �2 �
��
� � �

� �
� ��Ψ�

�Ψ�∗� � �
△� �|Ψ�|� � �

� � � 2|Ψ�|�|Ψ�|� � |Ψ�|�  � �� ��
 (37) 

𝜂𝜂𝑉 � � �∗
△� �|Ψ�|� �1 �  � �� �� � |Ψ�|� �1 � ��

� ���Ψ�Ψ�
∗ �

� �
△� �|𝜓𝜓�|� �1 � ��

� �� � |Ψ�|� �1 �  � �� ���Ψ�Ψ�
∗ �

�
△� �|Ψ�|� � |Ψ�|� � 2 � � �� � �

� �
� � � 1� |Ψ�|�|Ψ�|��

    (38) +

+
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Here Ψ� ≡ Ψ��𝜆𝜆�, 𝑥𝑥, 𝑡𝑡�, 𝜆𝜆�� ≡ 𝜆𝜆� � 𝑖𝑖𝜔𝜔�, 𝑖𝑖 � 1,2 and 
�� |Ψ�|� � |Ψ�|�. 
 

3. Exact solutions of the NLS-MB equations 
In this section our aim is to derive new and 

different solutions of NLS-MB using obtained DT. 
Firstly, in order to costruct one-soliton solution we 
assume seed solutions as 𝑞𝑞 � 0,𝑝𝑝 � 0, 𝜂𝜂 � 1, then 
we take eigenfunctions in the following form: 

 

Ψ� � e����������
�

���������� ,                (44) 
 

Ψ� � e�����������
�

����������                (45) 
 
 

where 
δ� – arbitrary fixed real constant and 𝜆𝜆� � a �

ib. Substituting these two eigenfunctions into the the 
following Darboux transformations given in (36-38) 
and choosing � � 0.5, � � 0.5 𝜔𝜔� � 1.5, 𝛿𝛿� � 1 
then one-solitone solution of NLS-MB can be 
obtained, the evolution of which is shown in the 
figure. 1 clearly shows that 𝑞𝑞, 𝑝𝑝, and 𝜂𝜂 are bright 
solitons, because their waves under the flat non-
vanishing plane. 

 
𝑞𝑞� � ��.���.� ���������������

�������.���������������������; (46) 
 
 

𝑝𝑝� � ��1.600000000 � 0.0 𝑖𝑖�e�����e������e����� � �0.5 � 1.0 𝑖𝑖� �
� e������e��������/�e������.�e������ � e�����e�������

                    (47) 

 
𝜂𝜂� � ���0.2000000000 � 0.6000000000 𝑖𝑖�e������.�e������.� �

��0.6000000000 � 0.2000000000 𝑖𝑖�e�����.�e�����.��e������.���������.� �
��1.200000000 � 0.6000000000 𝑖𝑖��e������.����e������.��� �
� �1.0 � 0.2000000000 𝑖𝑖�e�����.�e�����.�e������.�e������.� �
�1.0 �e�����.����e�����.�����/�e������.�e������.��e�����.�e�����.���

         (48) 

 
 
here 
 

� � �0.0294117647 � 0.1176470588 𝑖𝑖�𝑡𝑡 
� � �0.0294117647 � 0.1176470588 𝑖𝑖�𝑡𝑡 

 
and 

 
� � �0.5 � 0.5 𝑖𝑖�𝑥𝑥 
� � �0.5 � 0.5 𝑖𝑖�𝑥𝑥 

 
Graphs of one-soliton solutions of the NLS-

MB equations are shown in Figure 1: 

 
�|𝑞𝑞|�� 

 

 
 

�|𝑝𝑝|�� 
 

 
 

�|𝜂𝜂|�� 
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Figure 1 – One-soliton solutions of the NLS-MB equations  

 
We obtained another type of solution for the 

NLS-MB equations by taking the seed solutions as 
� 0, 𝑝𝑝 � 0, 𝜂𝜂 � 1. 

 
Ψ� �  � � it � 1,                         (49) 

 
Ψ� � �� � it                             (50) 

 
Substituting the eigenfunctions Ψ� and Ψ� from 

(48)-(49) and the eigenvalues 𝜆𝜆� � a � ib and � �
0.5, � � 0.5, 𝜔𝜔� � 1.5 into the Darboux 
transformation (36)-(38), we obtain exact solutions 
for the system of equations (1)-(3) in the following 
form: 

 
 
 𝑞𝑞� � �2.0 ���������������

�� ���� ���� ���;  (51) 
 
 𝑝𝑝� � �1.600000000 �����������������.���.� ���.� �����.� �����.� ���.� ���

��� ���� ���� ����� ; (52) 
 

 

𝜂𝜂� � ��0.8000000000 � 0.0 𝑖𝑖� �
� ����.���.� ���������������������.���.� ����������������

������������������������������� � 1.5 𝑖𝑖� �
� ���.���.� �������������������.���.� ����������������

������������������������������� � 1.5 𝑖𝑖� �
� ��.���.� ��������������������������������

���������������������������������� �

 (53) 
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Graphs of solutions of the NLS-MB equations are shown in Figure 2: 
 

�|𝑞𝑞|�� 
 

 

�|𝑝𝑝|�� 
 

 

�|𝜂𝜂|�� 
 

  Figure 2 – Exact solutions of the NLS-MB equations  
 

Conclusion 
 
In this article, we studied the nonlinear 

Schrodinger and Maxwell-Bloch equations (NLS-
MB) which describe the propagation of optical 
solitons in optical fibers with resonant impurities 
and nonlinear systems doped with erbium.  

In the first section we presented a Lax pair 
formulation for NLS-MB equations. The Lax pair 
plays an significant role in the research of integrable 
properties of the NLS equation. The Darboux 
transformation was constructed and seed solutions 
were obtained in the second section. The Darboux 
transformation is the most effective technique of 
searching for exact solutions of integrable 
equations. To find Darboux transformation of NLS-
MB equation, we considered the transformation 
about linear function. In the third section on the 
basis of Darboux transformation, different exact 
solutions of NLS-MB equations were obtained. 
Firstly, to construct a one-soliton solution, we took 

seed solutions as � � �,� � �,� � �. We chose the 
appropriate parameter values and built graphs from 
which you can see the behavior of the solution. 
Namely, it can be seen from the graph 1 that 
obtained results corresponded to bright solitons, 
because their waves under the flat non-vanishing 
plane. Then in the same section we have obtained 
other exact solutions. The graphs of these solutions 
were also presented.  

Using our approach a new type of waves can 
be derived for another integrable coupled system in 
optics. The nonlinear phenomena studied in this 
work may be useful in physics, mathematics and 
other disciplines. 

 
Acknowledgments  
 
The research work is funded by the Science 

Committee of the Ministry of Education and 
Science of the Republic of Kazakhstan (grant No 
AP08856912).

 
 

References 
 
1. Maimistov, A.I., Manykin, E.A. “Propagation of ultrashort optical pulses in resonant non-linear light guides.” 

Zh. Eksp.Teor. Fiz. 85, (1983): 1177–1181. 
2. Hasegawa, A., Tappert, F. “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. 

Anomalous dispersion.” Appl. Phys. Lett. 23, (1973): 142–144.  
3. McCall, S.L., Hahn, E.L.: “Self induced transparency by pulsed coherent light.” Phys. Rev. Lett. 18, (1967): 

908–911. 



43A.B. Zhumageldina et al.

International Journal of Mathematics and Physics 13, №2 (2022)                                         Int. j. math. phys. (Online)

4. Neugebauer, G., Meinel, R. “General N-soliton solution of the AKNS class on arbitrary background.” Phys. 
Lett. A. 100, (1984): 467–470. 

Kakei, S., Satsuma, J. “Multi-soliton solutions of a coupled system of the nonlinear Schrödinger equation and the 
Maxwell–Bloch equations.” J. Phys. Soc. Jpn. 63, (1994): 885-894. 

5. Neugebauer, G., Meinel, R. “General N-soliton solution of the AKNS class on arbitrary background.” Phys. 
Lett. A 100, (1984): 467–470. 

6. He, J.S., Cheng, Y., Li, Y.S. “The Darboux transformation for the NLS-MB equations.” Commun. Theor. Phys. 
38, (2002): 493– 496. 

7. Yesmakhanova, K., Nugmanova, G., Shaikhova, G., Myrzakulov, R., Bekova, G. “Coupled dispersionless and 
generalized Heisenberg ferromagnet equations with self-consistent sources: Geometry and equivalence.” International 
Journal of Geometric Methods in Modern Physics. 17(7), (2020): 2050104-2050104. 

8. Bekova, G., Shaikhova, G., Yesmakhanova, K., Myrzakulov, R. “Darboux transformation and soliton solution 
for generalized Konno-Oono equation” Journal of Physics: Conference Series. 1416, (2019): 012003. 

9. Kutum, B.B., Yesmakhanova, K.R., Shaikhova, G.N. “The differential-q-difference 2D Toda equation: bilinear 
form and soliton solutions” Journal of Physics: Conference Series; Bristol. 1391 (2019): 1742-6596. 

10. Bekova, G.T., Shaikhova, G.N., Yesmakhanova, K.R., Myrzakulov, R. “Conservation laws for two 
dimensional nonlinear Schrödinger equation” AIP Conference Proceedings. (2019): 030003. 

11. Yesmakanova K R, Shaikhova G.N, Bekova G.T, Myrzakulova Zh.R. “Determinant Representation of 
Darboux transformation for the (2+1)-Dimensional Schrodinger-Maxwell-Bloch Equation.” Advances in Intelligent 
Systems and Computing. 441 (2016): 183-198. 

12. Li, X.Y., Zhao, Q.L. “A new integrable symplectic map by the binary nonlinearization to the super AKNS 
system.” J. Geom. Phys. 121, 2017: 123–137. 

13. Zhang, N., Xia, T.C., Hu, B.B. “A Riemann–Hilbert approach to complex Sharma–Olver equation on half 
line.” Commun. Theor. Phys. 68, (2017): 580–594. 

14. Wang, D.S., Wang, X.L. “Long-time asymptotics and the bright N-soliton solutions of the Kundu–Eckhaus 
equation via the Riemann–Hilbert approach. Nonlinear Anal.” Real World Appl. 41, (2018): 334–361. 

15. Maimistov, A.I., Basharov, A.M. Nonlinear Optical Waves. Berlin: Springer, 1999. 
16. Hasegawa, A ., Optical Solitons in Fibers Berlin: Springer, 1989. 
17. Agrawal, G. P, Nonlinear fiber optics New York: Academic Press, 1989. 
18. Porsezian, K., Mahalingam, A., Shanmugha Sundaram, P., Chaos, Solitons and Fractals. 11, (2000): 12-61. 
 
 
© This is an open access article under the (CC)BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/). 

Funded by Al-Farabi KazNU. 
 



© 2022 al-Farabi Kazakh National University                                                                               Int. j. math. phys. (Online)

International Journal of Mathematics and Physics 13, №2 (2022)

IRSTI 29.15.03                                                                            https://doi.org/10.26577/ijmph.2022.v13.i2.06

A. Muratkhan1 , A. Orazymbet1 , M. Zhakipova1 ,  
M. Assylbek2 , S. Toktarbay1,2*

1Al-Farabi Kazakh National University, Almaty, Kazakhstan
2Kazakh National Women’s Teacher Training University, Almaty, Kazakhstan

*e-mail: saken.yan@yandex.ru
(Received 8 September 2022; accepted 14 December 2022)

A shadows from the static black hole mimickers

Abstract. In this work, we study shadows from the naked singularity spacetime. The most analytical solu-
tions of black hole shadows only investigated the case that the geodesic equations for photons can separate 
variables. We review the spherical null naked singularity metric and this spherically symmetric naked 
singularity spacetime metric is the solution of Einstein equations with an anisotropic fluid source which has 
no photon sphere. We also review a static, axially-symmetric singular solution of the vacuum Einstein’s 
equations without an event horizon which is can be used to describe the exterior gravitational field of a mass 
distribution with quadrupole moment. Moreover, the corresponding spacetime is characterized by the pres-
ence of naked singularities. It is theoretically known that not only a black hole can cast shadow, but other 
compact objects such as naked singularities, gravastar or boson stars can also cast shadows. We present the 
analytical calculation of shadows for both naked singularities spacetime and compare with the shadow of 
Schwarzschild static black hole, we show that this can serve as a black hole mimicker.
Keywords: compact object, naked singularity, shadow.

IRSTI 29.15.03                                                                        
https://doi.org/10.26577/ijmph.2022.v13.i2.06 

 

A. Muratkhan1 , A. Orazymbet1 , M. Zhakipova1 , M. Assylbek2 , S. Toktarbay1,2  

 
1Al-Farabi Kazakh National University, Almaty, Kazakhstan 

2Kazakh National Women’s Teacher Training University, Almaty, Kazakhstan 
*e-mail: saken.yan@yandex.ru 

(Received 8 September 2022; accepted 14 December 2022) 
 

A shadows from the static black hole mimickers 
 

Abstract. In this work, we study shadows from the naked singularity spacetime. The most analytical 
solutions of black hole shadows only investigated the case that the geodesic equations for photons can separate 
variables. We review the spherical null naked singularity metric and this spherically symmetric naked 
singularity spacetime metric is the solution of Einstein equations with an anisotropic fluid source which has 
no photon sphere. We also review a static, axially-symmetric singular solution of the vacuum Einstein’s 
equations without an event horizon which is can be used to describe the exterior gravitational field of a mass 
distribution with quadrupole moment. Moreover, the corresponding spacetime is characterized by the presence 
of naked singularities. It is theoretically known that not only a black hole can cast shadow, but other compact 
objects such as naked singularities, gravastar or boson stars can also cast shadows. We present the analytical 
calculation of shadows for both naked singularities spacetime and compare with the shadow of Schwarzschild 
static black hole, we show that this can serve as a black hole mimicker. 

Keywords: compact object, naked singularity, shadow. 
 

 
 
 
Introduction 
 
By the Event Horizon Telescope (EHT) 

collaboration have unveiled the first image of the 
supermassive black hole shadow at the centre of our 
own Milky Way galaxy [1]. The Event Horizon 
Telescope (EHT) has mapped the first image of a 
black hole at the centre of the more distant Messier 
87 galaxy in 2019 [2]. However, the images of two 
black holes similar, even they from the two 
completely different types of galaxies and two very 
different black hole masses. These results allows us 
to tests and verify of gravity theories and 
corresponding black hole solutions near a regime of 
the gravitational field for which the validity of 
General Relativity (GR). Therefore, it is important to 
consider any theory or calculation that satisfies the 
observational results in order to understand the nature 
of the geometry in the vicinity of an astrophysical 
black hole candidate and to test the validity of black 
hole hypotheses.  

Black hole mimickers are possible alternatives 
for black holes, they would look observationally 
almost like black holes but would have no horizon. 

The properties in the near-horizon region where 
gravity is strong can be quite different for both type 
of objects, but at infinity it could be difficult to 
discern black holes from their mimickers.  

In [3] it was provide a review of the current state 
of the research of the black hole (BH) shadow, 
focusing on analytical studies (see [4–7]. A black 
hole captures all light falling onto it and it is not 
possible to obtain a direct image of them, an observer 
will see a dark spot in the sky where the BH is 
supposed to be located. Due to the strong bending of 
light rays by the Black Hole gravity, both the size and 
the shape of this spot are different from what we 
naively expect on the basis of Euclidean geometry 
from looking at a non-gravitating black ball. Also, the 
authors [3] tried to give a complete list that have 
historically been used to refer to the visual 
appearance of a black hole and related concepts and 
they noted that despite the different names and 
different physical formulation of the problem, all 
these concepts are strongly intertwined. The word 
‘shadow’ in different languages has several 
meanings. In the case of the BH shadow, it can be 
understood as a dark silhouette of the BH against a 

https://orcid.org/0000-0001-9920-5193
https://orcid.org/0000-0002-7833-4858
https://orcid.org/0000-0003-2071-5911
https://orcid.org/0000-0002-4070-3865
https://orcid.org/0000-0002-5699-4476
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bright background which, however, is strongly 
influenced by the gravitational bending of light.  

In [8], the authors construct a space-time 
configuration that has a central naked singularity, but 
without photon sphere, and it can give both a shadow 
and a negative perihelion precession. Their results 
imply that if the presence of a shadow and positive 
perihelion 2 precession implies either a black hole or 
a naked singularity, the presence of a shadow and 
negative perihelion precession simultaneously would 
only imply a naked singularity.  

This work is organized as follows. In Sec.II we 
review the metric of null naked singularity spacetime 
which is the solution of Einstein’s field equations 
with an anisotropic fluid source, we calculate the 
shadows from this spacetime in section III and using 
the same procedure, in section IV we investigate the 
shadows in the axisymmetric spacetime. Finally, Sec. 
V contains a summary of our results. 

 

Spherical symmetric null naked singularity 
 
There has been a significant amount of work 

regarding the singular spacetimes and a lot of 
literature where timelike, lightlike geodesics around 
the black hole and naked singularity are investigated. 
Generally, shadow is considered to be formed due to 
the existence of a photon sphere outside the event 
horizon of a black hole. 

