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Abstract. In the paper the development a method for finding the nonlinear heat-conducting 
characteristics of the soil is being presented. Two-layer container complexes have been created, the side 
faces of which are thermally insulated so that the 1D heat equation can be used. In order not to solve the 
boundary value problem with a contact discontinuity and lose the accuracy of the method’s solution, a 
temperature sensor was placed at the junction of two media, and a mixed boundary value problem is solved 
in each area (container). To provide the initial data with an inverse coefficient problem, two temperature 
sensors are used: one sensor was placed at the open boundary of the container and recorded the soil 
temperature at this boundary, and the second sensor was placed at a short distance from the boundary, 
which recorded the air temperature. The measurements were carried out on the time interval (0, tmax). First, 
the initial-boundary value problem of thermal conductivity with nonlinear coefficients of thermal 
conductivity, heat capacity, heat transfer, and material density are studied numerically. The nonlinear 
initial-boundary value problem is solved by the finite difference method. Based on the measured data of 
the complex, special functionals are constructed and the thermal conductivity coefficient 𝑘𝑘𝑘𝑘, density ρ, 
specific heat capacity 𝑐𝑐𝑐𝑐, heat transfer coefficient ℎ are found, which depend on the temperature of the 
material. Based on the experimentally measured data, the corresponding functional is minimized on each 
time interval using the gradient descent method. All thermophysical characteristics for a container with clay 
were found with a relative error of 5%.

Key words: thermal conductivity, nonlinearity, difference problem, iteration, convergence, inverse
problem.

Introduction

Heat transfer processes are one of the main 
sections of modern science and are of great practical 
importance in industrial energy. Determining the 
parameters of heat protection systems and obtaining 
a solution to the problem of thermal design are 
directly related to the calculations of thermal fields in 
the soil and ground. In turn, this requires knowledge 
of the thermophysical characteristics of the soil [1, 2]. 
The thermophysical properties of the soil play an 
essential role in the structure of the thermal field of 
the earth's crust. At the same time, the thermal field 
of the Earth is largely determined by the processes 
associated with prospecting, exploration, 
development of oil, gas and thermal water deposits, 
operation of main oil and gas pipelines and 
underground storage facilities. Optimization and 
analysis of thermal and moisture characteristics of 
building components is an important engineering tool 
[3]. In addition, studies of the thermophysical 

parameters of soil are of great importance in the gas 
industry for solving thermodynamic problems related 
to temperature forecasting when drilling deep and 
ultra-deep wells, calculating gas reserves, predicting 
the temperature of fluids at the mouth of production 
wells, assessing reservoir filtration parameters, and 
thermal treatment. productive horizons, as well as for 
transportation and underground storage of gas [4]. 
Nowadays, theoretical models for finding the 
thermophysical characteristics of inhomogeneous 
composite media do not have sufficient accuracy. 
Therefore, the main source of information about 
thermophysical properties is the performance of a 
physical experiment [5,6]. For the theoretical basis of 
the method for finding the thermophysical 
characteristics of a medium, the law of conservation 
of energy is used, the consequence of which is a 
nonlinear differential equation of heat conduction [1, 
7, 8]. Where the thermal conductivity coefficient 𝜒𝜒𝜒𝜒,
density ρ, specific heat capacity 𝑐𝑐𝑐𝑐, heat transfer 
coefficient ℎ depends on the temperature of the 
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material and determine the process of heat transfer in 
the medium. Temperature is one of the main factors 
affecting the thermal conductivity of the soil. It has 
been established that the nature of the influence of 
temperature on the thermophysical parameters of the 
soil-soil is nonlinear [9-11]. In this regard, there is an 
urgent need to solve the inverse problem of the 
nonlinear heat equation.

Therefore, the purpose of the study is to conduct 
a thermophysical experiment and develop 
methodological support for determining 
thermophysical coefficients based on solving a 
nonlinear inverse problem of heat conduction [12, 
13]. On the basis of the above mathematical model, 
the direct problem of heat transfer by input 
parameters is solved. Then the temperature field in 
the medium or in the material is determined. The 
physical-mathematical model and experimental 
temperature values at the accessible soil-ground 
boundary make it possible to find thermophysical 
characteristics in inverse coefficient problems of heat 
transfer [14-16]. The difficulty here is that the 
experimental temperature data are obtained from 
unknown thermophysical characteristics, which are 
calculated in the inverse problem with a 
predetermined accuracy. In addition, it should be 
taken into account that the initial approximations of 
the thermophysical coefficients specified in the 
iterative algorithm can differ significantly (several 
times) from the true values used to measure the 
experimental temperature data. On this basis, it is 
necessary to develop such algorithms that would 
eventually give almost zero functional discrepancy 
even with a significant deviation of the initial values 
of the unknown thermophysical characteristics from 
the true ones [17]. It is also necessary to verify the 
stability of the algorithm [18-21]. In turn, in this 
study, based on the nonlinear heat equation and 
experimental data, a method for solving the inverse 
nonlinear coefficient problem is proposed. The basis 
of the method is the minimization of the quadratic 
residual functional between numerical and 
experimental temperature values. Minimization of 
the functional is carried out by the method of gradient 
descent. When determining the damping factor 
(descent step), the fastest descent method is used.