The line element representation for null naked 
singularity given by [9], 

 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2

�1+𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟 �
2 + �1 + 𝑀𝑀𝑀𝑀

𝑟𝑟𝑟𝑟
�
2
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟2 + 

+𝑟𝑟𝑟𝑟2(𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙2),                    (1) 
where M is the Arnowitt-Deser-Misner (ADM) mass 
of the above spacetime. The expression 

of the Kretschmann scalar and Ricci scalar for 
this spacetime are: 

 

 ,
)(

))2()()(4)2((4
84

2442422
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rMrMrrMrrMMRR
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+++++−

=αβγδ
αβγδ                          (2) 
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rMMR

+
+

=                      (3) 

 
From the above expressions of the Kretschmann 

scalar and Ricci scalar it can be seen that the 
spacetime has a strong curvature singularity at the 
center r = 0. No null surfaces such as an event horizon 
exist around the singularity in this spacetime. 

This metric this is the solution of Einstein’s field 
equations with an anisotropic fluid source The 
energy-momentum tensor for anisotropic fluid given 
as 

 ).,,,( ϕθρ pppdiagT rab =                 (4) 
 
The solutions of EFE for the energy density and 

pressures as: 
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and it is also shown that this metric satisfies all 
energy conditions, i.e. strong, weak and null energy 
conditions [6]; The anisotropy in the pressures is: 

 

 42

2222

)(
)64(

rMr
rMrMMppr +

++
−=− θ         (8) 

 
The equation of state (α) for an anisotropic fluid 

can be written as: 
 

 
ρ

α ϕθ

3
pppr ++

=                    (9) 

 
from the equations eq.(5- 7) the equation of state for 
this spacetime as 

 

 
3
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α               (10) 

 
where if r tends to zero, equation of state becomes 
−1/3; if r tends to infinity, equation of state becomes 
+1/3. 
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From the above equation (1) the expansion of 
component of metric tensor can be written as 

 

 ,321
2












−






+−−≈ 

r
M

r
Mgtt             (11) 

 
it is clear that in the large r limit, this metric is 
symptotically flat. Even though the metric resembles 
the Schwarzschild metric at a large distance, near the 
singularity, the causal structure of this spacetime 
becomes different from the causal structure of 
Schwarzschild spacetime. 

 
Shadows of null naked singularity 
 
Even though the metric resembles the 

Schwarzschild metric at a large distance, near the 
singularity, the causal structure of this spacetime 
becomes different from the causal structure of 
Schwarzschild spacetime. The most analytical 
solutions of black hole shadows only investigated the 
case that the geodesic equations for photons can 
separate variables. For example, In Kerr black hole 
space-time for the null geodesics has a third motion 
of constant, namely the Carter constant which is can 
be found by the calculation of HamiltonJacobi 
equation, except for the energy E and the z-
component of the angular momentum Lz and the 
photon motion system is integrable.[11]. 

Let’s rewrite the line element 1 in this form: 
 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = −𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2 + 1
𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟

2 + 
+𝑟𝑟𝑟𝑟2(𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙2),                (12) 

 
where the functions 
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
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The Hamilton of a photon is given by 
 

 ,
2
1

νµ
µν PPgH =                    (14) 

 
The photon motions can be obtained from the 

Hamiltom equation 
 

,,
µ

µ
µµ P

Hx
x
HP

∂
∂

=
∂
∂

−=                  (15) 

where 𝑃𝑃𝑃𝑃𝜇𝜇𝜇𝜇 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 is the four-momentum of the photon, 

and λ is the affine parameter.  
In additional, due to symmetries of the metric one 

can introduce two integrals of motion, corresponding 
to cyclic coordinates t and φ, i.e., the conserved 
quantities of energy and angular momentum, 
respectively. 

 ,, LPEPt ==− ϕ                    (16) 
 
From the Hamiltonian 14 with the eq.16 we can 

reduce 
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Because of the spherical symmetry, we can 

choose the orbit of the photon in the equatorial plane, 
which means𝜃𝜃𝜃𝜃 = 𝜋𝜋𝜋𝜋

2
,𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃 = 0. Also, the orbit equation 

for lightlike geodesics is dr/dφ, then, using eq.16 and 
eq.17 the orbit equation becomes 
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Figure 1 − Formation of a shadow in the case  

of a null naked singularity 
 

 
We can see that eq.(18) is the same form as an 

energy conservation law in one-dimensional classical 
mechanics (dr/dφ)2 + Veff (r) = 0, where the effective 
potential depends on the impact parameter b = L/E. 

According to (18), we can rewrite the effective 
potential for the metric (1) 
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The unstable circular orbits of lightlike geodesics 

can be found when the equations for effective 
potential 

 ,0,0,0 ,, <== rreffreffeff VVV         (20) 
 
From the above equation, one can determine the 

impact parameter b with a minimum radius of 
circular orbit 
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Let us also introduce the function 
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it is clear that the impact parameter and the function 
h(r) are related by b = h(R), then the equation 18 can 
be rewrite as a following 
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Assume that a static observer at radius coordinate 

rO sends light rays into the past. 
Then, the angle α between such a light ray and the 

radial direction is can be calculated by 
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from the eq.(23) and eq.(24) we obtain 
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By elementary trigonometry, we get 
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From the condition in eq. (20), in the null naked 

singularity spacetime, the minimum turning point 
radius (rtp) of the photon is rtp = R = 0, then for an 
observer the angular size of the shadow is 
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Then for an observer at a large distance the 

angular size 
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Synge calculated the shadow in the 

Schwarzschild spacetime as [8] 
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For large distances we have: 
 

 .33
0r
m

Sch ≈α                      (31) 

 
Shadow in q-metric 
In spherical coordinates, the q− metric can be 

written in a compact and simple form as 
 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = −𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2 + 𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟2 + 
+𝑔𝑔𝑔𝑔𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃2 + 𝑔𝑔𝑔𝑔𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙2.                    (32) 

where 

𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �1 − 2𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟
�
1+𝑞𝑞𝑞𝑞

, 

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−1 �1 +
𝑚𝑚𝑚𝑚2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃𝜃𝜃
𝑟𝑟𝑟𝑟2 − 2𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

�
−𝑞𝑞𝑞𝑞(2+𝑞𝑞𝑞𝑞)

, 

𝑔𝑔𝑔𝑔𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 = 𝑟𝑟𝑟𝑟2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑔𝑔𝑔𝑔𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙 = �1 − 2𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟
�
−𝑞𝑞𝑞𝑞
𝑟𝑟𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃𝜃𝜃. (33) 

 
This metric is the simplest static vacuum 

solutions of Einstein’s filed equations with 
quadrupole investigated in [13] and the geometric 
properties of the metric analyzed in detail. In the 
literature, this metric is known as the Zipoy– 
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Voorhees metric, δ - metric, γ - metric and q-metric 
[14–21]. Interior solutions of Einstein’s field 
equations was found in [22] and the new generating 
method with the perfect fluid source presented in [23] 
which includes the multipole moments. Consider that 
the orbit of the photon in the equatorial plane. The 
first integral of timelike geodesic equation is 
 

 .0=βα
αβ xxg                             (34) 

Hence 
.0222 =++− ϕϕϕ  grgtg rrtt                (35) 

 
We have used the expression for the energy E and 

the angular moment L which are constants of motion 
that associated with the Killing vector fields ξt = ∂t 
and ξφ = ∂φ, respectively. 

Consider the the boundary curve of the shadow 
corresponds to past-oriented light rays that 
asymptotically approach one of the unstable circular 
light orbits at radius rph. Therefore we have to 
consider the limit R → rph in (26) for getting the 
angular radius αsh of the shadow 

by the same procedure as in section III, 
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If we consider that the parameter q≠0, then the 

rph is 
 .)23( mqrph +=                         (37) 
 

 
Figure 2 − Angular size of shadows in a different scenarios  
as a function of sin 𝛼𝛼𝛼𝛼𝑠𝑠𝑠𝑠ℎ2 , for Schwarzschild (blue), q − metric 

(red) and for null naked singularity (green) 
 
The critical value bcr of the impact parameter is 

connected with rph by bcr = h(rph) 

,)32()12( 2
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the final calculation of angular radius of the shadow 
in the q−metric space-time is 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝛼𝛼𝛼𝛼𝑠𝑠𝑠𝑠ℎ = 𝑚𝑚𝑚𝑚2

𝑟𝑟𝑟𝑟02
(1 + 2𝑞𝑞𝑞𝑞)−1−2𝑞𝑞𝑞𝑞 × 

× (3 + 2𝑞𝑞𝑞𝑞)3+2𝑞𝑞𝑞𝑞 �1 − 2𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟0
�
1+2𝑞𝑞𝑞𝑞

.            (39) 
 
It is clear that when q = 0 it is reduce to the radius 

of photon sphere in the Schwarzschild spacetime, i.e., 
rph = 3m and, after substitution into (36) we can find 
the angular radius αsh of the shadow in the 
Schwarzschild spacetime. 

In figure 2 shown the angular size of shadows in 
a different scenarios. For the large observer at r0 they 
have not same angular size. The near the naked 
singularity apacetime, the size of shadows are quite 
different and the the size of shadow from the null 
naked singularity has a small angular size. At the 
large distance, Eq.(40) becomes 
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If q = 0, for large distances the shadow can be 

approximated and the expression reduce to the 
similar angular size of shadow in Schwarzschild 

spacetime as 
0

33
r

. 

 
Conclusions and remarks 
 
In this work, we reviewed the null naked 

singularity solution of Einstein’s filed equations that 
absence of photon sphere and calculated shadow size 
for a static observer. The angular size of the shadow 
in any spherically symmetric and static metric, for 
any position r0 of a static observer, can be calculated 
in the simple manner. 

We calculated the size of shadows in Null naked 
singularity and static q-metric spacetime. The near 
the naked singularity apacetime, a size of shadows 
are quite different from the Schwarzschild spacetime, 
the null naked singularity spacetime has a shadow 
with small angular size. For the q-metric spacetime, 
the size of the shadow directly depends the value of 
quadrupole parameter. Near the naked singularity,  
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the quantum gravity effects should be dominant, and 
therefore, such quantum gravity effects might be 
manifested or can be observed in the shadow cast by 
a naked singularity. This will require a detailed 
analysis of the various features encoded in such 
shadows. 

 For the large distance observer at r0 the null 
naked singularity and q-metric spacetime 
asymptotically resembles the Schwarzschild 
spacetime. As a result, the null naked singularity and 
static q-metric spacetime can be thought of as a 
Schwarzschild black hole mimickers.
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1 Introduction and preliminaries 
 
The study of loaded differential equations is of 

interest both from the practical and theoretical points 
of view, in mathematical modeling and in general 
mathematics itself. In [1-9], various boundary-value 
problems for loaded differential equations are studied 
and solved by different methods.  

Differential equations with piecewise constant 
argument of generalized type, introduced by M. 
Akhmet [10], arise in modeling of diverse 
phenomena and are widely used in applications such 
as neural networks, hybrid systems, dynamic systems 
with discontinuities, etc. The theory of such 
equations has been extensively developed; see, for 
instance, [10-15]. However, there still remain open 
questions regarding boundary-value problems for 
such equations on a finite interval.  

The parametrization method proposed by 
professor D. Dzhumabaev [16, 17] is an effective 
method of qualitative investigate and numerical 
solving BVPs for a wide class of differential and 
integro-differential equations.  

This paper is concerned with solving numerically 
a two-point BVP for a system of loaded DEPCAG by 
the modification of Dzhumabaev’s parametrization 
method. 

We consider the following a two-point BVP for 
the system of loaded DEPCAG: 

 
𝑥𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥 + 𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥(𝜃𝜃𝜃𝜃1) + 
+𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)� + 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 𝑡 (0,𝑇𝑇𝑇𝑇),          (1) 

 
𝐵𝐵𝐵𝐵0𝑥𝑥𝑥𝑥(0) + 𝐶𝐶𝐶𝐶0𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑑𝑑𝑑𝑑, 𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛,       (2) 

 
where (𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛)-matriсes 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡), 𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡), and 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡) are 
continuous on [0,𝑇𝑇𝑇𝑇], the 𝑛𝑛𝑛𝑛-vector-function 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) is 
piecewise continuous on [0,𝑇𝑇𝑇𝑇] with the possible 
discontinuity of the first kind at the point 𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃1; 𝐵𝐵𝐵𝐵0 
and 𝐶𝐶𝐶𝐶0 are constant (𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛)-matrices. Here 0 = 𝜃𝜃𝜃𝜃0 <
𝜃𝜃𝜃𝜃1 < 𝜃𝜃𝜃𝜃2 = 𝑇𝑇𝑇𝑇, ‖𝑥𝑥𝑥𝑥‖ = max

𝑖𝑖𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛�����
|𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|. 

The argument 𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡) is a step function defined as 
 
𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡) = 𝜉𝜉𝜉𝜉0 if 𝑡𝑡𝑡𝑡 𝑡 [𝜃𝜃𝜃𝜃0,𝜃𝜃𝜃𝜃1); 𝜃𝜃𝜃𝜃0 < 𝜉𝜉𝜉𝜉0 < 𝜃𝜃𝜃𝜃1,  

https://orcid.org/0000-0002-8809-9310
https://orcid.org/0000-0001-8861-4100
https://orcid.org/0000-0002-8558-4919
https://orcid.org/0000-0002-7195-4480
mailto:zhkadirbayeva@gmail.com
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and 
 𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡) = 𝜉𝜉𝜉𝜉1 if 𝑡𝑡𝑡𝑡 ∈ [𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2); 𝜃𝜃𝜃𝜃1 < 𝜉𝜉𝜉𝜉1 < 𝜃𝜃𝜃𝜃2. 
 
We will call a function 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) a solution to problem 

(1), (2) if: 
(i) it is continuous on [0,𝑇𝑇𝑇𝑇] and differentiable on 

(0, T) with the possible exception of the points 
𝜃𝜃𝜃𝜃0 and 𝜃𝜃𝜃𝜃1, at which the one-sided derivatives exist; 

(ii) it satisfies (1) on each interval (𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖−1,𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 =
1,2���� ; at the points 𝜃𝜃𝜃𝜃0 and 𝜃𝜃𝜃𝜃1, Eq. (1) is satisfied by 
the right-hand derivatives of 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡); 

(iii) it satisfies the boundary condition (2). 
 
2  A numerical algorithm for solving problem 

(1), (2) 
We divide the interval [0,𝑇𝑇𝑇𝑇] as follows: [0,𝑇𝑇𝑇𝑇) =

⋃ [𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟)4
𝑟𝑟𝑟𝑟=1 . Here 𝑡𝑡𝑡𝑡0 = 𝜃𝜃𝜃𝜃0, 𝑡𝑡𝑡𝑡1 = 𝜉𝜉𝜉𝜉0, 𝑡𝑡𝑡𝑡2 = 𝜃𝜃𝜃𝜃1, 𝑡𝑡𝑡𝑡3 =

𝜉𝜉𝜉𝜉1, and 𝑡𝑡𝑡𝑡4 = 𝜃𝜃𝜃𝜃2 = 𝑇𝑇𝑇𝑇.  
Let 𝐶𝐶𝐶𝐶([0,𝑇𝑇𝑇𝑇],𝜃𝜃𝜃𝜃,𝑅𝑅𝑅𝑅4𝑛𝑛𝑛𝑛) denote the space of function 

quadruples 𝑥𝑥𝑥𝑥[𝑡𝑡𝑡𝑡] = (𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)), 
whose components 𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟: [𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟) → 𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 are 
continuous on [𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟) and have finite limits 

lim
𝑡𝑡𝑡𝑡→𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−0

𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) for all 𝑟𝑟𝑟𝑟 = 1,4����. The space is equipped 

with the norm ‖𝑥𝑥𝑥𝑥[∙]‖2 = max
r=1,4����

sup
𝑡𝑡𝑡𝑡∈[𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1,𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟)

‖𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)‖. 

The restrictions of 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) to the partition 
subintervals, denoted by 𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) (𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) for 𝑡𝑡𝑡𝑡 ∈
[𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟), 𝑟𝑟𝑟𝑟 = 1, 4����� ), satisfy the following multipoint 
boundary-value problem  

 
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥1
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥1 + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡1) + 
+𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡2) + 𝑓𝑓𝑓𝑓1(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡0, 𝑡𝑡𝑡𝑡1),           (3) 

 
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2 + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡1) + 
+𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡2) + 𝑓𝑓𝑓𝑓1(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2),          (4) 

 
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥3 + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡3) + 
+𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡2) + 𝑓𝑓𝑓𝑓2(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡2, 𝑡𝑡𝑡𝑡3),          (5) 

 
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥4
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥4 + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡3) + 
+𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡2) + 𝑓𝑓𝑓𝑓2(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡3,𝑇𝑇𝑇𝑇),             (6) 

 
𝐵𝐵𝐵𝐵0𝑥𝑥𝑥𝑥1(0) + 𝐶𝐶𝐶𝐶0 lim

𝑡𝑡𝑡𝑡→𝑇𝑇𝑇𝑇−0
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑑𝑑𝑑𝑑,                 (7) 

 
lim

𝑡𝑡𝑡𝑡→𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝−0
𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝+1�𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�,𝑝𝑝𝑝𝑝 = 1,3����.                (8) 

 

Here 𝑓𝑓𝑓𝑓1(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) if 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡0, 𝑡𝑡𝑡𝑡2) and 𝑓𝑓𝑓𝑓2(𝑡𝑡𝑡𝑡) =
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) if 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡2, 𝑡𝑡𝑡𝑡4).  