The article is organized as follows: Section 2 
presents a demonstration of a mathematical model for 
describing the physical phenomenon of heat 
conduction. The discretization of the computational 
domain and the model is also shown. Section 3 
provides a description of the experiment,

characteristics and installation of the experimental 
equipment. The soil, consisting of two layers, soil 1 
and soil 2, is in a controlled environment – a
thermally insulated container. The end faces of the 
container from the inner side are in contact with the 
soil, and the outer sides are directed to the boundary 
condition, which depends on the environment. In 
Section 4, the reliability of numerical predictions is 
assessed by comparing them with experimental 
observations. The description of the obtained results 
is given, and the graphs of the obtained data are 
shown.

Mathematical model

Formulation of the problem. Figure 1 illustrates a
two-layer container, the side faces of which are 
thermally insulated, and the end faces are in contact 
with the environment (air). Considering these 
limitations, instead of the three-dimensional heat 
equation, we can consider the one-dimensional non-
stationary equation

Figure 1 – Two-layer container

𝑐𝑐𝑐𝑐(𝑢𝑢𝑢𝑢)𝜌𝜌𝜌𝜌(𝑢𝑢𝑢𝑢)
𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�𝑘𝑘𝑘𝑘(𝑢𝑢𝑢𝑢)
𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�, 

𝜕𝜕𝜕𝜕 ∈ (0, ξ) × (ξ, 𝑙𝑙𝑙𝑙), 𝜕𝜕𝜕𝜕 ∈ (0,4tmax)

The ambient temperature at the left boundary of 
the region at 𝜕𝜕𝜕𝜕 = 0 will be denoted by 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕), and at 
the right boundary at 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙 we will denote by 
𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕). In engineering calculations, the parameters 
𝑐𝑐𝑐𝑐,  ρ and 𝑘𝑘𝑘𝑘 are usually considered to be constants. 
However, many scientists conclude that the study of 
nonlinear processes is of great practical interest. 
Since most processes occurring in nature are non-
linear. Taking into account the nonlinearity of 
equation greatly complicates the mathematical
formulation of the problem. Denote by 𝑢𝑢𝑢𝑢(𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕) –
distribution the temperature inside the complex of 
containers, where 𝜕𝜕𝜕𝜕- is the coordinate of the complex 
along the 𝑂𝑂𝑂𝑂𝜕𝜕𝜕𝜕 axis, 𝜕𝜕𝜕𝜕-is the current time. At the initial 
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time of observation, the temperature of both layers of 
the body is: 𝜕𝜕𝜕𝜕 = 0, 𝑢𝑢𝑢𝑢(𝜕𝜕𝜕𝜕, 0) = 𝑢𝑢𝑢𝑢0(𝜕𝜕𝜕𝜕), 𝜕𝜕𝜕𝜕 ∈ (0, 𝑙𝑙𝑙𝑙).

The boundary conditions that determine the 
features of the process on the wall surface are given 
as follows:

The left and right boundaries of the region Ω =
(0, ξ) × (ξ, 𝑙𝑙𝑙𝑙) are in contact with the gaseous medium 
(air), so it is advisable to formulate a boundary 
condition of the third kind on these boundaries – the 
relationship between the heat flux due to thermal 
conductivity from a solid wall and the heat flux from 
a gaseous medium. Thus, the boundary conditions on 
the left and right boundaries are written as follows:

𝜕𝜕𝜕𝜕 = 0:  k1(u)
∂u
∂x

= hins(u)�𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕)�,

𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙:  k2(u)
∂u
∂x

= −hout(u)�𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕)�,

where 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕),𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕) − are ambient temperatures; 
ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢), ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑢𝑢𝑢𝑢) − heat transfer coefficients; 
𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢), 𝑘𝑘𝑘𝑘2(𝑢𝑢𝑢𝑢) – thermal conductivity coefficients of 
the medium "1" and "2" (Figure 1).

Usually, on the contact surface of the layers 𝜕𝜕𝜕𝜕 =
ξ a boundary condition is set that determines the 
equality of temperatures and heat fluxes at the 
junction of materials:

𝑢𝑢𝑢𝑢1( ξ, t) = 𝑢𝑢𝑢𝑢2(ξ, t),
𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) ∂𝑜𝑜𝑜𝑜1

∂x
(ξ, t) = k2(𝑢𝑢𝑢𝑢) ∂𝑜𝑜𝑜𝑜2

∂x
(ξ, t).           (1)

Here 𝑢𝑢𝑢𝑢1(𝜕𝜕𝜕𝜕, t) и 𝑢𝑢𝑢𝑢2(𝜕𝜕𝜕𝜕, t) – are the temperatures of 
the material layers in contact. When solving 
problems with contact conditions of the form (1), the 
rate of convergence of a homogeneous difference 
scheme becomes very low [19]. Therefore, to avoid 
this problem, we placed a separate sensor at the point 
𝜕𝜕𝜕𝜕 = ξ which measures the change in soil temperature 
at the point of contact of two media. Due to this, the 
original task is split into two tasks, i.e. using the
measured data in each container, its own problem of 
nonlinear thermal conductivity is solved. In the 
future, we will state the problem only on the left 
container shown in Fig.1.

In addition to 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕),𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕), the initial 
temperature values Tξ(t), t ∈ [0, tmax]. For 

convenience of notation, we introduce the notation 
hins(u) = h1(u). 

Problem. Using the measured values 
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕), Tins(t), Tξ(t), t ∈ [0, tmax], it is required to 
develop a method for finding the temperature 𝑢𝑢𝑢𝑢(𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕)
and all the thermophysical parameters of the soil.