Applying the substitution 𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) = 𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) + 𝜇𝜇𝜇𝜇𝑟𝑟𝑟𝑟 on 
each 𝑟𝑟𝑟𝑟-th subinterval, with 𝜇𝜇𝜇𝜇𝑟𝑟𝑟𝑟 = 𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1), 𝑟𝑟𝑟𝑟 = 1,4����, 
we pass to the boundary-value problem with 
parameters 𝜇𝜇𝜇𝜇𝑟𝑟𝑟𝑟:  

 
𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤1
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)(𝑤𝑤𝑤𝑤1 + 𝜇𝜇𝜇𝜇1) + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇2 + 
+𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇3 + 𝑓𝑓𝑓𝑓1(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡0, 𝑡𝑡𝑡𝑡1),              (9) 

𝑤𝑤𝑤𝑤1(𝑡𝑡𝑡𝑡0) = 0,                         (10) 
 

𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤2
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)(𝑤𝑤𝑤𝑤2 + 𝜇𝜇𝜇𝜇2) + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇2 + 
+𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇3 + 𝑓𝑓𝑓𝑓1(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2),         (11) 

 
𝑤𝑤𝑤𝑤2(𝑡𝑡𝑡𝑡1) = 0,                           (12) 

 
𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤3
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)(𝑤𝑤𝑤𝑤3 + 𝜇𝜇𝜇𝜇3) + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇4 + 
+𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇3 + 𝑓𝑓𝑓𝑓2(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡2, 𝑡𝑡𝑡𝑡3),             (13) 

 
𝑤𝑤𝑤𝑤3(𝑡𝑡𝑡𝑡2) = 0,                                (14) 

 
𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤4
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)(𝑤𝑤𝑤𝑤4 + 𝜇𝜇𝜇𝜇4) + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇4 + 
+𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇3 + 𝑓𝑓𝑓𝑓2(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡3,𝑇𝑇𝑇𝑇),             (15) 

 
𝑤𝑤𝑤𝑤4(𝑡𝑡𝑡𝑡3) = 0,                             (16) 

 
𝐵𝐵𝐵𝐵0𝜇𝜇𝜇𝜇1 + 𝐶𝐶𝐶𝐶0𝜇𝜇𝜇𝜇4 + 𝐶𝐶𝐶𝐶0 lim

𝑡𝑡𝑡𝑡→𝑇𝑇𝑇𝑇−0
𝑤𝑤𝑤𝑤4(𝑡𝑡𝑡𝑡) = 𝑑𝑑𝑑𝑑,     (17) 

 
𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝 + lim

𝑡𝑡𝑡𝑡→𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝−0
𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡) = 𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝+1,𝑝𝑝𝑝𝑝 = 1,3����.      (18) 

 
A pair (𝑤𝑤𝑤𝑤∗[𝑡𝑡𝑡𝑡], 𝜇𝜇𝜇𝜇∗), whose components are 

𝑤𝑤𝑤𝑤∗[𝑡𝑡𝑡𝑡] = (𝑤𝑤𝑤𝑤1∗(𝑡𝑡𝑡𝑡),𝑤𝑤𝑤𝑤2∗(𝑡𝑡𝑡𝑡),𝑤𝑤𝑤𝑤3∗(𝑡𝑡𝑡𝑡),𝑤𝑤𝑤𝑤4∗(𝑡𝑡𝑡𝑡)) ∈
𝐶𝐶𝐶𝐶([0,𝑇𝑇𝑇𝑇],𝜃𝜃𝜃𝜃,𝑅𝑅𝑅𝑅4𝑛𝑛𝑛𝑛) and 𝜇𝜇𝜇𝜇∗ = (𝜇𝜇𝜇𝜇1∗, 𝜇𝜇𝜇𝜇2∗ , 𝜇𝜇𝜇𝜇3∗ , 𝜇𝜇𝜇𝜇4∗) ∈ 𝑅𝑅𝑅𝑅4𝑛𝑛𝑛𝑛, is 
called a solution to problem (9)-(18) if the functions 
𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟∗(𝑡𝑡𝑡𝑡), 𝑟𝑟𝑟𝑟 = 1,4����, are continuously differentiable on 
[𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟) and satisfy equations (9), (11), (13), (15) 
with respective initial conditions and additional 
conditions (17), (18) with 𝜇𝜇𝜇𝜇𝑗𝑗𝑗𝑗 = 𝜇𝜇𝜇𝜇𝑗𝑗𝑗𝑗∗, 𝑗𝑗𝑗𝑗 = 1,4����.  

Let us show the equivalence between problems 
(1), (2) and (9)-(18). If a function 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡) solves 
problem (1), (2), then the pair (𝑤𝑤𝑤𝑤∗[𝑡𝑡𝑡𝑡], 𝜇𝜇𝜇𝜇∗), where 
𝑤𝑤𝑤𝑤∗[𝑡𝑡𝑡𝑡] = (𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡) − 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡0), 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡) − 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡1), 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡) −
𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡2), 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡) − 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡3)) and 𝜇𝜇𝜇𝜇∗ =
(𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡0), 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡1), 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡2), 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡3)), is a solution of 
problem (9)-(15). Conversely, if a pair (𝑤𝑤𝑤𝑤�[𝑡𝑡𝑡𝑡], 𝜇𝜇𝜇𝜇�) with 
elements 𝑤𝑤𝑤𝑤�[𝑡𝑡𝑡𝑡] = (𝑤𝑤𝑤𝑤�1(𝑡𝑡𝑡𝑡),𝑤𝑤𝑤𝑤�2(𝑡𝑡𝑡𝑡),𝑤𝑤𝑤𝑤�3(𝑡𝑡𝑡𝑡),𝑤𝑤𝑤𝑤�4(𝑡𝑡𝑡𝑡)) ∈
𝐶𝐶𝐶𝐶([0,𝑇𝑇𝑇𝑇],𝜃𝜃𝜃𝜃,𝑅𝑅𝑅𝑅4𝑛𝑛𝑛𝑛) and 𝜇𝜇𝜇𝜇� = (𝜇𝜇𝜇𝜇�1,𝜇𝜇𝜇𝜇�2, 𝜇𝜇𝜇𝜇�3, 𝜇𝜇𝜇𝜇�4) ∈ 𝑅𝑅𝑅𝑅4𝑛𝑛𝑛𝑛, is a 
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solution of (9)-(18), then the function 𝑥𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) defined as 
𝑥𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = 𝑤𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) + 𝜇𝜇𝜇𝜇𝜇𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡 𝑡 [𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟), r = 1,4����, and 
𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = lim

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑤𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) + 𝜇𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚, will be a solution of 

the original problem (1), (2). 

Let 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) be a fundamental matrix of the 
equation 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥 on [𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟], r = 1,4����. Then we 

can represent the solutions of initial-value problems 
(9)-(16) in the following form:  

𝑤𝑤𝑤𝑤1(𝑡𝑡𝑡𝑡) = 𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡) �𝑋𝑋𝑋𝑋1−1(𝜏𝜏𝜏𝜏)𝐴𝐴𝐴𝐴0(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡0

𝜇𝜇𝜇𝜇1 + 𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡) �𝑋𝑋𝑋𝑋1−1(𝜏𝜏𝜏𝜏)𝐾𝐾𝐾𝐾(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡0

𝜇𝜇𝜇𝜇2 + 

+𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡)∫ 𝑋𝑋𝑋𝑋1−1(𝜏𝜏𝜏𝜏)𝐴𝐴𝐴𝐴1(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡0

𝜇𝜇𝜇𝜇3 + 𝑋𝑋𝑋𝑋1(𝑡𝑡𝑡𝑡)∫ 𝑋𝑋𝑋𝑋1−1(𝜏𝜏𝜏𝜏)𝑓𝑓𝑓𝑓1(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡0

, 𝑡𝑡𝑡𝑡 𝑡 [𝑡𝑡𝑡𝑡0, 𝑡𝑡𝑡𝑡1),  (19) 

𝑤𝑤𝑤𝑤2(𝑡𝑡𝑡𝑡) = 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡) �𝑋𝑋𝑋𝑋2−1(𝜏𝜏𝜏𝜏)𝐴𝐴𝐴𝐴0(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡1

𝜇𝜇𝜇𝜇2 + 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡) �𝑋𝑋𝑋𝑋2−1(𝜏𝜏𝜏𝜏)𝐾𝐾𝐾𝐾(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡1

𝜇𝜇𝜇𝜇2 + 

+𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡)∫ 𝑋𝑋𝑋𝑋2−1(𝜏𝜏𝜏𝜏)𝐴𝐴𝐴𝐴1(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡1

𝜇𝜇𝜇𝜇3 + 𝑋𝑋𝑋𝑋2(𝑡𝑡𝑡𝑡)∫ 𝑋𝑋𝑋𝑋2−1(𝜏𝜏𝜏𝜏)𝑓𝑓𝑓𝑓1(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡1

, 𝑡𝑡𝑡𝑡 𝑡 [𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2),  (20) 

𝑤𝑤𝑤𝑤3(𝑡𝑡𝑡𝑡) = 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡) �𝑋𝑋𝑋𝑋3−1(𝜏𝜏𝜏𝜏)𝐴𝐴𝐴𝐴0(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡2

𝜇𝜇𝜇𝜇3 + 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡) �𝑋𝑋𝑋𝑋3−1(𝜏𝜏𝜏𝜏)𝐾𝐾𝐾𝐾(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡2

𝜇𝜇𝜇𝜇4 + 

+𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡)∫ 𝑋𝑋𝑋𝑋3−1(𝜏𝜏𝜏𝜏)𝐴𝐴𝐴𝐴1(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡2

𝜇𝜇𝜇𝜇3 + 𝑋𝑋𝑋𝑋3(𝑡𝑡𝑡𝑡)∫ 𝑋𝑋𝑋𝑋3−1(𝜏𝜏𝜏𝜏)𝑓𝑓𝑓𝑓2(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡2

, 𝑡𝑡𝑡𝑡 𝑡 [𝑡𝑡𝑡𝑡2, 𝑡𝑡𝑡𝑡3),  (21) 

𝑤𝑤𝑤𝑤4(𝑡𝑡𝑡𝑡) = 𝑋𝑋𝑋𝑋4(𝑡𝑡𝑡𝑡) �𝑋𝑋𝑋𝑋4−1(𝜏𝜏𝜏𝜏)𝐴𝐴𝐴𝐴0(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡3

𝜇𝜇𝜇𝜇4 + 𝑋𝑋𝑋𝑋4(𝑡𝑡𝑡𝑡) �𝑋𝑋𝑋𝑋4−1(𝜏𝜏𝜏𝜏)𝐾𝐾𝐾𝐾(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡3

𝜇𝜇𝜇𝜇4 + 

+𝑋𝑋𝑋𝑋4(𝑡𝑡𝑡𝑡)∫ 𝑋𝑋𝑋𝑋4−1(𝜏𝜏𝜏𝜏)𝐴𝐴𝐴𝐴1(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡3

𝜇𝜇𝜇𝜇3 + 𝑋𝑋𝑋𝑋4(𝑡𝑡𝑡𝑡)∫ 𝑋𝑋𝑋𝑋4−1(𝜏𝜏𝜏𝜏)𝑓𝑓𝑓𝑓2(𝜏𝜏𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡3

, 𝑡𝑡𝑡𝑡 𝑡 [𝑡𝑡𝑡𝑡3,𝑇𝑇𝑇𝑇).  (22) 

If we substitute the limit values for 𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡), r =
1,4����, present in conditions (17) and (18), by their 
corresponding expressions found from (19)-(22), we 
arrive at the system of linear algebraic equations in 
parameters 𝜇𝜇𝜇𝜇𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟 = 1,4����:  

𝐵𝐵𝐵𝐵0𝜇𝜇𝜇𝜇1 + 𝐶𝐶𝐶𝐶0𝜇𝜇𝜇𝜇4 + 𝐶𝐶𝐶𝐶0𝑎𝑎𝑎𝑎4(𝐴𝐴𝐴𝐴0,𝑇𝑇𝑇𝑇)𝜇𝜇𝜇𝜇4 + 𝐶𝐶𝐶𝐶0𝑎𝑎𝑎𝑎4(𝐾𝐾𝐾𝐾,𝑇𝑇𝑇𝑇)𝜇𝜇𝜇𝜇4 + 
+𝐶𝐶𝐶𝐶0𝑎𝑎𝑎𝑎4(𝐴𝐴𝐴𝐴1,𝑇𝑇𝑇𝑇)𝜇𝜇𝜇𝜇3 = 𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑0𝑎𝑎𝑎𝑎4(𝑓𝑓𝑓𝑓2,𝑇𝑇𝑇𝑇),        (23) 

𝜇𝜇𝜇𝜇1 + 𝑎𝑎𝑎𝑎1(𝐴𝐴𝐴𝐴0, 𝑡𝑡𝑡𝑡1)𝜇𝜇𝜇𝜇1 + 𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾, 𝑡𝑡𝑡𝑡1)𝜇𝜇𝜇𝜇2 + 𝑎𝑎𝑎𝑎1(𝐴𝐴𝐴𝐴1, 𝑡𝑡𝑡𝑡1)𝜇𝜇𝜇𝜇3 − 
−𝜇𝜇𝜇𝜇2 = −𝑎𝑎𝑎𝑎1(𝑓𝑓𝑓𝑓1, 𝑡𝑡𝑡𝑡1),  (24) 

𝜇𝜇𝜇𝜇2 + 𝑎𝑎𝑎𝑎2(𝐴𝐴𝐴𝐴0, 𝑡𝑡𝑡𝑡2)𝜇𝜇𝜇𝜇2 + 𝑎𝑎𝑎𝑎2(𝐾𝐾𝐾𝐾, 𝑡𝑡𝑡𝑡2)𝜇𝜇𝜇𝜇2 + 𝑎𝑎𝑎𝑎2(𝐴𝐴𝐴𝐴1, 𝑡𝑡𝑡𝑡2)𝜇𝜇𝜇𝜇3 − 
−𝜇𝜇𝜇𝜇3 = −𝑎𝑎𝑎𝑎2(𝑓𝑓𝑓𝑓1, 𝑡𝑡𝑡𝑡2),  (25) 

𝜇𝜇𝜇𝜇3 + 𝑎𝑎𝑎𝑎3(𝐴𝐴𝐴𝐴0, 𝑡𝑡𝑡𝑡3)𝜇𝜇𝜇𝜇3 + 𝑎𝑎𝑎𝑎3(𝐾𝐾𝐾𝐾, 𝑡𝑡𝑡𝑡3)𝜇𝜇𝜇𝜇4 + 𝑎𝑎𝑎𝑎3(𝐴𝐴𝐴𝐴1, 𝑡𝑡𝑡𝑡3)𝜇𝜇𝜇𝜇3 − 
−𝜇𝜇𝜇𝜇4 = −𝑎𝑎𝑎𝑎3(𝑓𝑓𝑓𝑓2, 𝑡𝑡𝑡𝑡3).   (26) 

Here by 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟(𝑃𝑃𝑃𝑃, 𝑡𝑡𝑡𝑡) we denote the unique solutions 
of the auxiliary initial-value problems  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 𝑡 [𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟), 

𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟) = 0, r = 1,4����. 

Let us rewrite system (23)-(26) in the matrix 
form: 

Q(𝜃𝜃𝜃𝜃1)𝜇𝜇𝜇𝜇 = −𝐹𝐹𝐹𝐹(𝜃𝜃𝜃𝜃1),𝜇𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇4𝑛𝑛𝑛𝑛 ,  (27) 
where 

𝐹𝐹𝐹𝐹 (𝜃𝜃𝜃𝜃 1) =  (– d

+ 𝐶𝐶𝐶𝐶0𝑎𝑎𝑎𝑎4(𝑓𝑓𝑓𝑓2,𝑇𝑇𝑇𝑇), 𝑎𝑎𝑎𝑎1(𝑓𝑓𝑓𝑓1, 𝑡𝑡𝑡𝑡1), 𝑎𝑎𝑎𝑎2(𝑓𝑓𝑓𝑓1, 𝑡𝑡𝑡𝑡2),𝑎𝑎𝑎𝑎3(𝑓𝑓𝑓𝑓2, 𝑡𝑡𝑡𝑡3)�

and 
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Q(𝜃𝜃𝜃𝜃1) =

=

⎝

⎛

𝐵𝐵𝐵𝐵0 𝑂𝑂𝑂𝑂 𝐶𝐶𝐶𝐶0𝑎𝑎𝑎𝑎4(𝐴𝐴𝐴𝐴1,𝑇𝑇𝑇𝑇) 𝐶𝐶𝐶𝐶0[𝐼𝐼𝐼𝐼 + 𝑎𝑎𝑎𝑎4(𝐴𝐴𝐴𝐴0,𝑇𝑇𝑇𝑇) + 𝑎𝑎𝑎𝑎4(𝐾𝐾𝐾𝐾,𝑇𝑇𝑇𝑇)]
𝐼𝐼𝐼𝐼 + 𝑎𝑎𝑎𝑎1(𝐴𝐴𝐴𝐴0, 𝑡𝑡𝑡𝑡1) 𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾, 𝑡𝑡𝑡𝑡1) − 𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎1(𝐴𝐴𝐴𝐴1, 𝑡𝑡𝑡𝑡1) 𝑂𝑂𝑂𝑂

𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼 + 𝑎𝑎𝑎𝑎2(𝐴𝐴𝐴𝐴0, 𝑡𝑡𝑡𝑡2) + 𝑎𝑎𝑎𝑎2(𝐾𝐾𝐾𝐾, 𝑡𝑡𝑡𝑡2) 𝑎𝑎𝑎𝑎2(𝐴𝐴𝐴𝐴1, 𝑡𝑡𝑡𝑡2) − 𝐼𝐼𝐼𝐼 𝑂𝑂𝑂𝑂
𝑂𝑂𝑂𝑂 𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼 + 𝑎𝑎𝑎𝑎3(𝐴𝐴𝐴𝐴0, 𝑡𝑡𝑡𝑡3) + 𝑎𝑎𝑎𝑎3(𝐴𝐴𝐴𝐴1, 𝑡𝑡𝑡𝑡3) 𝑎𝑎𝑎𝑎3(𝐾𝐾𝐾𝐾, 𝑡𝑡𝑡𝑡3) − 𝐼𝐼𝐼𝐼 ⎠

⎞, 

 
 

here I and O are the identity matrix and the zero 
matrix, respectively, both of dimension n. 