In the region of 𝑄𝑄𝑄𝑄1 = (0, ξ) × (0, 𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) we 
studied the following system of equations.

𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢)𝜌𝜌𝜌𝜌1(𝑢𝑢𝑢𝑢)
𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢)
𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�,

u(x, 0) = u0(x),

k1(𝑢𝑢𝑢𝑢)
∂u
∂x

= h1(u)�u − uins(t)�, x = 0,

u(ξ, t) = Tξ(t).

Grid method. Section (0, ξ) is divided into 𝐼𝐼𝐼𝐼
equal parts with a step ∆x = ξ

I� . Then ξ = I∆x,
where I -is the node number of the contact point x =
ξ. And the segment (0, 𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) is divided into m equal 
parts with ∆t = tmax m� .

As a result of this action, we get a grid:

𝜔𝜔𝜔𝜔 = �𝜕𝜕𝜕𝜕𝜄𝜄𝜄𝜄 = 𝑖𝑖𝑖𝑖∆𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗∆𝜕𝜕𝜕𝜕;  𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼;  𝑗𝑗𝑗𝑗 =
= 0, 1, … ,𝑚𝑚𝑚𝑚�,

In the present work, a method has been developed 
for finding the soil parameters 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢), 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢),
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢), ℎ𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢), 𝑠𝑠𝑠𝑠 = 1,2. In this case, the measured 
values of the ambient temperature are used as initial 
information 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕),𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕) и 𝑢𝑢𝑢𝑢0(𝜕𝜕𝜕𝜕) −initial 
temperature distribution at time 𝜕𝜕𝜕𝜕 = 0. And also 
T𝜉𝜉𝜉𝜉(𝜕𝜕𝜕𝜕) − soil temperature at the contact point of two 
media 𝜕𝜕𝜕𝜕 = 𝜉𝜉𝜉𝜉. To compile the functional, 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕),𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕) − measured values of soil 
temperature at the boundary of the considered area 
are used.

Development of iteration methods

In the grid region 𝜔𝜔𝜔𝜔 the difference scheme is 
studied:

ρ1 �ui
j+1� ∙ c1 �ui

j+1� ui
j+1−ui

j

∆𝑜𝑜𝑜𝑜
= 1

∆x
�k1 �u

i+12

j+1� ui+1
j+1−ui

j+1

∆x
− k1 �u

i−12

j+1� ui
j+1−ui−1

j+1

∆x
�,
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i = 1,2 … , I − 1;  j = 0,1, … , m − 1;

ui0 = u0(xi), i = 0,1, … , I;                                                                (2)

uI
𝑗𝑗𝑗𝑗+1 = T𝜉𝜉𝜉𝜉�tj+1�, j = 0,1, … , m − 1;

𝑘𝑘𝑘𝑘1 �u1
2

j+1�
u1
j+1 − u0

j+1

∆x
= h1 �u0

j+1� �u0
j+1 − uins

j+1� ;

where

u
i+12

=
ui+1
j+1 + ui

j+1

2
, i = 0,1, … , I − 1.

Let’s rewrite difference equation of the system (2) in the form:

𝐹𝐹𝐹𝐹�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1� ≡ 𝑍𝑍𝑍𝑍 ⋅ �𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1� �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1� − 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢
𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1� �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗+1�� −

−ρ�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗� = 0,

𝑖𝑖𝑖𝑖 =  1, 2, . . . , 𝐼𝐼𝐼𝐼 − 1;  𝑗𝑗𝑗𝑗 =  0, 1, . . . ,𝑚𝑚𝑚𝑚 − 1

where 𝑍𝑍𝑍𝑍 = ∆𝑜𝑜𝑜𝑜
(∆𝑚𝑚𝑚𝑚)2.

Let’s 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 = �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1,  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1�. 

When 𝑠𝑠𝑠𝑠 = 0, 𝜕𝜕𝜕𝜕 0 will be the initial approximation 
of the system (3). Then, applying the Newton method 
for system (3), the following approximation of the 
unknown grid function is obtained:

∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1

𝑖𝑖𝑖𝑖+1,𝑗𝑗𝑗𝑗+1 −  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1� + ∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖+1,𝑗𝑗𝑗𝑗+1 −  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1� + ∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑖𝑖𝑖𝑖+1,𝑗𝑗𝑗𝑗+1 −  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1� + 𝐹𝐹𝐹𝐹(𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖) = 0 (4)

where 𝑠𝑠𝑠𝑠 – iteration’s number for the Newton’s 
method.

Expanding the brackets, (4) is reduced to 
tridiagonal system:

𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖+1
+ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖+1

+ 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖+1
= 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,

𝑖𝑖𝑖𝑖 =  1, . . . ,𝑁𝑁𝑁𝑁 − 1;  𝑗𝑗𝑗𝑗 = 0, . . . ,𝑚𝑚𝑚𝑚 − 1,

where the coefficients are equal:

𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 = ∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1 , 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 = ∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 ,𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = ∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1 ,

𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −𝐹𝐹𝐹𝐹(𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖) + 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖
+

+𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖
+ 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

Then, expanding equation (3), the corresponding 
derivatives were found:

𝐹𝐹𝐹𝐹�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1� =

= �𝑘𝑘𝑘𝑘0 + 𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� + 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘3 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�

3

� ⋅⋅ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑍𝑍𝑍𝑍 −
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−�𝑘𝑘𝑘𝑘0 + 𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−12
𝑗𝑗𝑗𝑗+1� + 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘3 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−12
𝑗𝑗𝑗𝑗+1�

3

� ⋅

⋅ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗+1�𝑍𝑍𝑍𝑍 − 𝑐𝑐𝑐𝑐�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝜌𝜌𝜌𝜌�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗� = 0,  𝑖𝑖𝑖𝑖 = 1, . . , 𝐼𝐼𝐼𝐼 − 1,

∂𝐹𝐹𝐹𝐹
∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1

𝑗𝑗𝑗𝑗+1 = 𝑍𝑍𝑍𝑍 ⋅ �
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� +

𝑘𝑘𝑘𝑘1
2
� ⋅ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� + 𝑍𝑍𝑍𝑍 ⋅ 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1�,

∂𝐹𝐹𝐹𝐹
∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1 = 𝑍𝑍𝑍𝑍 ⋅ �
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� +

𝑘𝑘𝑘𝑘1
2
� �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� −

−𝑍𝑍𝑍𝑍 ⋅ 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢
𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1� − 𝑍𝑍𝑍𝑍 ⋅ �
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−12
𝑗𝑗𝑗𝑗+1� +

𝑘𝑘𝑘𝑘1
2
� ⋅

⋅ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗+1� − 𝑍𝑍𝑍𝑍 ⋅ 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢
𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1� −
∂𝑐𝑐𝑐𝑐

∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 ρ�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗� −

−  
∂ρ

∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 𝑐𝑐𝑐𝑐�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗� − ρ�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�,

∂𝐹𝐹𝐹𝐹
∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗+1 = −𝑆𝑆𝑆𝑆 ⋅ �
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−12
𝑗𝑗𝑗𝑗+1� +

𝑘𝑘𝑘𝑘1
2
� �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1� + 𝑆𝑆𝑆𝑆 ⋅ 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1�,

Similarly, the boundary conditions are revealed, 
considering the dependence of the thermal condu-
ctivity and heat transfer coefficient on temperature:

𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1�
𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1

∆𝜕𝜕𝜕𝜕
= ℎ�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�.

Let’s rewrite it in the form:

𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1� ≡

≡ 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1�
𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1

∆𝜕𝜕𝜕𝜕
ℎ�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1� = 0.

To apply Newton's method, we find the 
corresponding derivatives:

∂𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1 − 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖� +
∂𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�

∂𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1 − 𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖� + 𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖� = 0.

Let's expand the derivatives in the following form:

∂𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 = 𝐷𝐷𝐷𝐷0 =
∂𝑘𝑘𝑘𝑘

∂𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 ⋅

𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1

∆𝜕𝜕𝜕𝜕
−
𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�

∆𝜕𝜕𝜕𝜕
−

∂ℎ
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1� − ℎ�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�,

where
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∂𝑘𝑘𝑘𝑘
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1   =
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 ⋅ 𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1 +
𝑘𝑘𝑘𝑘1
2

∂ℎ
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1   =  ℎ1.

∂𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�
∂𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1 = 𝐸𝐸𝐸𝐸0 =
∂𝑘𝑘𝑘𝑘

∂𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 ⋅

𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1

∆𝜕𝜕𝜕𝜕
+
𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�

∆𝜕𝜕𝜕𝜕
,

where

∂𝑘𝑘𝑘𝑘
∂𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1   =
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 ⋅ 𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1 +
𝑘𝑘𝑘𝑘1
2

.

We find the initial values for the recursive 
formula of the Thomas method:

𝐷𝐷𝐷𝐷0𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1 − 𝐷𝐷𝐷𝐷0𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖 + 𝐸𝐸𝐸𝐸0𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1 − 𝐸𝐸𝐸𝐸0𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖 +

+𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖� = 0,

𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1 =

−𝐸𝐸𝐸𝐸0𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1

𝐷𝐷𝐷𝐷0
+ 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖 +
𝐸𝐸𝐸𝐸0𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖

𝐷𝐷𝐷𝐷0
−

−
𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�

𝐷𝐷𝐷𝐷0
.

From here we get

α1 =
−𝐸𝐸𝐸𝐸0
𝐷𝐷𝐷𝐷0

,

β1 = 𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖 +

𝐸𝐸𝐸𝐸0𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖

𝐷𝐷𝐷𝐷0
−
𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑘𝑘𝑘𝑘 ,𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�

𝐷𝐷𝐷𝐷0
.

Differentiation with respect to a parameter
1) In the area (0, ξ) × (0, 𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) the discrete 

problem is solved

ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� ⋅ 𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1 = �𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1� 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1�

𝑚̅𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1,  𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1,    𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖0 = 𝑢𝑢𝑢𝑢0(𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖),  i = 0,1, … , 𝐼𝐼𝐼𝐼,                               (5)

𝑢𝑢𝑢𝑢𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 𝑇𝑇𝑇𝑇ξ�𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗+1�,   𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1

𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑢𝑢𝑢𝑢1𝑚̅𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 = ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�,   𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1.

We consider that the coefficient 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) is 
represented as

𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) = 𝑘𝑘𝑘𝑘10 + 𝑘𝑘𝑘𝑘11𝑢𝑢𝑢𝑢 + 𝑘𝑘𝑘𝑘12𝑢𝑢𝑢𝑢2 + 𝑘𝑘𝑘𝑘13𝑢𝑢𝑢𝑢3.

Assuming that the solution to problem (4) 
continuously depends on 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢)) and has a derivative 
with respect to 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢), we differentiate system (4) 
with respect to the parameter

𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢),  𝑠𝑠𝑠𝑠 = 0,1,2,3

Let’s denote 

∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1

∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖
= 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼,

 𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1, 𝑠𝑠𝑠𝑠  =  0,1,2,3
Then
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∂ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖
= ρ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠),

∂𝑐𝑐𝑐𝑐�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖
= 𝑐𝑐𝑐𝑐1′�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠),

∂𝑘𝑘𝑘𝑘1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖
= �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

+ 𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠),

∂ℎ1�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�

∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖
= ℎ1′ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1� 𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠).

After differentiating system (4) with respect to 
𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠  =  0,1,2,3, various problems follow 
depending on s. These tasks can be written in a single 
form as follows

[𝑐𝑐𝑐𝑐1′�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1� + ρ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�] 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅

𝑗𝑗𝑗𝑗+1 + 𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) =

= �𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)�
𝑚̅𝑚𝑚𝑚

+ ���𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

+ 𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑚̅𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1�

𝑚̅𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1,   = 0,1, … ,𝑚𝑚𝑚𝑚 − 1,

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖0 = 0,  𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼,  𝑢𝑢𝑢𝑢𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 0,  𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1,

𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦1,𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + ��𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

+ 𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1�
𝑦𝑦𝑦𝑦1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢1𝑚̅𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 =

= ℎ1′ �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� + ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1.

The values of the coefficients 𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠  =  0,1,2,3of 
the coefficient of thermal conductivity of soil 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢)
will be found from the condition of the minimum of 
the functional

𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢)� = ��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑘𝑘𝑘𝑘1) − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

Direct differentiation of the last equality with 
respect to 𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠 = 0,1,2,3 gives us the gradient of the 
composed functional written as

∇𝐽𝐽𝐽𝐽(𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖) =

= 2 ��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑘𝑘𝑘𝑘1) − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)Δ𝜕𝜕𝜕𝜕

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

,

𝑠𝑠𝑠𝑠 = 0,1,2,3.                               (6)

Then

𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢)� = �𝐽𝐽𝐽𝐽(𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖)
3

𝑖𝑖𝑖𝑖=0

Knowing the explicit expression for the gradient 
of the functional, the parameters of the functions
𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) are defined as follows

𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1) = 𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛) + μ1(𝑠𝑠𝑠𝑠)∇𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)�,   =

= 0,1,2,3.
To determine the damping factor μ1(𝑠𝑠𝑠𝑠) of the 

functional

𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1)� =

= ��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1)� − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

.

Minimize by parameter μ1(𝑠𝑠𝑠𝑠). For this we use the 
expansion

𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1)� =

= 𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� + μ1(𝑠𝑠𝑠𝑠)∇𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� =

= 𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� +
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+
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)�
∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖

μ1(𝑠𝑠𝑠𝑠)∇𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� + 𝑜𝑜𝑜𝑜�μ1(𝑠𝑠𝑠𝑠)�2.

Using this expansion from (6) after some 
transformations, we obtain the parameter of the 
fastest descent in the form:

μ1(𝑠𝑠𝑠𝑠) =

= −
∑ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)Δ𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0

∑ �𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1�

2
Δ𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0 ∇𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)�
,

𝑠𝑠𝑠𝑠 = 0,1,2,3.                            (7)

Using (7), we write out the final calculation 
formula for each coefficient of the function 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) in 
the following form

𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1) = 𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛) −

−
∑ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)Δ𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0

∑ �𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1�

2
Δ𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

,

𝑠𝑠𝑠𝑠 = 0,1,2,3.

2) To determine the specific heat coefficient 
𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢) we represent it as

𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢) = 𝑐𝑐𝑐𝑐10 + 𝑐𝑐𝑐𝑐11𝑢𝑢𝑢𝑢.

This is the most commonly used dependence in 
practice [1].

Now the discrete problem is composed in the 
region (0, ξ) × (𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 2𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and has the form

ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� ⋅  𝑐𝑐𝑐𝑐1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1� 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1  =

=   �𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗+1�
𝑚̅𝑚𝑚𝑚

,

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1, 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1,

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 𝑢𝑢𝑢𝑢0(𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖) – solution of problem (5) for 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 − 1, 𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼,

𝑢𝑢𝑢𝑢𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 𝑇𝑇𝑇𝑇ξ�𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗+1�,  𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1, (8)

𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑢𝑢𝑢𝑢1𝑚̅𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 = ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�,  

 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1.

In this case, all the coefficients of the functions 
ρ1(𝑢𝑢𝑢𝑢),  𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) and ℎ1(𝑢𝑢𝑢𝑢) are taken from the current 
iteration level, and the coefficients of the function
𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢) are changed, calculating the minimum of the 
functional

𝐽𝐽𝐽𝐽�𝑐𝑐𝑐𝑐 + 1(𝑢𝑢𝑢𝑢)� = � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑐𝑐𝑐𝑐1) − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

2𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

=

= 𝐽𝐽𝐽𝐽�𝑐𝑐𝑐𝑐10(𝑢𝑢𝑢𝑢)� + 𝐽𝐽𝐽𝐽�𝑐𝑐𝑐𝑐11(𝑢𝑢𝑢𝑢)� =

= � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑐𝑐𝑐𝑐10) − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

2𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

+

+ � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑐𝑐𝑐𝑐11) − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

2𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

.

Assuming the continuous dependence of the 
solution of the problem 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1 on the parameters 𝑐𝑐𝑐𝑐10
and 𝑐𝑐𝑐𝑐11, and, assuming the existence of a derivative 
of the function 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1 with respect to the named 
parameters, we differentiate (8) with respect to
𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖,  𝑠𝑠𝑠𝑠 = 0,1.