It may be verified without difficulty that the 
solvability of problem (1), (2) and that of system (27) 
are equivalent. The solution of system (27) is a vector 
 𝜇𝜇𝜇𝜇∗ = ( 𝜇𝜇𝜇𝜇1∗,  𝜇𝜇𝜇𝜇2∗ ,  𝜇𝜇𝜇𝜇3∗ ,  𝜇𝜇𝜇𝜇4∗) ∈ 𝑅𝑅𝑅𝑅4𝑛𝑛𝑛𝑛, whose components 
are 𝜇𝜇𝜇𝜇𝑟𝑟𝑟𝑟∗ = 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1), 𝑟𝑟𝑟𝑟 = 1,4����. To find the values of the 
solution to problem (1),(2) at the remaining points of 
[0,𝑇𝑇𝑇𝑇], we plug the values 𝜇𝜇𝜇𝜇𝑟𝑟𝑟𝑟∗ into equations  
(3)-(6) and solve them as ordinary differential  
equations subject to the initial conditions 
 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1) = 𝜇𝜇𝜇𝜇𝑟𝑟𝑟𝑟∗.  

Based on the above findings, we develop the 
following numerical algorithm for solving the 
boundary-value problem (1),(2).  

1. Divide intervals [𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟], 𝑟𝑟𝑟𝑟 = 1,4����, into 𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟 
parts. Find the approximate values of the coefficients 
and the right-hand side of (27) by solving the 
following matrix and vector initial-value problems: 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)z + 𝑓𝑓𝑓𝑓1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡0) = 0, 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡0, 𝑡𝑡𝑡𝑡1); 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)z + 𝑓𝑓𝑓𝑓1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡1) = 0, 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2); 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)z + 𝑓𝑓𝑓𝑓2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡2) = 0, 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡2, 𝑡𝑡𝑡𝑡3); 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)z + 𝑓𝑓𝑓𝑓2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡3) = 0, 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡3, 𝑡𝑡𝑡𝑡4); 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)z + 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1) = 0, 
𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟), 𝑟𝑟𝑟𝑟 = 1,4���� ; 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)z + 𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1) = 0, 
𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟), 𝑟𝑟𝑟𝑟 = 1,4���� ; 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)z + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1) = 0, 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1, 𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟), 
𝑟𝑟𝑟𝑟 = 1,4���� . 

  
2. Construct the linear in parameters 
 

Q∗(𝜃𝜃𝜃𝜃1)𝜇𝜇𝜇𝜇∗ = −𝐹𝐹𝐹𝐹∗(𝜃𝜃𝜃𝜃1),𝜇𝜇𝜇𝜇∗ ∈ 𝑅𝑅𝑅𝑅4𝑛𝑛𝑛𝑛 .         (28) 
 

Solve system (28) to find 𝜇𝜇𝜇𝜇∗. As noted above, the 
components of 𝜇𝜇𝜇𝜇∗=(𝜇𝜇𝜇𝜇1∗, 𝜇𝜇𝜇𝜇2∗ , 𝜇𝜇𝜇𝜇3∗ , 𝜇𝜇𝜇𝜇4∗) are  
𝜇𝜇𝜇𝜇𝑟𝑟𝑟𝑟∗ = 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟−1), 𝑟𝑟𝑟𝑟 = 1,4����.  

3. Solve the following initial-value problems  
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇2∗ + 𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇3∗ + 
+𝑓𝑓𝑓𝑓1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡0) = 𝜇𝜇𝜇𝜇1∗ , 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡0, 𝑡𝑡𝑡𝑡1]; 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇2∗ + 𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇3∗ + 
+𝑓𝑓𝑓𝑓1(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡1) = 𝜇𝜇𝜇𝜇2∗ , 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2]; 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇4∗ + 𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇3∗ + 
+𝑓𝑓𝑓𝑓2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡2) = 𝜇𝜇𝜇𝜇3∗ , 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡2, 𝑡𝑡𝑡𝑡3]; 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝐴𝐴𝐴𝐴0(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇4∗ + 𝐴𝐴𝐴𝐴1(𝑡𝑡𝑡𝑡)𝜇𝜇𝜇𝜇3∗ + 
+𝑓𝑓𝑓𝑓2(𝑡𝑡𝑡𝑡), 𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡3) = 𝜇𝜇𝜇𝜇4∗ , 𝑡𝑡𝑡𝑡 ∈ [𝑡𝑡𝑡𝑡3, 𝑡𝑡𝑡𝑡4] 

 
and determine the values of the solution 𝑑𝑑𝑑𝑑∗(𝑡𝑡𝑡𝑡) at the 
remaining points of the partition subintervals.  

 
3 Examples 
 
Example 1. Let us consider the following 

problem  
 
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= �𝑡𝑡𝑡𝑡
2 −3

5𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 + 1
� 𝑥𝑥𝑥𝑥 + �4 𝑡𝑡𝑡𝑡3

𝑡𝑡𝑡𝑡 −4
� 𝑥𝑥𝑥𝑥�𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡)� + 

+ �1 𝑡𝑡𝑡𝑡
4 𝑡𝑡𝑡𝑡2 − 3� 𝑥𝑥𝑥𝑥

(1) + 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 ∈ (0,2),       (29) 
 

 
�1 8

4 0� 𝑥𝑥𝑥𝑥
(0) + �5 −4

8 9 � 𝑥𝑥𝑥𝑥(1) = � 46
187�, 

 𝑥𝑥𝑥𝑥 ∈ 𝑅𝑅𝑅𝑅2.                               (30) 
 

Here if 𝑡𝑡𝑡𝑡 ∈ (0, 1): 𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡) = 𝜉𝜉𝜉𝜉0 = 1
2
,  

 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = �
31𝑡𝑡𝑡𝑡3

8
− 5𝑡𝑡𝑡𝑡4 + 3𝑡𝑡𝑡𝑡2 + 10𝑡𝑡𝑡𝑡 + 2

3𝑡𝑡𝑡𝑡2 − 26𝑡𝑡𝑡𝑡3 − 𝑡𝑡𝑡𝑡4 + 71𝑡𝑡𝑡𝑡
4
− 21

2

�; 
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if 𝑡𝑡𝑡𝑡 ∈ (1, 2): 𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡) = 𝜉𝜉𝜉𝜉1 = 3
2
, 

 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = �
5𝑡𝑡𝑡𝑡3

8
− 5𝑡𝑡𝑡𝑡4 + 3𝑡𝑡𝑡𝑡2 + 10𝑡𝑡𝑡𝑡 − 38

3𝑡𝑡𝑡𝑡2 − 26𝑡𝑡𝑡𝑡3 − 𝑡𝑡𝑡𝑡4 + 31𝑡𝑡𝑡𝑡
4

+ 5
2

�. 

 
The exact solution of problem (29), (30) is 

𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡) = �5𝑡𝑡𝑡𝑡2 − 3
𝑡𝑡𝑡𝑡3 − 1

�. 

To solve problem (29), (30) numerically, we 
implement the proposed algorithm. The interval 
[0, 2] is partitioned into the subintervals �0, 1

2
�, �1

2
, 1�, 

�1, 3
2
�, �3

2
, 2�. We take the step size ℎ = 0.05 to 

numerically solve the auxiliary initial-value 
problems on the partition subintervals (step 1 of the 
algorithm).  

Consider the system (28), where 

 

 
 
 

Solving the system (28), we find (step 2 of the 
algorithm): 

 
𝜇𝜇𝜇𝜇1∗ = �−2.999981352

−0.999992433�, 
 

𝜇𝜇𝜇𝜇2∗ = �−1.750002872
−0.874993786�, 

 
𝜇𝜇𝜇𝜇3∗ = � 1.999989979

−0.000015784�, 
 

𝜇𝜇𝜇𝜇4∗ = �8.249993363
2.374987821�. 

 
The results of all calculations are obtained using 

Mathcad software.  

The proximity of the exact solution to the 
numerical solutions satisfies the estimate (step 3 of 
the algorithm).  

If ℎ = 0.05, then 
 max
𝑘𝑘𝑘𝑘=0,40������

‖𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝑥𝑥𝑥𝑥�(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)‖ < 0.00002. 

 
If ℎ = 0.025, then 

 max
𝑘𝑘𝑘𝑘=0,80������

‖𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝑥𝑥𝑥𝑥�(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)‖ < 0.000001. 

 
If ℎ = 0.0125, then 

 max
𝑘𝑘𝑘𝑘=0,160��������

‖𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝑥𝑥𝑥𝑥�(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)‖ < 0.00000009. 

 
Example 2. Let us consider the following 

problem

   
 

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= �
𝑡𝑡𝑡𝑡 1 𝑡𝑡𝑡𝑡2
2 𝑡𝑡𝑡𝑡 2𝑡𝑡𝑡𝑡3
𝑡𝑡𝑡𝑡2 0 4𝑡𝑡𝑡𝑡

� 𝑥𝑥𝑥𝑥 + �
1 𝑡𝑡𝑡𝑡 2
0 5 5𝑡𝑡𝑡𝑡
6 𝑡𝑡𝑡𝑡 + 2 3𝑡𝑡𝑡𝑡

� 𝑥𝑥𝑥𝑥�𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡)� + 

 

+�
4𝑡𝑡𝑡𝑡2 6 0
5𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 − 3 8
1 0 𝑡𝑡𝑡𝑡

� 𝑥𝑥𝑥𝑥 �1
2
� + 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡), 𝑡𝑡𝑡𝑡 ∈ (0,1),                                                (31) 

 

�
2 0 6
4 2 1
4 5 −7

�𝑥𝑥𝑥𝑥(0) + �
1 5 11
0 −4 2
6 8 9

�𝑥𝑥𝑥𝑥(1) = �
−109
−65
59

� , 𝑥𝑥𝑥𝑥 ∈ 𝑅𝑅𝑅𝑅3.                                    (32) 

Here  



55R.E. Uteshova et al.

International Journal of Mathematics and Physics 13, №2 (2022)                                         Int. j. math. phys. (Online)

𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡) = 𝜉𝜉𝜉𝜉0 = 1
4

, 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) =

⎝

⎜
⎛

27
64
𝑡𝑡𝑡𝑡 − 5𝑡𝑡𝑡𝑡3 − 𝑡𝑡𝑡𝑡4 + 131

8

18𝑡𝑡𝑡𝑡3 − 5𝑡𝑡𝑡𝑡4 − 2𝑡𝑡𝑡𝑡5 + 13𝑡𝑡𝑡𝑡2 + 425
16
𝑡𝑡𝑡𝑡 + 5119

64

3𝑡𝑡𝑡𝑡2 − 11𝑡𝑡𝑡𝑡3 + 4671
64

𝑡𝑡𝑡𝑡 + 187
32 ⎠

⎟
⎞

, 𝑡𝑡𝑡𝑡 ∈ �0, 1
2
�; 

 

𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡) = 𝜉𝜉𝜉𝜉1 = 3
4

, 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) =

⎝

⎜
⎛

95
8
− 5𝑡𝑡𝑡𝑡3 − 167

64
𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡4

18𝑡𝑡𝑡𝑡3 − 5𝑡𝑡𝑡𝑡4 − 2𝑡𝑡𝑡𝑡5 + 13𝑡𝑡𝑡𝑡2 + 385
16
𝑡𝑡𝑡𝑡 + 4149

64

3𝑡𝑡𝑡𝑡2 − 11𝑡𝑡𝑡𝑡3 + 4381
64

𝑡𝑡𝑡𝑡 − 679
32 ⎠

⎟
⎞

, 𝑡𝑡𝑡𝑡 ∈ �1
2

, 1�. 

 
 
The exact solution of problem (31), (32) is 

𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡) = �
7𝑡𝑡𝑡𝑡 − 3

5𝑡𝑡𝑡𝑡3 + 2𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡2 − 9

�. 

To solve problem (31), (32) numerically, we 
implement the proposed algorithm. The interval 
[0,1] is partitioned into the subintervals �0, 1

4
�, 

�1
4

, 1
2
�, �1

2
, 3
4
�, �3

4
, 1�. We take the step size ℎ =

0.025 to numerically solve the auxiliary initial-
value problems on the partition subintervals (step 1 
of the algorithm). 

Solving the system (28), we find (step 2 of the 
algorithm): 

𝜇𝜇𝜇𝜇1∗ = �
−2.999999976
−0.000000021
−9.000000037

�, 

 

 

𝜇𝜇𝜇𝜇2∗ = �
−1.249999988
0.578125004
−8.937500018

�, 

 
 

𝜇𝜇𝜇𝜇3∗ = �
0.499999994
1.624999997
−8.749999997

� 

 
 

𝜇𝜇𝜇𝜇4∗ = �
2.249999991
3.609375057
−8.437499952

�. 

 
The results of calculations, obtained using 

Mathcad software, are presented in Table 1 (step 3 
of the algorithm).  

 
 
Table 1 – The proximity of the exact solution 𝑥𝑥𝑥𝑥∗(𝑡𝑡𝑡𝑡) to the numerical solutions 𝑥𝑥𝑥𝑥�(𝑡𝑡𝑡𝑡) of the problem (31), (32)  

 
𝐤𝐤𝐤𝐤 𝐭𝐭𝐭𝐭𝐤𝐤𝐤𝐤 |𝑥𝑥𝑥𝑥1∗(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝑥𝑥𝑥𝑥�1(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)| |𝑥𝑥𝑥𝑥2∗(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝑥𝑥𝑥𝑥�2(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)| |𝑥𝑥𝑥𝑥3∗(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝑥𝑥𝑥𝑥�3(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)| 
0 0 0.2422E-7 0.2137E-7 0.3679E-7 
1 0.025 0.2275E-7 0.1788E-7 0.3500E-7 
2 0.05 0.2134E-7 0.1458E-7 0.3322E-7 
3 0.075 0.2000E-7 0.1145E-7 0.3146E-7 
4 0.1 0.1873E-7 0.0853E-7 0.2969E-7 
5 0.125 0.1750E-7 0.0581E-7 0.2790E-7 
6 0.15 0.1632E-7 0.0331E-7 0.2607E-7 
7 0.175 0.1516E-7 0.0105E-7 0.2421E-7 
8 0.2 0.1402E-7 0.0097E-7 0.2230E-7 
9 0.225 0.1287E-7 0.0271E-7 0.2034E-7 
10 0.25 0.1171E-7 0.0418E-7 0.1833E-7 
11 0.275 0.1052E-7 0.0534E-7 0.1626E-7 
12 0.3 0.0927E-7 0.0618E-7 0.1414E-7 
13 0.325 0.0794E-7 0.0666E-7 0.1198E-7 
14 0.35 0.0650E-7 0.0677E-7 0.0978E-7 
15 0.375 0.0493E-7 0.0646E-7 0.0755E-7 
16 0.4 0.0319E-7 0.0572E-7 0.0532E-7 
17 0.425 0.0126E-7 0.0449E-7 0.0311E-7 
18 0.45 0.0092E-7 0.0273E-7 0.0094E-7 
19 0.475 0.0338E-7 0.0039E-7 0.0115E-7 
20 0.5 0.0617E-7 0.0258E-7 0.0311E-7 
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𝐤𝐤𝐤𝐤 𝐭𝐭𝐭𝐭𝐤𝐤𝐤𝐤 |𝑥𝑥𝑥𝑥1∗(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝑥𝑥𝑥𝑥�1(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)| |𝑥𝑥𝑥𝑥2∗(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝑥𝑥𝑥𝑥�2(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)| |𝑥𝑥𝑥𝑥3∗(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝑥𝑥𝑥𝑥�3(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘)| 
21 0.525 0.0571E-7 0.0476E-7 0.0767E-7 
22 0.55 0.0530E-7 0.1191E-7 0.1234E-7 
23 0.575 0.0499E-7 0.1884E-7 0.0171E-7 
24 0.6 0.0481E-7 0.2550E-7 0.2189E-7 
25 0.625 0.0481E-7 0.3185E-7 0.2669E-7 
26 0.65 0.0503E-7 0.3785E-7 0.3143E-7 
27 0.675 0.0554E-7 0.4342E-7 0.3605E-7 
28 0.7 0.0640E-7 0.4849E-7 0.4047E-7 
29 0.725 0.0768E-7 0.5298E-7 0.4460E-7 
30 0.75 0.0947E-7 0.5678E-7 0.4833E-7 
31 0.775 0.1185E-7 0.5977E-7 0.5152E-7 
32 0.8 0.1493E-7 0.6181E-7 0.5402E-7 
33 0.825 0.1884E-7 0.0627E-7 0.5564E-7 
34 0.85 0.2372E-7 0.6226E-7 0.5616E-7 
35 0.875 0.2973E-7 0.6022E-7 0.5533E-7 
36 0.9 0.3707E-7 0.5628E-7 0.5281E-7 
37 0.925 0.4597E-7 0.5009E-7 0.4825E-7 
38 0.95 0.5668E-7 0.4119E-7 0.4120E-7 
39 0.975 0.6951E-7 0.2907E-7 0.3114E-7 
40 1 0.8484E-7 0.1306E-7 0.1744E-7 

 
 
4 Conclusion  
 
In this paper, we developed a numerical 

algorithm of the Dzhumabaev’s parameterization 
method for solving the linear two-point BVP for the 
system of loaded DEPCAG. This technique can be 
applied to various kinds of functional-differential 
equations.  
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Abstract. The impact of a sinusoidal mode of magnetic field involving time-dependent on the threshold 

of magnetic smart liquid advection in a saturated Darcy-permeable framework is investigated using a regular 
perturbation technique. Anisotropic permeability and thermal anisotropy are used to describe the flow through 
permeable medium. The regular perturbation technique is based on minimum amplitude of time-fluctuated 
magnetic field, the threshold condition is computed with regard to correction in a critical Rayleigh number and 
wavenumber. Correction in Rayleigh number is identified by modulating the magnetic field, modulation 
frequency, magnetic parameter, mechanical anisotropy, thermal anisotropy and Vadasz number. At 
intermediate frequency values, the impact of various physical factors is perceived to be noteworthy. It is found 
that by fine tuning the frequency of magnetic field modulation, we can either accelerate or postpone the onset 
of ferroconvection. The most sophisticated scientific application packages, Wolfram Mathematica 11.3 is used 
to extract the numerical values as well as plotting graphs. The problem sheds some light on convective heat 
transfer mechanisms in ferromagnetic fluid with time-varying magnetic field. 