As early as we introduce the notation

∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1

∂𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖
= 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼, 

𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1,  𝑠𝑠𝑠𝑠 = 0,1.

And given that

∂𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

∂𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖
= �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

+ 𝑐𝑐𝑐𝑐1′�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑠𝑠𝑠𝑠 = 0,1.

We compose a system with respect to the 
unknowns 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) in the following form
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��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖
+ 𝑐𝑐𝑐𝑐1′�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)� ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1 + ρ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1 +

+𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) =

= �𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)�
𝑚̅𝑚𝑚𝑚

+ ��𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1�

𝑚̅𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1, 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1,
 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 0,  𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼,𝑦𝑦𝑦𝑦𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 0, 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1, 

𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦1,𝑚̅𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + �𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
𝑦𝑦𝑦𝑦1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢1𝑚̅𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 =

= ℎ1′ �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� + ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1.

Here 𝑠𝑠𝑠𝑠 = 0,1.
Repeating all the calculations done when 

deriving the calculation formula 𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖, we derive the 
calculation formula for 𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖 in the following form

𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1) = 𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛) −

−
∑ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)Δ𝜕𝜕𝜕𝜕2𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

∑ �𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)�

2
Δ𝜕𝜕𝜕𝜕2𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

, 

𝑠𝑠𝑠𝑠 = 0,1

The corresponding functional has the form

𝐽𝐽𝐽𝐽�с1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� = � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

2𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

, 

𝑠𝑠𝑠𝑠 = 0,1.

3) Assuming the dependence of the specific 
density ρ1(𝑢𝑢𝑢𝑢) in the form

ρ1(𝑢𝑢𝑢𝑢) =  ρ10 + ρ11𝑢𝑢𝑢𝑢

and given that ∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1

∂ρ1𝑠𝑠𝑠𝑠
= 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), we compose the 
corresponding discrete problem. This time in the area
(0, ξ) × (2𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 3𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) in the form

��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖
+ ρ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)� с1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1 + с1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1 +

+𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) =

= �𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)�
𝑚̅𝑚𝑚𝑚

+ �𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1�

𝑚̅𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1, 𝑗𝑗𝑗𝑗 = 2𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,3𝑚𝑚𝑚𝑚 − 1, 𝑠𝑠𝑠𝑠 =  0,1,

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖2𝑚𝑚𝑚𝑚 = 0, 𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼;𝑦𝑦𝑦𝑦𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 0,  𝑗𝑗𝑗𝑗 = 2𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,3𝑚𝑚𝑚𝑚 − 1
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𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦1,𝑚̅𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + �𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
𝑦𝑦𝑦𝑦1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢1𝑚̅𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 =

= ℎ1′ �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� + ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠),  𝑗𝑗𝑗𝑗 = 2𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,3𝑚𝑚𝑚𝑚 − 1.

Here 𝑠𝑠𝑠𝑠 = 0,1.
In this case, to calculate the coefficients ρ1(𝑢𝑢𝑢𝑢) ,

the formula is derived

ρ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1) = ρ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛) −

−
∑ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�ρ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)Δ𝜕𝜕𝜕𝜕3𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=2𝑚𝑚𝑚𝑚

∑ �𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)�

2
Δ𝜕𝜕𝜕𝜕3𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=2𝑚𝑚𝑚𝑚

, 

𝑠𝑠𝑠𝑠 = 0,1.
Functional is minimized

𝐽𝐽𝐽𝐽�ρ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� = � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�ρ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

3𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=2𝑚𝑚𝑚𝑚

, 

𝑠𝑠𝑠𝑠 = 0,1.

4) Calculation of the heat transfer coefficient
ℎ1(𝑢𝑢𝑢𝑢).

In practical calculations, power-law dependences 
of the heat transfer coefficient on the soil temperature 
on the contact surface of two media are usually used. 
We'll look at the dependency:

ℎ1(𝑢𝑢𝑢𝑢) = ℎ10 + ℎ11𝑢𝑢𝑢𝑢

Then

∂ℎ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

∂ℎ1𝑖𝑖𝑖𝑖
= �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

+ ℎ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 

𝑠𝑠𝑠𝑠 = 0,1,

here ∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1

∂ℎ1𝑠𝑠𝑠𝑠
= 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑖𝑖𝑖𝑖 = 1,2, … , 𝐼𝐼𝐼𝐼 − 1, 𝑗𝑗𝑗𝑗 =
3𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,4𝑚𝑚𝑚𝑚 − 1, 𝑠𝑠𝑠𝑠 = 0,1.

In this case, the problem is considered in the area 
(0, ξ) × (3𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 4𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and the next function 
coefficients are taken from the current iteration level:

ρ1(𝑢𝑢𝑢𝑢),  𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢) и 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢).