Keywords: Magnetic liquid, Anisotropy, Stability, Porous medium. 
 
 
Introduction 
 
A ferrofluid (magnetic nanofluid) is a liquid 

carrier that includes a solution of nanoscopic 
magnetic particles immersed in a surfactant 
coating. In comparison with conventional fluids, 
magnetic nanofluids are responsive to external 
magnetic fields even in the absence of 
gravitational force. Numerous studies on these 
fluids have been undertaken as an outcome of their 
diverse applications in computer disk drives, bio-
medical, magnetic resonance, robotic systems and 
dynamic sound system, to mention a few [1, 2]. In 
order to improve the thermal conductivity of fluids, 
magnetic nanoparticles are suspended in them. 
Depending on the nanoparticle, fluids can often have 
a hundred times greater thermal conductivity than the 
carrier fluids. In this background, this article attempts 
a comprehensive review on magnetic fluid owing to 
its prospective value as a heat transfer phenomenon. 
An initial description of thermomagnetic convection 
was given by Finlayson [3], purely by showing how 

a horizontal surface of magnetic fluid with a variable 
magnetic susceptibility leads to a non-consistent 
force of the magnetic field. Future, many authors 
attracted towards the work of Finlayson and 
investigated the commencement of magnetic fluid 
convection under a variety of handy constraints [4-6]. 
According to recent work performed with the higher 
order Galerkin technique, it is clarified that the MFD 
viscosity plays a role in delaying the advent of 
ferroconvection in a sparsely packed permeable 
medium exposed to varying gravity fields [7].  

In various sectors, such as charges in electrode 
materials and the resonance of a ferromagnetic field, 
modulation (oscillation) of a suitable parameter can 
affect the motion and can result in improved stability. 
Many theoretical and experimental investigation 
dealing with fluctuations in the magnetic field on the 
advection of a magnetic liquid and collision between 
harmonic and subharmonic conditions have been 
carried out by numerous authors [8-11] using the 
Floquet theory. In the articles [12, 13], it is reported 
that the nonzero flow field of the base state is caused 

https://orcid.org/0000-0002-3832-935X
https://orcid.org/0000-0002-0958-4220
https://orcid.org/0000-0003-1554-8258
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59Balaji Chandrashekar et al.

International Journal of Mathematics and Physics 13, №2 (2022)                                         Int. j. math. phys. (Online)

by a double vortex reflecting an external magnetic 
field modulated symmetrically by two iron bars 
below and above a ferrofluid layer. The temperature 
distribution through an electrically charged liquid 
with internal heat source and couple stresses exposed 
to magnetic field fluctuation is discussed in detail 
[14]. Recently, a work is carried out on the advent of 
magnetic nanofluid under the influence of fluctuated 
magnetic field ferroconvection in a sparsely arranged 
permeable structure, it is revealed that convection can 
be delayed or advanced by controlling the parameters 
of the study [15]. 

Temperature profile through fluid-saturated 
nanopores has piqued the interest of many 
researchers due to its natural phenomenon and 
diverse applications in science and technology. This 
includes the use of geothermal energy resources, the 
eradication of nuclear excess, aquifers leftover 
removal, drying processes, and so on. Harton, 
Rogers, and Lapwood [16, 17] pioneered work on 
fluid-saturated permeable structures located between 
two identically flat surfaces and heated directly 
beneath, and the overall problem has been termed as 
“Horton-Rogers-Lapwood or Darcy-Benard”. 
Moreover, numerous authors have addressed the 
topic in depth and the growing number of research in 
this area is extensively documented [18, 19]. The 
majority of scientific and experimental research on 
the advection of flow in porous environments has 
focused on isotropic materials. More than that, in 
many real scenarios, the mechanical and thermal 
assets of porous materials are anisotropic, which can 
be seen in several industrial and environmental 
situations as a result of irregular pattern of permeable 
matrix. Anisotropy can also be noticed in synthetic 
porous materials like nanoparticles used in chemical 
manufacturing techniques and coating materials. 

The effect of Vadaz number on convection in a 
Darcy-permeable framework with rotating fluid 
surface is well explained in the articles [20, 21], it is 
noted that, unlike the problem in pure liquids, over 
stable advection in permeable medium at marginal 
stability is not limited to a specific range of Prandtl 
number values. By adopting the assumptions that the 
layer is anisotropic, homogenous, and has an infinite 
horizontal extent, [22] a theoretical examination of 
the thermal gradients in the permeable structure is 
handled. A permeability with anisotropy in thermal 
diffusivity produces two distinct convection cells 

when a symmetry axis is assumed and a (90∘ − 𝜃𝜃𝜃𝜃) 
angle is made against perpendicular motion is 
discussed in detail [23]. In addition, anisotropic 
permeable matrix subjected to inclined layer, time–
periodic temperature/gravity, rotation and double 
diffusivity has been reported in the literatures [25-28] 
respectively. The impact of thermal modulation on 
the advent of the ferroconvection in Darcian 
permeable materials confirms that subcritical point 
exists for balanced temperature fluctuation for 
minimum frequency. Moreover, for unbalanced and 
bottom wall fluctuation only supercritical state 
presents [29].  A weakly nonlinear unsteadiness in a 
rotary permeable anisotropic smart ferrofluid 
medium using Runge–Kutta–Gill numerical 
technique has been carried out in recent years [30]. 

Convection control is a phenomenon that is vital 
and intriguing in a wide range of magnetic fluid 
technologies, as well as conceptually challenging.  
The unamplified Rayleigh-Bénard advection in the 
ferromagnetic liquid has derived a plenty of attention. 
Notwithstanding, substantial attention turned out to 
be devoted to the combined impact of the modulated 
magnetic field and permeable anisotropy layer on the 
advent of ferroconvection. In this paper, the 
presented analysis is with reference to the 
presumption that the modulation dimension is very 
minimal and the convective currents are weak, 
allowing nonlinear effects to be ignored. Thus, 
depending on the frequency of magnetic field 
modulation, the advent of ferroconvection can be 
advanced or delayed in the presence of Darcian-
anisotropic permeable medium. Present work aims to 
provide an introduction to vertical harmonic 
vibrations, magnetic factors, and anisotropy as they 
relate to natural convection. 

 
Mathematical model  
 
Permeable medium is considered, which is bound 

between two plates kept separate by a distance 𝑑𝑑𝑑𝑑 (see 
Fig. 1). In mechanical and thermal aspects, the 
permeable medium is presumed to be closely packed 
and have vertical anisotropy. A vertical downward 
gravity force, as well as a uniform temperature 
difference 𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇 between the two surfaces, act on the 
fluid. The reference rectangular coordinate frame's 
origin is at the bottom, with the 𝑧𝑧𝑧𝑧–axis pointing up 
vertically.
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Figure 1 – Physical configuration 

 
 

The magnetic field imposed externally is time-
dependent and is used as 

 
𝐻𝐻𝐻𝐻��⃗ 𝑜𝑜𝑜𝑜𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡) = 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡) = 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜(1 + 𝜀𝜀𝜀𝜀 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝜔𝜔 𝑡𝑡𝑡𝑡)𝑘𝑘𝑘𝑘�     (1) 

 
where 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜 is a uniform magnetic field, 𝜀𝜀𝜀𝜀 and 𝜔𝜔𝜔𝜔 are 
modulation amplitude and frequency respectively.  

The equation of continuity is 
 

𝛻𝛻𝛻𝛻 • 𝑣⃗𝑣𝑣𝑣 = 0,                              (2) 
 
The conservation of linear momentum with 

anisotropic inverse permeability 𝐾𝐾𝐾𝐾��⃗ = 𝐾𝐾𝐾𝐾𝐸𝐸𝐸𝐸−1(𝚤𝚤𝚤𝚤̂𝚤𝚤𝚤𝚤̂ + 𝚥𝚥𝚥𝚥̂𝚥𝚥𝚥𝚥̂) +
𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧−1�𝑘𝑘𝑘𝑘�𝑘𝑘𝑘𝑘��, for modified Darcy model is taken in the 
form [3, 25, 28] 

 

𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜 �
1
𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑣⃗𝑣𝑣𝑣
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

+
1
𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝2

(𝑣⃗𝑣𝑣𝑣 • 𝛻𝛻𝛻𝛻)𝑣⃗𝑣𝑣𝑣� = 

= −𝛻𝛻𝛻𝛻𝑝𝑝𝑝𝑝 + 𝜌𝜌𝜌𝜌𝑔⃗𝑔𝑔𝑔 + 𝛻𝛻𝛻𝛻 • �𝐻𝐻𝐻𝐻��⃗ 𝐵𝐵𝐵𝐵�⃗ � − 𝜇𝜇𝜇𝜇𝑓𝑓𝑓𝑓𝐾𝐾𝐾𝐾��⃗ •  𝑣⃗𝑣𝑣𝑣,           (3) 
 
 

where  𝑣⃗𝑣𝑣𝑣 is the actual velocity component, 𝜌𝜌𝜌𝜌 is the 
density, 𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜 is the reference density, 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝 is the porosity, 
𝑝𝑝𝑝𝑝 is the pressure, 𝑔⃗𝑔𝑔𝑔 = −𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘� is the acceleration due to 
gravity, 𝜇𝜇𝜇𝜇𝑓𝑓𝑓𝑓 is the viscosity, 𝐻𝐻𝐻𝐻��⃗  is the overall magnetic 
field, 𝐵𝐵𝐵𝐵�⃗  is the magnetic induction.  

We adopted the Oberbeck–Boussinesq 
approximation in the study. For the derivation of 
appropriate equations, giving a rigorous basis for the 
Oberbeck-Boussinesq approximation, one can refer 
[31]. According to the above-mentioned assumption, 
and for small departures from reference temperature 
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 the density 𝜌𝜌𝜌𝜌, as a function of temperature 𝑇𝑇𝑇𝑇, the 
density equation of state involving constant 
coefficient of volume expansion 𝛽𝛽𝛽𝛽 is given by  

𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜�1 − 𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜)�,                (4) 
 
In energy transport equation the thermal 

conductivity 𝐾𝐾𝐾𝐾��⃗ 𝑇𝑇𝑇𝑇 = 𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥(𝚤𝚤𝚤𝚤̂𝚤𝚤𝚤𝚤̂ + 𝚥𝚥𝚥𝚥̂𝚥𝚥𝚥𝚥̂) + 𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧�𝑘𝑘𝑘𝑘�𝑘𝑘𝑘𝑘�� is 
assumed to be anisotropic and is of the form 

 

( )( ) ( )1 0
,

1p p Tos
V H

DT T M DHC C T K T
Dt t T Dt

ε ε ρ µ • •

 ∂ ∂
+ − + = ∇ ∇ ∂ ∂ 

 


,                      (5) 

 
 

where ( )1 , ,o V H o V H
C C H M Tρ µ •= − ∂ ∂

 
, 

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉,𝐻𝐻𝐻𝐻 is the specific heat at constant volume and 
magnetic field. 

Maxwell’s equations, simplified for a non-
conducting fluid with no displacement current, 
become 

𝛻𝛻𝛻𝛻 • 𝐵𝐵𝐵𝐵�⃗ = 0, 𝛻𝛻𝛻𝛻 × 𝐻𝐻𝐻𝐻��⃗ = 0                     (6) 

and 

( )0B H Mµ= +
  

                         (7) 

We adopt that the magnetization 𝑀𝑀𝑀𝑀��⃗  is aligned 
with magnetic field, but allows a dependence on the 
magnitude of the magnetic field as well as 
temperature,  

𝑀𝑀𝑀𝑀��⃗ = 𝐻𝐻𝐻𝐻��⃗
𝐻𝐻𝐻𝐻
𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻 ,𝑇𝑇𝑇𝑇)                        (8) 
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The magnetic equation of state is linearized about 
the magnetic field 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜 and an average temperature 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 
to give 

( ) ( )o o ommM M H H T TKχ+ −= − −      (9)

where mχ  and mK  are the differential magnetic
susceptibility and the pyromagnetic coefficient 
respectively. The temperatures of bottom and top 
surfaces respectively are 

𝑇𝑇𝑇𝑇(0) = 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 + �1
2
� 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, 𝑇𝑇𝑇𝑇(𝑑𝑑𝑑𝑑) = 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 − �1

2
� 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥  (10) 

We now look at the necessary conditions for heat 
flow to continue in the above-noted permeable layer 
saturated in nanoscopic magnetic liquid. An 
undisturbed medium will be quiescent and be 
provided by 

𝑣⃗𝑣𝑣𝑣 = 𝑣⃗𝑣𝑣𝑣𝑏𝑏𝑏𝑏 = 0�⃗ , 𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏(𝑧𝑧𝑧𝑧),𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏(𝑧𝑧𝑧𝑧),𝑇𝑇𝑇𝑇 = 
= 𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏(𝑧𝑧𝑧𝑧),𝐻𝐻𝐻𝐻��⃗ = 𝐻𝐻𝐻𝐻��⃗ 𝑏𝑏𝑏𝑏 = 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜(𝑧𝑧𝑧𝑧, 𝑡𝑡𝑡𝑡) = 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡),
𝑀𝑀𝑀𝑀��⃗ = 𝑀𝑀𝑀𝑀��⃗ 𝑏𝑏𝑏𝑏 = 𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜(𝑧𝑧𝑧𝑧, 𝑡𝑡𝑡𝑡),𝐵𝐵𝐵𝐵�⃗ = 𝐵𝐵𝐵𝐵�⃗ 𝑏𝑏𝑏𝑏 = 𝐵𝐵𝐵𝐵𝑜𝑜𝑜𝑜(𝑧𝑧𝑧𝑧, 𝑡𝑡𝑡𝑡)    (11) 

The temperature 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏(𝑧𝑧𝑧𝑧) is a solution of 

𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥 �
𝜕𝜕𝜕𝜕2𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏
𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸2 + 𝜕𝜕𝜕𝜕2𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2 � + 𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕2𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2 = 0        (12) 

The solution of (12) subjected to the boundary 
conditions (10) is 

𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏 = 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜 + 𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇 �1
2

− 𝑧𝑧𝑧𝑧
𝑑𝑑𝑑𝑑
�             (13) 

The magnetic field, magnetization and the related 
magnetic induction equations followed by (13) and 
the stationary basic state quantities are  

𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏 = �1 + 𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝛥𝛥𝛥𝛥
(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜

�1
2

− 𝑧𝑧𝑧𝑧
𝑑𝑑𝑑𝑑
��  (14) 

𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏 = �𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜 + 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝛥𝛥𝛥𝛥
(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜

�1
2

− 𝑧𝑧𝑧𝑧
𝑑𝑑𝑑𝑑
��  (15) 

( )b o ooB M Hµ= +           (16) 

where 𝛿𝛿𝛿𝛿 = �1+𝜀𝜀𝜀𝜀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖��
(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜) , 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 stands for the real 

part. We do not record the expressions of  𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 and  
𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏 as these are not explicitly required in the 
remaining part of the paper. 

Linear Stability Analysis 

The stability of the system is studied by 
superimposing infinitesimal disturbances on the 
basic state and we now have 

𝑣⃗𝑣𝑣𝑣 = 𝑣⃗𝑣𝑣𝑣𝑏𝑏𝑏𝑏 + 𝑣⃗𝑣𝑣𝑣 ′,𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 + 𝑝𝑝𝑝𝑝′,𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏 + 𝜌𝜌𝜌𝜌′,𝑇𝑇𝑇𝑇 = 
= 𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏 + 𝑇𝑇𝑇𝑇 ′, 

𝐻𝐻𝐻𝐻��⃗ = 𝐻𝐻𝐻𝐻��⃗ 𝑏𝑏𝑏𝑏 + 𝐻𝐻𝐻𝐻��⃗ ′,𝑀𝑀𝑀𝑀��⃗ = 𝑀𝑀𝑀𝑀��⃗ 𝑏𝑏𝑏𝑏 + 𝑀𝑀𝑀𝑀��⃗ ′,𝐵𝐵𝐵𝐵�⃗ = 𝐵𝐵𝐵𝐵�⃗ 𝑏𝑏𝑏𝑏 + 𝐵𝐵𝐵𝐵�⃗ ′,  (17) 

where the prime indicates that the quantities are 
infinitesimal perturbations.  