After skipping the difference scheme in the next 
grid domain

𝜔𝜔𝜔𝜔14 = �𝜕𝜕𝜕𝜕𝜄𝜄𝜄𝜄 = 𝑖𝑖𝑖𝑖∆𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗∆𝜕𝜕𝜕𝜕;  𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼;  𝑗𝑗𝑗𝑗
= 3𝑚𝑚𝑚𝑚, … ,4𝑚𝑚𝑚𝑚 − 1�,

Let us immediately write out the difference 
problem for the function 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1. The difference 
scheme has the form

ρ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅

𝑗𝑗𝑗𝑗+1 + 𝑐𝑐𝑐𝑐1′�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅

𝑗𝑗𝑗𝑗+1 + 𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) =

�𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)�
𝑚̅𝑚𝑚𝑚

+ �𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1�

𝑚̅𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1;  𝑗𝑗𝑗𝑗 = 3𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,4𝑚𝑚𝑚𝑚 − 1;  𝑠𝑠𝑠𝑠 = 0,1,

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖3𝑚𝑚𝑚𝑚 = 0, 𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼;𝑦𝑦𝑦𝑦𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 0, 𝑗𝑗𝑗𝑗 = 3𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,4𝑚𝑚𝑚𝑚 − 1,

𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦1,𝑚̅𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + �𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
𝑦𝑦𝑦𝑦1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢1𝑚̅𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 =

= ��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖
+ ℎ1′ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)� �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� + ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠),

𝑗𝑗𝑗𝑗 = 3𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,4𝑚𝑚𝑚𝑚 − 1.
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Here 𝑠𝑠𝑠𝑠 = 0,1.

In this case, by controlling the parameters 
ℎ1𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠 = 0,1 , the functional is minimized

𝐽𝐽𝐽𝐽�ℎ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� = � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�ℎ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

4𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=3𝑚𝑚𝑚𝑚

, 

𝑠𝑠𝑠𝑠 = 0,1.

And the control parameters of optimization 
processes are determined by the formula

ℎ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1) = ℎ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛) −

−
∑ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�ℎ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)Δ𝜕𝜕𝜕𝜕4𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=3𝑚𝑚𝑚𝑚

∑ �𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)�

2
Δ𝜕𝜕𝜕𝜕4𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=3𝑚𝑚𝑚𝑚

,

𝑠𝑠𝑠𝑠 = 0,1.

Comment. Everywhere we have assumed that the 
parameters ρ1(𝑢𝑢𝑢𝑢), 𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢), 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 ℎ1(𝑢𝑢𝑢𝑢) depend 
on 𝑢𝑢𝑢𝑢 in the form of a polynomial. However, the 
considered method is applicable in another form of 
dependence on 𝑢𝑢𝑢𝑢.

Experimental setup

Figure 2 – Сontainers with soil

Containers with sensors were built for the 
experiment. Photos of containers are shown in Fig. 2. The 
side faces of the containers are made of 2 cm thermally 
insulated material, and the end faces are in contact with 
the environment (air). In each compartment of the 
container, 15 cm long, there are various soils. One end 
side is heated with lamps. The second outer side is 
affected by the ambient temperature.

3 sensors (C2, C3, C4) are evenly distributed inside 
the material as shown in Figure 1. They measure 
temperature with an error of 0.3 degrees Celsius 
according to the technical data sheet of the sensor. In 
addition to these sensors, there are 2 more sensors (C1, 
C5) close to the ends to measure the ambient 
temperature. The errors of these sensors are the same as 
those of the previous sensors. The temperature data 
measurement is taken at intervals of 10 minutes.

For calculations, a two-chamber container was 
considered and, accordingly, with two materials: 

sand and black soil. The data were measured over a 
period of three months, and the physical length of the 
entire container is determined through the interval 
𝜕𝜕𝜕𝜕 ∈ (0, 𝑙𝑙𝑙𝑙), where 𝑙𝑙𝑙𝑙 = 30 cm. The boundary of the 
two media is at a distance of 𝜕𝜕𝜕𝜕 = 15 cm and the 
temperature measurement sensor is also located 
there. Since there is an exchange with the 
environment at the end boundaries, Robin boundary 
conditions were considered for the numerical 
solution. Measurements at points 𝜕𝜕𝜕𝜕 = 0 см. and 𝜕𝜕𝜕𝜕 =
30 cm determine the temperature at the end 
boundaries. The temperature values of the measured 
data can be seen in Fig. 3.

It should be noted that enough time has passed to 
conduct numerical experiments (about 3 months) 
from the installation of measuring instruments and 
the data used in the proposed article. Also, for the 
initial condition, the interpolation of the measured 
data was taken.
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Figure 3 – Сontainers with soil

Results

The measured temperature data were used to 
solve a numerical problem to find all thermophysical
coefficients (thermal conductivity coefficient, 
specific heat capacity, specific density and heat 
transfer coefficient). Thanks to the steepest descent 
method, the functionals converge fairly quickly and 
reach a minimum in 6 and 7 iterations. The 
minimization of the functional continued until the 
relative error between the nonlinear solution and the 
experimental data reached ~4.3% for chernozem and 
~3.12% for sand, which in turn shows a fairly good 
accuracy of the solution. If we look at the absolute 
errors in two environments – ~6.3% and ~5.3%, we
see that they also meet our expectations.

In addition, the values of the coefficients at 
the contact boundary of two media were 

considered. Figure 4 illustrates the values of 
thermal conductivity, density, specific heat 
capacity and volumetric heat capacity from the 
left approximation (sand) and the right 
approximation (soil) to the boundary. As can be 
seen from the graph, the values of the coefficients 
at the contact discontinuity differ significantly 
from each other, but in the case of the volumetric 
heat capacity coefficient, the values at many 
points coincide at the boundary of two media, 
which can prove a continuous volumetric heat 
capacity at the boundary of two different media. 
This statement needs further research on other 
materials. The large difference at the initial 
points in time is associated with a rough 
initial approximation of the iterative process 
for the parameters of thermophysical 
coefficients.
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Figure 4 – The distribution of a) thermal conductivity b) density c) specific and 
d) volumetric heat capacity at the boundary of two materials.