Substituting (17) into (2) – (9), and using the 
basic state solutions, we get the linearized equations 
governing the perturbations in the form 

𝛻𝛻𝛻𝛻 • 𝑣⃗𝑣𝑣𝑣′ = 0,           (18) 

𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜
𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝
�
𝜕𝜕𝜕𝜕𝜕⃗𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
� = −𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻′ + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑜𝑜𝑜𝑜𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ′𝑘𝑘𝑘𝑘� − 𝜇𝜇𝜇𝜇𝑓𝑓𝑓𝑓𝐾𝐾𝐾𝐾��⃗ • 𝑣⃗𝑣𝑣𝑣 ′ + 

+𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜(𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜 + 𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕��⃗ ′

𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
− �𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑
� 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

′

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
𝑘𝑘𝑘𝑘� + �𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜

2𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜2𝛥𝛥𝛥𝛥2𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜2(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝑑𝑑𝑑𝑑

� 𝑇𝑇𝑇𝑇 ′𝑘𝑘𝑘𝑘� , (19) 

( )

( )

3 2

2 2

2 2 2
2 2

1 2

1

,
1 z

p o o oo o o
p o

o o o

o o o
o o o o o o T

o o

HHT T T TC w T H wC t d T t T t d

H T TH H w K T
z t t z T d z

ε µ χ δµ χ δε δ
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µ χφ φδµ χ µ χ δ δ η
χ

 
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 
 

′ ′∂ ∆ ∂ ∂ ∆ ′ ′ ′− − + − ∂ + ∂ ∂ 

 ′ ′ ′∆∂ ∂ ∂ ∂ ∂    ′ ′− − + = ∇ +    ∂ ∂ ∂ ∂ +    ∂  

(20)

−

−
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(1 + 𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝛻𝛻𝛻𝛻2𝜙𝜙𝜙𝜙′ − �𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜

� 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
′

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
= 0           (21) 

 
Here  𝜙𝜙𝜙𝜙 is the magnetic potential and 𝐻𝐻𝐻𝐻��⃗ = 𝛻𝛻𝛻𝛻𝜙𝜙𝜙𝜙′,  

( )( )23 1p p o sCC Cε ε ρ+= − , 𝐶𝐶𝐶𝐶2 = 𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉,𝐻𝐻𝐻𝐻, 𝑣⃗𝑣𝑣𝑣′ =

(𝑈𝑈𝑈𝑈′,𝑉𝑉𝑉𝑉′,𝑊𝑊𝑊𝑊′). For the ferromagnetic fluid layer and 
Darcy-anisotropic permeable medium, the 
boundaries are assumed to be stress-free, isothermal 
the boundary conditions at 𝑧𝑧𝑧𝑧 = 0 and 𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑 are 

 
𝑊𝑊𝑊𝑊 ′ = 𝜕𝜕𝜕𝜕2𝑊𝑊𝑊𝑊′

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
= 𝑇𝑇𝑇𝑇 ′ = 𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙′

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
= 0,              (22) 

 
By operating curl twice on (19), we omit 𝑝𝑝𝑝𝑝′ from 

it, and then we render the resulting equation and 
(19) – (21) dimensionless by setting 

 

(𝑥𝑥𝑥𝑥∗,𝑦𝑦𝑦𝑦∗, 𝑧𝑧𝑧𝑧∗)𝑑𝑑𝑑𝑑 = �𝑥𝑥𝑥𝑥 ′,𝑦𝑦𝑦𝑦′, 𝑧𝑧𝑧𝑧′�,𝑇𝑇𝑇𝑇∗ = �
𝑇𝑇𝑇𝑇 ′

𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇
�, 

𝑊𝑊𝑊𝑊∗ = �
𝐶𝐶𝐶𝐶2𝑑𝑑𝑑𝑑𝑊𝑊𝑊𝑊 ′

𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧
� , 𝑡𝑡𝑡𝑡∗ = �

𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡
𝐶𝐶𝐶𝐶2𝑑𝑑𝑑𝑑2

� , 

𝜙𝜙𝜙𝜙∗ = �(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝜙𝜙𝜙𝜙′

𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
� ,𝜔𝜔𝜔𝜔∗ = �𝐶𝐶𝐶𝐶2𝑑𝑑𝑑𝑑

2𝜔𝜔𝜔𝜔′

𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧
�,          (23) 

 
to obtain non-dimesnional equations as (on dropping 
‘*’ for simplicity), 
 

�
1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝛻𝛻𝛻𝛻2 + 𝛻𝛻𝛻𝛻12 +

1
𝜉𝜉𝜉𝜉
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
�𝑊𝑊𝑊𝑊 = 

= [𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀1𝜓𝜓𝜓𝜓2]𝛻𝛻𝛻𝛻12𝑇𝑇𝑇𝑇 − 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀1𝜓𝜓𝜓𝜓2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

(𝛻𝛻𝛻𝛻12𝜙𝜙𝜙𝜙),    (24) 
 

𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

−𝑊𝑊𝑊𝑊 + 𝑀𝑀𝑀𝑀2 �
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝜓𝜓𝜓𝜓2

𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜(1 + 𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)� �
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡

−𝑊𝑊𝑊𝑊� + 

+
𝑀𝑀𝑀𝑀2

𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝
𝛿𝛿𝛿𝛿2𝑊𝑊𝑊𝑊 −𝑀𝑀𝑀𝑀2

1
𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝛿𝛿𝛿𝛿 �

𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
� − 

−𝑀𝑀𝑀𝑀2 �
𝜓𝜓𝜓𝜓2

(1 + 𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
�
𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
� −𝑀𝑀𝑀𝑀2

1
𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝜓𝜓𝜓𝜓 = 

= 𝜂𝜂𝜂𝜂𝛻𝛻𝛻𝛻12𝑇𝑇𝑇𝑇 + 𝜕𝜕𝜕𝜕2𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2

,                           (25) 
 

𝛻𝛻𝛻𝛻2𝜙𝜙𝜙𝜙 = 𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

,                             (26) 
 
where, 𝜓𝜓𝜓𝜓 = �1 + 𝜀𝜀𝜀𝜀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔��, 𝜔𝜔𝜔𝜔 is the frequency of 

modulation, 𝛻𝛻𝛻𝛻2 = 𝛻𝛻𝛻𝛻12 + 𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
 and𝛻𝛻𝛻𝛻12 = 𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸2
+ 𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2
. The 

dimensionless parameters are 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝𝛾𝛾𝛾𝛾𝑑𝑑𝑑𝑑2

𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧𝜅𝜅𝜅𝜅
, the 

Vadasz number,𝑅𝑅𝑅𝑅 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑑𝑑𝑑𝑑3𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧
𝛾𝛾𝛾𝛾𝜅𝜅𝜅𝜅

, the Darcy-Rayleigh 

number, 𝑀𝑀𝑀𝑀1 = 𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜2

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)3𝛽𝛽𝛽𝛽𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜𝛽𝛽𝛽𝛽𝑑𝑑𝑑𝑑3
,  the buoyancy-

magnetization parameter, 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀1 = 𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜2(𝛥𝛥𝛥𝛥𝑇𝑇𝑇𝑇)2𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜2𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧
𝜇𝜇𝜇𝜇𝑓𝑓𝑓𝑓𝜅𝜅𝜅𝜅(1+𝜒𝜒𝜒𝜒0)3 , the 

magnetic Rayleigh number and𝑀𝑀𝑀𝑀2 = 𝜇𝜇𝜇𝜇𝑜𝑜𝑜𝑜𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜2𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜2

𝐶𝐶𝐶𝐶2(1+𝜒𝜒𝜒𝜒𝑜𝑜𝑜𝑜)𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜
, the 

magnetization parameter, 𝜉𝜉𝜉𝜉 = 𝐾𝐾𝐾𝐾𝑥𝑥𝑥𝑥
𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧

 is the mechanical 

anisotropy parameter, 𝜂𝜂𝜂𝜂 = 𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥
𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇𝑧𝑧𝑧𝑧

 is the thermal 

anisotropy parameter, 𝜅𝜅𝜅𝜅 = 𝐾𝐾𝐾𝐾1
𝐶𝐶𝐶𝐶2

, 𝛾𝛾𝛾𝛾 = 𝜇𝜇𝜇𝜇𝑓𝑓𝑓𝑓
𝜌𝜌𝜌𝜌𝑜𝑜𝑜𝑜

, 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝 = 𝐶𝐶𝐶𝐶3
𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶2

 . 

The parameter 𝑀𝑀𝑀𝑀2 is equivalent to the order of 
10−6 [3]. Hence 𝑀𝑀𝑀𝑀2 is omitted in further calculations. 
For simplicity 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝 and 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝 is assumed to be one. At 𝑧𝑧𝑧𝑧 =
0 and 𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑 the boundary condition (22) in the non-
dimesnional form is given by  

 
𝑊𝑊𝑊𝑊 = 𝜕𝜕𝜕𝜕2𝑊𝑊𝑊𝑊

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
= 𝑇𝑇𝑇𝑇 = 𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
= 0              (27) 

 
After eliminating the coupling between (24) – 

(26) we obtain a single differential equation for the 
vertical component of velocity 𝑊𝑊𝑊𝑊as 

 
𝐿𝐿𝐿𝐿𝛻𝛻𝛻𝛻2𝑊𝑊𝑊𝑊 = 𝑅𝑅𝑅𝑅𝛻𝛻𝛻𝛻2𝛻𝛻𝛻𝛻12𝑊𝑊𝑊𝑊 + 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀1𝜓𝜓𝜓𝜓2𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊      (28) 

 
where 

 

𝐿𝐿𝐿𝐿 = �
1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
𝛻𝛻𝛻𝛻2 + 𝛻𝛻𝛻𝛻12 +

1
𝜉𝜉𝜉𝜉
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
� �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡
− 𝜂𝜂𝜂𝜂𝛻𝛻𝛻𝛻12 −

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
� 

 
The boundary condition (27) in terms of the 

vertical component of velocity at 𝑧𝑧𝑧𝑧 = 0 and   𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑 
become [32] 

 
𝑊𝑊𝑊𝑊 = 𝜕𝜕𝜕𝜕2𝑊𝑊𝑊𝑊

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
= 𝜕𝜕𝜕𝜕4𝑊𝑊𝑊𝑊

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧4
= 𝜕𝜕𝜕𝜕6𝑊𝑊𝑊𝑊

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧6
= 0           (29) 

 
Solution procedure 
 
In view of small amplitude (𝜀𝜀𝜀𝜀 < 1) assumption, 

we now seek the eigenfunctions 𝑊𝑊𝑊𝑊 and eigenvalues 
𝑅𝑅𝑅𝑅 of (28) for a modulated magnetic field that is 
different from the constant magnetic field. The 
eigenfunction  𝑊𝑊𝑊𝑊 and eigenvalue 𝑅𝑅𝑅𝑅 should be a 
function of 𝜀𝜀𝜀𝜀 and they should be obtained for a given 
Vadasz number 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, buoyancy-magnetization 
parameter 𝑀𝑀𝑀𝑀1, mechanical anisotropy parameter 𝜉𝜉𝜉𝜉, 
thermal anisotropy parameter 𝜂𝜂𝜂𝜂 and frequency 𝜔𝜔𝜔𝜔. 
Hence, we figured out (28) followed by the 
assumption of Venazian [33] of the form 
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�𝑊𝑊𝑊𝑊𝑅𝑅𝑅𝑅 � = �𝑊𝑊𝑊𝑊0
𝑅𝑅𝑅𝑅0
� + 𝜀𝜀𝜀𝜀 �𝑊𝑊𝑊𝑊1

𝑅𝑅𝑅𝑅1
� + 𝜀𝜀𝜀𝜀2 �𝑊𝑊𝑊𝑊2

𝑅𝑅𝑅𝑅2
� + 

+𝜀𝜀𝜀𝜀3 �𝑊𝑊𝑊𝑊3
𝑅𝑅𝑅𝑅3
� +⋅⋅⋅⋅⋅⋅⋅⋅⋅                    (30) 

 
On substituting (30) over (28) and comparing the 

correlative terms up to order of 𝜀𝜀𝜀𝜀2, yields 
 

𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊0 = 0,                            (31) 
 

𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊1 = 𝑅𝑅𝑅𝑅1𝛻𝛻𝛻𝛻2𝛻𝛻𝛻𝛻12𝑊𝑊𝑊𝑊0 + 𝑅𝑅𝑅𝑅1𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊0 + 
+2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔� 𝑅𝑅𝑅𝑅0𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊0,                (32) 

 
𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊2 = 𝑅𝑅𝑅𝑅1𝛻𝛻𝛻𝛻2𝛻𝛻𝛻𝛻12𝑊𝑊𝑊𝑊1 + 𝑅𝑅𝑅𝑅2𝛻𝛻𝛻𝛻2𝛻𝛻𝛻𝛻12𝑊𝑊𝑊𝑊0 + 

+𝑅𝑅𝑅𝑅1𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊1 + 𝑅𝑅𝑅𝑅2𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊0 
 
+2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔� 𝑅𝑅𝑅𝑅0𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊1 + 
+2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅−𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔� 𝑅𝑅𝑅𝑅1𝑀𝑀𝑀𝑀1𝛻𝛻𝛻𝛻14𝑊𝑊𝑊𝑊0,                 (33) 

 
where 

𝐺𝐺𝐺𝐺 = 𝐿𝐿𝐿𝐿𝛻𝛻𝛻𝛻2 − 𝑅𝑅𝑅𝑅0 �
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧2
+ (1 + 𝑀𝑀𝑀𝑀1)𝛻𝛻𝛻𝛻12� 𝛻𝛻𝛻𝛻12 

The function 𝑊𝑊𝑊𝑊0 is the solution of unmodulated 
Rayeligh-Benard problem in ferromagnetic fluids 
[3]. The marginally stable solution for that problem 
is 

𝑊𝑊𝑊𝑊0 = �𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖�𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝐸𝐸𝐸𝐸+𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦�� 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋 𝑧𝑧𝑧𝑧,             (34) 
 
corresponding to the lowest mode of convection with 
the Rayleigh number 𝑅𝑅𝑅𝑅0 is given by 
 

𝑅𝑅𝑅𝑅0 =
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𝛼𝛼𝛼𝛼2[𝜋𝜋𝜋𝜋2+(1+𝑀𝑀𝑀𝑀1)𝛼𝛼𝛼𝛼2] ,            (35) 
 
Following the analysis of [29, 33], one obtains 

the first non-zero correction to 𝑅𝑅𝑅𝑅0  
 

𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑅𝑅02𝑀𝑀𝑀𝑀1
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Results and discussion 
 
The outcome of time-periodic magnetic field 

fluctuation on the onset of ferroconvection in a 
horizontal anisotropic densely arranged permeable 
layer is investigated using the linear stability 
analysis, the analytical solution was accomplished by 
means of the standard normal mode approach 
proposed by Venezian [33]. The shift in the 
correction to the critical Rayleigh number 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 
equation is computed by means of the regular 
perturbation technique as a function of the modulated 
magnetic field frequency 𝜔𝜔𝜔𝜔, magnetic parameter 𝑀𝑀𝑀𝑀1, 
mechanical anisotropy parameter 𝜉𝜉𝜉𝜉, thermal 

anisotropy parameter 𝜂𝜂𝜂𝜂 and Vadasz number 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 and 
the results are depicted with the help of Figures 2 
through 5. The stabilizing or destabilizing impact of 
magnetic field fluctuation is determined by the sign 
of  𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐. A positive 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 means supercritical instability 
occurs while a negative 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 means subcritical 
instability occurs, in contrast to system without time-
varying magnetic field.  

Figure 2(a) and 2(b) shows the variability of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 
on 𝜔𝜔𝜔𝜔 and 𝑀𝑀𝑀𝑀1 at 𝜉𝜉𝜉𝜉 = 0.7, 𝜂𝜂𝜂𝜂 = 0.5 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 5. 
Among these figures it is obvious that an increament 
in 𝑀𝑀𝑀𝑀1 augments the magnitude of the 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐, provided 
𝜔𝜔𝜔𝜔 is minimum (see fig. 2(a)), while moderate and 
large 𝜔𝜔𝜔𝜔 (see fig. 2(b)) decrements the magnitude of 
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𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐. It is proved in Fig. 2(a) that at weak modulation 
frequency, 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 < 0 signifying that the magnetic field 
modulation destabilizes the physical framework 

while from Fig. 2(b), it is clear that 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 > 0 for 
moderate and strong frequency. It implies that 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 
stabilizes the framework of the problem.  

 

                            
Figure 2(a) – Plot of small and moderate 

 𝜔𝜔𝜔𝜔 verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 with variation in 𝑀𝑀𝑀𝑀1.  
Figure 2(b) – Plot of large 𝜔𝜔𝜔𝜔 verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐  

with variation in 𝑀𝑀𝑀𝑀1. 
 
  

The diversification of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 upon 𝜔𝜔𝜔𝜔 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 for 
a specific term 𝜉𝜉𝜉𝜉 = 0.7, 𝜂𝜂𝜂𝜂 = 0.5 and 𝑀𝑀𝑀𝑀1 = 50 is 
shown in Figures 3(a) and 3(b). We observe from 
this figures that as raising 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 advances the range 
of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐. At 𝜔𝜔𝜔𝜔 = 10, the peak point of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 spreads 
by enhancing 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. The force of Vadasz number 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 
on the steadiness of the mechanism is exactly 
opposite to 𝑀𝑀𝑀𝑀1. The most notable outcome of the  
 

problem can be elucidated by exploring the 
outcomes of Figs. 2-3. Comparing the Vadasz 
number discrepancy with magnetic parameter, we 
reveal that the least value of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 is lower. This 
explicitly reveals that over 𝑀𝑀𝑀𝑀1, the Vadasz 
number plays a vital role in augmenting 
ferroconvection and magnetic number is a crucial 
in postponing ferroconvection. 

 
 

                        
Figure 3(a) – Plot of small and moderate 𝜔𝜔𝜔𝜔  

verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 with variation in 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. 
Figure 3(b) – Plot of large 𝜔𝜔𝜔𝜔 verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐  

with variation in 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. 
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The force of mechanical anisotropy 𝜉𝜉𝜉𝜉 on 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 at 
𝑀𝑀𝑀𝑀1 = 50, 𝜂𝜂𝜂𝜂 = 0.5 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 5 is shown in Figures 
4(a) and 4(b) for weak and moderately large 
𝜔𝜔𝜔𝜔respectively. We note that a rise in the range of 𝜉𝜉𝜉𝜉 
results in a fall in the range of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐. This signifies that, 
the impact of growth in 𝜉𝜉𝜉𝜉, minimizes the outgrowth 
of time-varying magnetic field. It is meaningful to 
emphasize that at moderate and significant value of 
frequency, 𝜉𝜉𝜉𝜉 = 0.1,0.5,0.7 experience a strong 

destabilizing influence. Conversely, at small value of 
𝜔𝜔𝜔𝜔, mechanical anisotropy 𝜉𝜉𝜉𝜉 = 0.1,0.5,0.7minimizes 
the fluctuation impact of magnetic force.  

The result of thermal anisotropy 𝜂𝜂𝜂𝜂 is shown in 5 
(a) and 5 (b) to elucidate the system’s stableness for 
a fixed value of 𝑀𝑀𝑀𝑀1 = 50, 𝜉𝜉𝜉𝜉 = 0.7 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 5. 
According to our observation, the large value of 𝜂𝜂𝜂𝜂 
delays the onset of convection as expected when 𝜂𝜂𝜂𝜂 
increases as a function of 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐.   
 

 

                
 

Figure 4(a) – Plot of small and moderate 𝜔𝜔𝜔𝜔  
verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 with variation in 𝜉𝜉𝜉𝜉. 

Figure 4(b) – Plot of large 𝜔𝜔𝜔𝜔 verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐  
with variation in 𝜉𝜉𝜉𝜉. 

 
 

           
 

Figure 5(a) – Plot of small and moderate 𝜔𝜔𝜔𝜔  
verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐 with variation in 𝜂𝜂𝜂𝜂. 

Figure 5(b) – Plot of large 𝜔𝜔𝜔𝜔 verses 𝑅𝑅𝑅𝑅2𝑐𝑐𝑐𝑐  
with variation in 𝜂𝜂𝜂𝜂. 
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Conclusions 
 
The impact of magnetic field fluctuation on the 

advent of nanoscopic magnetic liquid advection in a 
thickly condensed anisotropic saturated permeable 
configuration is carefully elucidated adopting 
stability test and the succeeding conclusions are 
outlined: 

 The weak frequency 𝜔𝜔 of magnetic field 
fluctuation is destabilizing while strong frequency of 
modulated magnetic field is continuously stabilizing. 

 The effect of magnetic mechanism 𝑀𝑀� on 
magnetic field modulation is to stabilize at minute 

frequency and destabilize at balanced and strong 
frequency. 

 The outcome of Vadasz number 𝑉𝑉𝑉𝑉 makes 
system stable expect for minute values of 𝜔𝜔 in the 
modulated magnetic field. 

 At moderate and large 𝜔𝜔, an increase in 
mechanical anisotropy 𝜉𝜉 strengthens the impact of 
magnetic field fluctuation, whereas an increase in 
thermal anisotropy 𝜂𝜂 weakens the impact of 
fluctuated magnetic field. However, at low 𝜔𝜔, 
enhancing the parameters 𝜉𝜉 and 𝜂𝜂 gives opposite 
result of modulated magnetic field. 

 The outcome of magnetic field fluctuation 
vanishes at high 𝜔𝜔 in each case.
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Companions of fields of rational and real algebraic numbers

Abstract. Companions of the field of rational numbers and a real-closed algebraic expansion of the field of 
rational numbers are studied. The description of existentially closed companions of a real-closed algebraic 
expansion of a field of rational numbers refers to the field of study of classical algebraic structures. The 
general theory of companions and existentially closed companions, built on the basis of Fraisse’s classes 
in the works of A.T. Nurtazin, is included in the classical field of existentially closed theories in model 
theory. The basic concept of a companion: two models of the same signature are called companions if for 
any finite submodel of one of them, there is an isomorphic finite submodel in the other. This approach, 
applied to specific classical structures and their theories, provides new tools for the study of these objects. 
The study of the companion class of rational and algebraic real number fields reveals companion fields 
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Introduction 
 
The theory of existential closure arose in the 

middle of the twentieth century in the works of one 
of the recognized classics of model theory Abraham 
Robinson [1], [2], as well as in the works [3] – [8]. 
Currently, it is one of the most significant and most 
developed areas of modern model theory. In previous 
studies, the most basic form of the concept of 
companion theory, widely known in the theory of 
existential closure, is introduced and studied. The 
criterion of the countable categoricity of this 
companion theory was found. Some properties of 
existentially closed and forcing companions have 
been studied [3] – [9]. Another promising approach 
to constructing the theory of existentially closed 
structures based on Fraisse's works [6] is developed 
in [9] – [16]. 

Naturally, the development of the general theory 
of existentially closed companions should be 
accompanied by the study of classical structures and 
theories. Historically, one of the classical 
mathematical objects is the field of rational numbers 
and the field of all algebraic real numbers. The work 
studies companion extensions of the named fields. 

This study is an example of studying a classical 
object through an approach developed by Nurtazin 
A.T. and based on Fraisse classes. 

 
The aim and objectives of the study 
 
The purpose of the work is to describe the 

companions of the fields of rational and real 
numbers. For this, for each of the named fields, 
companions of two types are described, namely, 
purely transcendental extensions and subsequent 
algebraic extensions of purely transcendental 
extensions. 

 
Literature review and problem statement 
 
Let:   be the field of rational numbers;   is a 

real closed algebraic extension of the field  ; [ ]x
, ( )x  are, respectively, the ring of polynomials and 
the field of quotients over the field   of independent 
variables 1=( ,..., )nx x x . All used and not given 
definitions and designations are taken from the 
monograph [15]. The basic concept of a companion: 
two models of the same signature are called 

https://orcid.org/0000-0003-3514-6205
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companions if for any finite submodel of one of them, 
there is an isomorphic finite submodel in the other. 
Consider some basic companions of the field  . The 
class of companions of the field   is denoted by

( )C  .  
Obviously, purely algebraic field extensions are 

not its companions. In turn, the following theorem is 
devoted to the first basic companions of the field, 
which are purely transcendental extensions. 

 
Materials and methods 
 
The work uses classical algebraic methods for 

constructing transcendental and algebraic extensions 
of this field. To describe a simple algebraic extension 

( )[ ] /x x f  a purely transcendental extension 
( )x of the field  , as a companion of f , the set 

of zeros of the polynomial n is studied and a method 
for recognizing the companions of the original field 
  is indicated. 

 
Results and Discussion 
 
COMPANIONS 
Field of quotients 
THEOREM 1. Let   have a field of 

characteristic 0. Then, the field of quotients ( )x  is 
a companion of the field   i.e. ( ) ( )x C∈   .  

Proof. Each finite submodel of the ring  is a 
submodel of the field ( )x . Conversely, let there be 
a finite submodel F  of the field ( )x  , we can 
assume that F  is given by a finite system of 
equalities and inequalities ( )≠ , the right and left 
parts of which contain elements F  and the operations 
of addition and multiplication of the field ( )x . We 
transform this system of equalities and inequalities 
into an equivalent system ( )x  

&( ) 0 ( ) 0& &i jS x T x= ≠ , where 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖(𝑥̄𝑥𝑥𝑥) =
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥̄𝑥𝑥𝑥)
𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑥̄𝑥𝑥𝑥)

,𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗(𝑥̄𝑥𝑥𝑥) = 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗(𝑥̄𝑥𝑥𝑥)
𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗(𝑥̄𝑥𝑥𝑥)

 here 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥̄𝑥𝑥𝑥),𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑥̄𝑥𝑥𝑥),𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗(𝑥̄𝑥𝑥𝑥), 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗(𝑥̄𝑥𝑥𝑥) ∈

ℙ[𝑥̄𝑥𝑥𝑥],𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑥̄𝑥𝑥𝑥), 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗(𝑥̄𝑥𝑥𝑥) ≠ 0 
The latter system is equivalent in [ ]x  system 

of equations and one inequality &(𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥̄𝑥𝑥𝑥) =
0)&𝑇𝑇𝑇𝑇(𝑥̄𝑥𝑥𝑥) = ∏𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑥̄𝑥𝑥𝑥)𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗(𝑥̄𝑥𝑥𝑥)𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗(𝑥̄𝑥𝑥𝑥) ≠ 0, where

( ), ( ), ( ), ( ) [ ], ( ), ( ) 0i i j j i jf x g x u x v x x g x v x∈ ≠ . 

Let us prove the existence of a set 

1=( ,..., )na a a ∈ , such that in   is fulfilled 
&(𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑎̄𝑎𝑎𝑎) = 0)&𝑇𝑇𝑇𝑇(𝑎̄𝑎𝑎𝑎) ≠ 0 (ℙ|=&(𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑎̄𝑎𝑎𝑎) =

0)&𝑇𝑇𝑇𝑇(𝑎̄𝑎𝑎𝑎) ≠ 0). For any choice of 𝑎̄𝑎𝑎𝑎 = (𝑎𝑎𝑎𝑎1, . . . ,𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛) ∈
ℙ, the equality &𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑎̄𝑎𝑎𝑎) = 0is obvious, since all the 
coefficients of the variables and the free terms in 

( )& if x  are equal to zero. By induction on the 
number of variables n , we prove the existence of 
𝑎̄𝑎𝑎𝑎 = (𝑎𝑎𝑎𝑎1, . . . ,𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛) ∈ ℙ, which is fulfilled 

| ( ) 0T a= ≠ . For 1n =  we choose 1a ∈  
which is not a root 1( )T x . 

Step of induction. Let 𝑎̄𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1 = (𝑎𝑎𝑎𝑎1, . . . ,𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1) ∈ ℙ 
be such that the higher coefficient of the polynomial 

( )T x considered as a polynomial of 1x  over the ring 

1[ ]nx −  is not zero. Then, the polynomial 

𝑇𝑇𝑇𝑇(𝑎̄𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1, 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) ≠ 0 and hence there is na ∈ , such that 
ℙ| = 𝑇𝑇𝑇𝑇(𝑎̄𝑎𝑎𝑎) ≠ 0 is satisfied. So  |=&(𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑎̄𝑎𝑎𝑎) =
0)&𝑇𝑇𝑇𝑇(𝑎̄𝑎𝑎𝑎) ≠ 0 is done.  

 The theorem has been proved. 
 
CONSEQUENCE 1. Let ( ), ( ) ( )i jR x S x x∈ , 

here   is formally a real field. The system 
&( ) 0 ( ) 0& &i jx S xR = ≠  is equivalent in ( )x  

system of one equation and one inequality 

1 2( ) 0& ( ) 0P x P x= ≠  where 1 2( ), ( ) [ ]P x P x x∈ . 
Simple algebraic extensions 
Let 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 = { (𝑎̄𝑎𝑎𝑎,𝑎𝑎𝑎𝑎)|𝑓𝑓𝑓𝑓(𝑎̄𝑎𝑎𝑎,𝑎𝑎𝑎𝑎) = 0, 𝑎̄𝑎𝑎𝑎,𝑎𝑎𝑎𝑎 ∈ ℙ}be an 

annihilator f , where ( , ) ( )[ ]f x x x x∈ . When 
considering algebraic extensions of the field ( )x  
by means of an irreducible polynomial 

( , ) ( )[ ]f x x x x∈ , we will assume that 
( , ) [ , ]f x x x x∈  and has content 1, as a polynomial 

in x  over the ring [ ]x . 
Then, the divisibility of any polynomial 

( , ) ( )[ ]g x x x x∈  by ( , )f x x  is equivalent to the 
divisibility of a polynomial [ , ] ( )[ ]g x x x x′ ∈ such 

that 
( )( , ) ( , )
( )

p xg x x g x x
q x

′= , where [ , ]g x x′ is a 

polynomial with content 1 over the ring [ ]x , and 
( )q x  is the least common multiple of the 

denominators of the coefficients in ( , ).g x x  
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Next, the field   is one of the fields ,  . 
Consider a simple algebraic extension 

( )[ ] /x x f  of the field that is the companion of 
the field  .  

 
THEOREM 2. Let ( , )f x x  be an irreducible 

polynomial over the field ( )x . Then, the algebraic 
extension ( )[ ] /x x f  of the field ( )x  is a 
companion   if and only if the condition is met: if an 
arbitrary polynomial ( , )g x x  is not divisible by 

( , )f x x  , then there is a tuple ( , )a a ∈  such that 
( , ) \f gg a a A A∈  is satisfied.  

Proof. Necessity. Let 1{ ,..., }kc c ∈  be all 
coefficients of polynomials ( , )g x x and ( , )f x x . By 
the primitive element theorem, there exists an 
irreducible polynomial ( ) [ ]p y y∈  and an element 

*с ∈  such that *( ), ( ) [ ]i i ic q c q y y= ∈ . 
Let us replace each of the elements 1,..., kc c  by 

*( )iq c  in the polynomials ( , )g x x  and ( , )f x x  , 
and obtain *( , ) ( , )g x x g x x= and 𝑓𝑓𝑓𝑓∗(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) =
𝑓𝑓𝑓𝑓(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥),𝑔𝑔𝑔𝑔∗(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥), 𝑓𝑓𝑓𝑓∗(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) ∈ ℚ(𝑥̄𝑥𝑥𝑥)[𝑥𝑥𝑥𝑥]. 

We have that *( , )g x x  is not divisible by 
𝑓𝑓𝑓𝑓∗(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) in ( )[ ]x x (ℙ(𝑥̄𝑥𝑥𝑥)[𝑥𝑥𝑥𝑥]| =
𝑓𝑓𝑓𝑓∗(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) | 𝑔𝑔𝑔𝑔∗(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥))⇔ ℙ(𝑥̄𝑥𝑥𝑥)[𝑥𝑥𝑥𝑥]| =
𝑓𝑓𝑓𝑓∗(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) | 𝑔𝑔𝑔𝑔∗(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) ⇒  there is (𝑎̄𝑎𝑎𝑎,𝑎𝑎𝑎𝑎) ∈ ℙ such that 
𝑔𝑔𝑔𝑔∗(𝑎̄𝑎𝑎𝑎,𝑎𝑎𝑎𝑎) ∈ 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓∗\𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔∗⇔ 𝑔𝑔𝑔𝑔(𝑎̄𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎) ∈ 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓\𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔 is satisfied. 
The necessity has been proved. 

Sufficiency. By virtue of consequence 1, we can 
assume that the existential sentence is true in

( )[ ] /x x f , after substituting solutions in it is one 
equality and one inequalityℙ(𝑥̄𝑥𝑥𝑥)[𝑥𝑥𝑥𝑥]/𝑓𝑓𝑓𝑓 |=ℎ1(𝑥̄𝑥𝑥𝑥,𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓) =
0&ℎ2(𝑥̄𝑥𝑥𝑥,𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓) ≠ 0, where ℎ1(𝑥̄𝑥𝑥𝑥,𝑦𝑦𝑦𝑦), ℎ2(𝑥̄𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) ∈
ℙ[𝑥̄𝑥𝑥𝑥,𝑦𝑦𝑦𝑦].  

Then there is a tuple ( , )a a ∈  such that 

1 2( , ) , ( , ) \f f gh a a A h a a A A∈ ∈  is satisfied. Thus, 

 |=ℎ1(𝑥̄𝑥𝑥𝑥,𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓) = 0&ℎ2(𝑥̄𝑥𝑥𝑥,𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓) ≠ 0 is satisfied. 
Sufficiency, and with it the theorem has been proved.  

Let 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓) = { 𝑔𝑔𝑔𝑔|𝑔𝑔𝑔𝑔 ∈ ℙ(𝑥̄𝑥𝑥𝑥)[𝑥𝑥𝑥𝑥],𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 ⊆ 𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔}, where 
( )[ ]f x x∈ . 

PROPOSITION 1. Let ( , )f x x  be an irreducible 
polynomial over a field ( )x . Then the following 

two properties of the polynomial 𝑓𝑓𝑓𝑓(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) are 
equivalent: 

a) If an arbitrary polynomial ( , )g x x  is not 
divisible by ( , )f x x  then there is a tuple ( , )a a ∈  
that satisfies ( , ) \f gg a a A A∈ ;  

b) The equality 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓) = (𝑓𝑓𝑓𝑓) is fulfilled.  
Proof. ) )a b⇒ . Definitely, ( ) ( )fI A f⊇ . Let 

( )fg I A∈  and ( )fg ∈ , moreover, n, then by 

assumption )a  there is a set ( , ) fa a A∈  such that 

( , ) 0g a a ≠  is a contradiction. So, ( ) ( )fI A f⊆ .  

) )b a⇒ . Let ( , )g x x  not be divisible by
( , )f x x . According to the condition ( )=( )fI A f . 

From here ( , ) ( )fg x x I A∈  and hence there is a 

tuple ( , )a a ∈ , which is done ( , ) \f gg a a A A∈ . 
The proposition has been proved. 

Here is one necessary property of the companion 
( )[ ]/x x f  of the field  . 
 
PROPOSITION 2. Let ( , )f x x  be an irreducible 

polynomial over a field ( )x . Then, if the 
algebraic extension ( )[ ]/x x f  of the field 

( )x  is a companion of  ,then each projection 
of the annihilator fA  is an infinite set. 

Proof. Assume the opposite, and let the projection 
fA  be, for example, finite in the variable 1x , i.e.𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓1 =

{(с1, . . . , с𝑘𝑘𝑘𝑘)|∃𝑏̄𝑏𝑏𝑏1, . . . , 𝑏̄𝑏𝑏𝑏𝑘𝑘𝑘𝑘)|(с1, 𝑏̄𝑏𝑏𝑏1), . . . , (с𝑘𝑘𝑘𝑘 , 𝑏̄𝑏𝑏𝑏𝑘𝑘𝑘𝑘) ∈
𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 , 𝑏̄𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = (𝑏𝑏𝑏𝑏1𝑖𝑖𝑖𝑖 , . . . , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖), 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 , с𝑖𝑖𝑖𝑖 ∈ ℙ}Then it is fulfilled: 
ℙ(𝑥̄𝑥𝑥𝑥)[𝑥𝑥𝑥𝑥]

𝑓𝑓𝑓𝑓
| = ∃𝑢𝑢𝑢𝑢1, . . . ,𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢(𝑓𝑓𝑓𝑓(𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2, . . . ,𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛,𝑢𝑢𝑢𝑢) =

0&&
𝑖𝑖𝑖𝑖
𝑢𝑢𝑢𝑢1 ≠ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖) but the same sentence is false in  . 

Contradiction. In the case when fA  is empty, the 

same proposition is true in ( )[ ]/x x f  but false in 
 . The proposition is proved. 

In the case of a simple algebraic extension

1( )[ ]/x x f  of the field 1( )x , Proposition 2 
is inverted. 

 
PROPOSITION 3. Let 1( , )f x x  be an irreducible 

polynomial over a field 1( )x . Then, an algebraic 

extension 1( )[ ]/x x f  from the field 1( )x is 
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a companion of  , if and only if each projection of 
the annihilator fA  onto each of the coordinate axes 

1,Ox Ox is an infinite set. 
Proof. The necessity was proved in Proposition 2.  
Sufficiency. By Proposition 1 and Theorem 2, it 

suffices to prove the equality ( )=( )fI A f . It's 

obvious that ( ) ( )fI A f⊇ . Let us prove the 

inclusion ( ) ( )fI A f⊆  

Suppose, ( ) ( )fI A f⊆ , and 

1( , ) ( ) \ ( )fg x x I A f∈ . Let 1( , )d x x  be the greatest 

common divisor of polynomials 1( , )g x x  and 

1( , )f x x  over a field 1( )x . Note that due to the 

fact 1( , )f x x  that the irreducible polynomial 

1( , )d x x  is an element of the field 1( )x ,we denote 

it by 1( )d x . There are polynomials 

1 1 1( , ), ( , ) ( )[ ]p x x q x x x x∈  , such that the 

equality 1 1 1 1 1( , ) ( , ) ( , ) ( , ) ( )p x x g x x q x x f x x d x+ =  

is satisfied in the ring 1( )[ ]x x . Since 𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔 ⊇ 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓, 

and by condition, the projection of fA  onto the 

coordinate axis 1Ox  is an infinite set, it follows from 

the last representation of the polynomial 1( )d x  in the 

variable 1x  that it has an infinite set of zeros. 
Contradiction, sufficiency and with it the proposition 
have been proved. 

Let us give a criterion for the mismatch of the 
ideals ( )fI A  and ( )f .  

 
PROPOSITION 4. Let ( )[ ]f x x∈  be an 

irreducible polynomial over a field ( )x . The ideals 
( )fI A  and ( )f  do not match with ( )( )f fI A ≠  if 

and only if there exists a polynomial ( ) [ ]с x x∈ 
such that, to the Cartesian power 1n+  

( ) ( )fc x I A∈  is satisfied, i.e. the cylindrical 

surface cA  in affine space 1n+  contains fA . 
Proof. Necessity. Let be ( )( )f fI A ≠ . Since 

( )( )f fI A ⊇  is always satisfied, then 

( )( )f fI A ⊆  takes place. Then let be

( , ) ( )( )\fg x x fI A∈ . 

Since ( , )f x x  the field ( )x , is irreducible, the 
greatest common divisor c  of polynomials f  and g  
can be represented as 𝑢𝑢𝑢𝑢(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥)𝑓𝑓𝑓𝑓(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) +
𝑣𝑣𝑣𝑣(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥)𝑔𝑔𝑔𝑔(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) = 𝑐𝑐𝑐𝑐(𝑥̄𝑥𝑥𝑥), where𝑢𝑢𝑢𝑢(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥), 𝑣𝑣𝑣𝑣(𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) ∈
ℙ[𝑥̄𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥], 𝑐𝑐𝑐𝑐(𝑥̄𝑥𝑥𝑥) ∈ ℙ[𝑥̄𝑥𝑥𝑥] . From the last relation we 
deduce that ( ) ( )fc x I A∈ . The necessity has been 
proved. 

Sufficiency. Let be ( ) ( )fc x I A∈ and 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐) ⊇

𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓). We have a polynomial ( )c x  as a polynomial 
of zero degree in x  is not divisible by a polynomial 

( , )f x x  of degree not less than the first in the same 
variable, therefore ( ) ( ) \ ( )c fc x I IA A∈ . 

Sufficiency has been proved.  
Consider an example of the mismatch of ideals 

( )fI A and ( )f . 

EXAMPLE 1. An example of a simple algebraic 
extension of the non-companion field of rational 
numbers. Consider in an affine space 3  the curve 
S , given by the intersection of the cylinder 𝑥𝑥𝑥𝑥2 +
𝑦𝑦𝑦𝑦2 − 1 = 0 and the plane𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦 + 𝑧𝑧𝑧𝑧 = 0.  

The curve S  over the field   can be 
equivalently given as the annihilator of 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 =
{ (𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐)|𝑓𝑓𝑓𝑓(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) = 0,𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐 ∈ ℚ}, of the 
polynomial 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = (𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2 − 1)2 + (𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦 +
𝑧𝑧𝑧𝑧)2 over the field  . Let us write the polynomial 
𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) in powers of the variable z :𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) =
𝑧𝑧𝑧𝑧2 + 2(𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦)𝑧𝑧𝑧𝑧 + 𝑥𝑥𝑥𝑥4 + 𝑦𝑦𝑦𝑦4 + 2𝑥𝑥𝑥𝑥2𝑦𝑦𝑦𝑦2 − 𝑥𝑥𝑥𝑥2 − 𝑦𝑦𝑦𝑦2 +
2𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 + 1. Let us prove that ( , , )f x y z  is irreducible. 
Suppose that 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = (𝑧𝑧𝑧𝑧 − 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦))(𝑧𝑧𝑧𝑧 −
𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)) . Obviously ( , ) ( , )p x y q x y≠ , , then for a 
pair ( , )a b ∈  such that ( , ) ( , )p a b q a b≠  is 
fulfilled by ( , , ( , )) 0f a b p a b =  and 
𝑓𝑓𝑓𝑓(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑞𝑞𝑞𝑞(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏)) = 0. Since from the equation 

0x y z+ + = , the value of c a b= − −  is uniquely 
determined, then ( , ) ( , )p a b q a b= . A contradiction, 
thus ( , , )f x y z  is irreducible. 

Thus, the cylindrical surface gA  where 𝑔𝑔𝑔𝑔 = 𝑥𝑥𝑥𝑥2 +

𝑦𝑦𝑦𝑦2 − 1 in the affine space 3 contains fA , 
therefore, 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓) ≠ (𝑓𝑓𝑓𝑓) and by Proposition 1 and 
Theorem 2, we obtain a simple extension 

( , )[ ] /x y z f of the field ( , )x y  that is not a 
companion of the field  .  

An immediate consequence of Proposition 1 and 
Theorem 2 is the following description, in terms of 
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ideals, of a simple algebraic extension ( )[ ] /x x f  
of the field ( )x , that is a companion of the field ℙ. 

 
THEOREM 3. Let ( , )f x x  be an irreducible 

polynomial over a field ( )x . An algebraic 
extension ( )[ ] /x x f of the field ( )x  is a 
companion   if and only if the ideal ( )fI A  is the 

same as the ideal ( )f . 
 
Algebraic extensions 
Let ( )[ ]x y f  and ( )[ ]x y f g  (here

( )[ ] ( ( )[ ] )[ ]x y f g x y f z g=   be simple 
algebraic extensions of the fields ( )x  and 

( )[ ]x y f  respectively, and be irreducible 

polynomials over the fields ( )x  and ( )[ ]x y f  
respectively. Let be 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔) = { ℎ|ℎ ∈
ℙ(𝑥𝑥𝑥𝑥𝑥)[𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧],𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔 ⊆ 𝐴𝐴𝐴𝐴ℎ}, 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔 = {(𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) ∈ ℙ|(𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏) ∈
𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 , (𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) ∈ 𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔}  

It is obvious that ( )fgI A  is an ideal in the ring 

( )[ , ]x y z , generated by polynomials ( , )f x y  и 
( , , )g x y z  i.e. 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔) = (𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔). 

Consider now an algebraic extension of a simple 
algebraic extension of the field ( )x . 

 
THEOREM 4. The algebraic extension 

( )[ ]x y f g  of the field ( )[ ]x y f  is a 
companion   if and only if, for any polynomial 

( , , ) ( )[ , ]h x y z x y z∈  such that 

( , , ) ( , )h x y z f g∈  there is a tuple ( , , )a b c ∈ , 
such that ( \, , ) fg ha b c A A∈ . 

Proof. Necessity. In the algebraic extension 
( )[ ]x y f g  of the field ( )x , the system 
( , ) 0 & ( , , )=0& ( , , ) 0f f g f gf x y g x y z h x y z= =  

is satisfied; therefore, there is a tuple ( , , )a b c ∈  
( \, , ) fg ha b c A A∈ .  

Sufficiency. Let 
( )[ ] |= ... ( , , , ,..., )f gx y f g u v x y z u v∃ ∃ ϕ be 

fulfilled. Since ,..., ( )[ ]u v x y f g∈  we assume 
that this formula is equivalent in the algebraic 
extension ( )[ ]x y f g  of the field ( )x  to the 

system 1 2( , , )=0& ( , , ) 0f g f gh x y z h x y z = . Then, 
there is a tuple (𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) ∈ ℙ such that (𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) ∈
𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔\𝐴𝐴𝐴𝐴ℎ. The necessity, and with it the theorem, has 
been proved. 

 
THEOREM 5. An algebraic extension 

( )[ ]x y f g  of a field ( )[ ]x y f  is a 
companion of   if and only if the ideal 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔) is the 
same as the ideal (𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔). 

Proof. Necessity. Let be ( , , ) ( , )h x y z f g∈ . 
Then, in the algebraic extension ( )[ ]x y f g  of 

the field ( )x  the system 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓) =
0&𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓 , 𝑧𝑧𝑧𝑧𝑔𝑔𝑔𝑔)=0&ℎ(𝑥𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓 , 𝑧𝑧𝑧𝑧𝑔𝑔𝑔𝑔) ≠ 0 is satisfied. 
Hence, in the companion   there is a tuple (𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) ∈
ℙ, so that (𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) ∈ 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔\𝐴𝐴𝐴𝐴ℎ and ℎ(𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) ∉ (𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔) 
hence. If ℎ(𝑥𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) ∈ (𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔), then obviously 
ℎ(𝑥𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) ∈ 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔). The necessity has been proved. 

Sufficiency. Let 
( )[ ] |= ... ( , , , ,..., )f gx y f g u v x y z u v∃ ∃ ϕ be 

fulfilled. Since ,..., ( )[ ]u v x y f g∈  we will 
assume that this formula is equivalent in the algebraic 
extension ( )[ ]x y f g of the field ℙ(𝑥𝑥𝑥𝑥𝑥) to the 
system ℎ1(𝑥𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓 , 𝑧𝑧𝑧𝑧𝑔𝑔𝑔𝑔)=0&ℎ2(𝑥𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓 , 𝑧𝑧𝑧𝑧𝑔𝑔𝑔𝑔) ≠ 0. By 
definition, it follows from ℎ2(𝑥𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓 , 𝑧𝑧𝑧𝑧𝑔𝑔𝑔𝑔) ≠ 0 that 
ℎ2(𝑥𝑥𝑥𝑥𝑥 ,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) ∉ 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔). Then it follows from the 
equality 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔)  = (𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔), that there is a tuple 
(𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) ∈ ℙ, such that (𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) ∈ 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔\𝐴𝐴𝐴𝐴ℎ and 
satisfies ℙ| = ℎ1(𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐)=0&ℎ2(𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) ≠ 0. 
Sufficiency, and with it the theorem has been proved. 

 
Let us formulate a description of the companions 

of the field   in the general case. 
Let 𝐵𝐵𝐵𝐵 = {𝛽𝛽𝛽𝛽1,𝛽𝛽𝛽𝛽2, . . . . },𝑋𝑋𝑋𝑋 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, . . . . } be 

countable sets of independent variables, 𝛽̄𝛽𝛽𝛽 =
(𝛽𝛽𝛽𝛽1, . . . ,𝛽𝛽𝛽𝛽𝑚𝑚𝑚𝑚), 𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 = (𝑥𝑥𝑥𝑥1, . . . , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛), 𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛 = (𝑓𝑓𝑓𝑓1, . . . , 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛), 
where 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝛽̄𝛽𝛽𝛽, 𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1

𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) is irreducible in the ring 
ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1

𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1][𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖] , where 𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖
𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = (𝑥𝑥𝑥𝑥1

𝑓𝑓𝑓𝑓1 , . . . , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖), if

ix  is 

the root of the polynomial 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝛽̄𝛽𝛽𝛽, 𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1
𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) ∈

ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1
𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1][𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖] over the field 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝛽̄𝛽𝛽𝛽, 𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1

𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) ∈
ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1

𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖 𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖
𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖] is defined as 

follows. Let's put ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥1
𝑓̄𝑓𝑓𝑓1] = ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥1]/𝑓𝑓𝑓𝑓1(𝛽̄𝛽𝛽𝛽, 𝑥𝑥𝑥𝑥1), 

ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥2
𝑓̄𝑓𝑓𝑓2] = ℙ[𝛽̄𝛽𝛽𝛽][𝑥𝑥𝑥𝑥𝑥1

𝑓̄𝑓𝑓𝑓1][𝑥𝑥𝑥𝑥2]/𝑓𝑓𝑓𝑓2(𝛽̄𝛽𝛽𝛽, 𝑥𝑥𝑥𝑥𝑥1
𝑓̄𝑓𝑓𝑓1 , 𝑥𝑥𝑥𝑥2). We 

define ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛
𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛] = ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛−1

𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1][𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛]/
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𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛(𝛽̄𝛽𝛽𝛽, 𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛−1
𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1 , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) by induction. Thus, in the sequence 

ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥1
𝑓̄𝑓𝑓𝑓1],ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥2

𝑓̄𝑓𝑓𝑓2], . . . , ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛
𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛] – each 

subsequent field ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+1
𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖+1] is a simple algebraic 

extension of the previous field by means of an 
irreducible polynomial 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖+1(𝛽̄𝛽𝛽𝛽, 𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖

𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+1). We define 
the corresponding ideals 𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛) = { ℎ ∈

ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛
𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛]|𝐴𝐴𝐴𝐴𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛 ⊆ 𝐴𝐴𝐴𝐴ℎ},𝐴𝐴𝐴𝐴𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛 = {(𝑎𝑎𝑎𝑎𝑎 , 𝑏̄𝑏𝑏𝑏𝑛𝑛𝑛𝑛) ∈

ℙ�|(𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏,1) ∈ 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓1 , . . . , (𝑎𝑎𝑎𝑎𝑎 , 𝑏𝑏𝑏𝑏1, . . . , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛) ∈ 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛 , 𝑏̄𝑏𝑏𝑏𝑛𝑛𝑛𝑛 =
(𝑏𝑏𝑏𝑏1, . . . , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛)}, where each 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ∈ ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1

𝑓̄𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1][𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖], 𝑖𝑖𝑖𝑖 =
1, . . . ,𝑛𝑛𝑛𝑛 is irreducible over the corresponding field 

1
1( )[ ]if

ix −
−β .  

Let us give a general description of the 
companions of the field . 

 
THEOREM 6. An algebraic extension 

ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛
𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛] = ℙ(𝛽̄𝛽𝛽𝛽)[𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛−1

𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1][𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛]/𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛(𝛽̄𝛽𝛽𝛽, 𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛−1
𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1 , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) of a 

field ( )β  is a companion  if and only if the ideal 
𝐼𝐼𝐼𝐼(𝐴𝐴𝐴𝐴𝑓̄𝑓𝑓𝑓𝑛𝑛𝑛𝑛) coincides with the ideal (𝑓𝑓𝑓𝑓1, . . . , 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛). 

The proof is a general reproduction of the proof 
of Theorem 5. 

 
Discussion of results 
 
The above results give a fairly complete 

description of the companions of the fields of rational 

and real numbers. Construction methods can be used 
for further studies of field companions and their 
classes. 

 
Conclusion 
 
The general theory of Fraisse's companion 

classes and their theories, developed by A.T. 
Nurtazin, constitutes a separate new area in model 
theory. This approach, applied to specific classical 
structures and their theories, provides new tools for 
the study of these objects. The study of the 
companion class of rational and algebraic real 
number fields reveals companion fields containing 
transcendental and possibly algebraic elements with 
special properties of polynomials defining these 
elements. The companions of each of the above-
named fields are algebraic extensions of the fields of 
quotients of a certain set of independent variables 
over the corresponding field, using mutually agreed 
polynomials. 
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