Figure 5 – Distribution of thermal conductivity and density along 
the container during 𝜕𝜕𝜕𝜕1 =  2.5/𝑎𝑎𝑎𝑎, 𝜕𝜕𝜕𝜕2 =  5/𝑎𝑎𝑎𝑎, 𝜕𝜕𝜕𝜕3 =  7.5/𝑎𝑎𝑎𝑎, 𝜕𝜕𝜕𝜕4 =  10/𝑎𝑎𝑎𝑎.
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Fig.4 and Fig.5 illustrate the values of 
thermophysical coefficients along the container. The 
graphs clearly show jumps-discontinuities in the 
values of thermophysical coefficients at the contact 
boundary of contact between two media, except for 
the coefficient of volumetric heat capacity. From here 
it can also be said that the volumetric heat capacity 
shows a continuous nature of the values.

Conclusion

In the context of predicting and finding all 
thermophysical coefficients (thermal conductivity, 
heat capacity, density and heat transfer), this article 
proposes an efficient numerical method. In contrast 
to the methods previously proposed in the literature, 
this approach allows one-time determination of all 
thermophysical coefficients in two media with a 
contact boundary. This approach takes into account 
the impossibility of finding several coefficients in 
one time interval. To solve this problem, the entire 
measured data time is divided into segments equal to 
the number of coefficients, and the corresponding 
coefficient is calculated in each segment. In addition, 
one should not forget that a solution of the nonlinear 
heat equation is proposed with the heat conductivity 
coefficient, which is a cubic function, and with the 
heat capacity, density, and heat transfer coefficients, 
which are linear functions. The system of nonlinear 
equations is solved by Newton's method, which 
ensures high convergence of the solution. The initial 
approximation for Newton's method is taken from the 
solution of a linearized difference problem. Also the 
next approximation for Newton's method, i.e. for a 
nonlinear difference problem, is found using the 
Thomas method (sweep), which in turn is 
unconditionally stable. Finding the thermophysical 
coefficients is calculated by minimizing the 
corresponding functional using the steepest descent 
method. Using the differentiation of a nonlinear 
difference problem with respect to the desired 
parameter, the gradient of the functional and the 
damping coefficient are found in explicit form. With 
the help of this, the elimination of the solution of the 
adjoint problem for the solution of inverse problems 
is achieved. A proof of the quadratic convergence of 
the iterative scheme for Newton's method is also 
proposed.

In conclusion, it can be said that research in the 
field of coefficient inverse problems for non-linear 
equations should be advanced with detailed 

experimental measurements, including, for example, 
moisture, freezing, porosity, etc.
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Analysis, Research and Development of an Innovative Enterprise 
Digitalization System for Remote Work

Abstract: This article presents innovative development of the system for the remote activity 
implementation. It is all about from remote customer service to the company and private conferences for 
employees, online conferences, meetings, training, etc. This system refers to devices for implementing the 
employees’ remote production activities of the enterprise, to devices for organizing and managing the 
business processes. The developed system may be used without restrictions. The most important 
particularity of this useful system is the opportunity to add various features depending on the demand for a 
separate enterprise, upon that having saved a range of using the already existing opportunities. By applying 
this system, it is possible to increase by several times the level of the information and communication 
technologies usage for enterprises. The developed data device essentially allows economizing various 
resources on data transmission and storage. Besides, the requirements to the infrastructure of the enterprise 
may be used either by browsers or mobile devices, upon that by increasing the efficiency of analysis and 
the agility of making production decisions. Research and analysis of fault tolerance, applicability of modern 
IT technologies to increase the efficiency of enterprise digitalization have been carried out

Key words: Digitalization; remote work; webrtc; development; system

1 Introduction

At present, one of the priority areas for the 
development of society is a high level of 
digitalization of all types of activities and, as reality 
has shown, this is especially important for working in 
conditions such as a pandemic and post-pandemic. 
Despite a sufficient number of information systems, 
now there is a need to develop scalable fault-tolerant 
information systems, which are now in demand due 
to the constantly growing volume of information, big 
data, and the need to ensure fault tolerance.

The modern need for the development of 
information systems for the digitalization of 
enterprise activities is due to the following 
shortcomings of many existing systems: the 
impossibility of processing big data, including 
unstructured data, poor data security, susceptibility to 
unauthorized access to data files, the impossibility of 
making decisions in optimizing document flow 
routes, high cost available known systems.

There are known the various devices used when 
conducting remote transactions of the production 
activities, for instance, Zoom, MS Teams, Google 
meet and others. However, the devices mentioned 

above have some different drawbacks and 
restrictions, a usage-time restriction, a restriction to 
quantity of participants, restriction to usage of 
various device capabilities, no transparency, etc. The 
usage of such systems may cause to several 
disadvantages, among them, if necessary to hold any 
confidential corporate meetings. There are various 
devices of the Enterprise Content Management and 
the Electronic Document Management System which 
are used at organizational activity of an enterprise. 
The widely used Directum system assigned for 
document flow of the enterprise (State Registration 
Certificate of the program for “Directum RX” 
computing machine dated on 22 April 2015 
No.2015614659) has some restrictions such as 
unavailability to conduct online meeting in real-time 
mode, no opportunities to interact with external 
applications and some other restrictions [1].

The purpose of the developing system like this is 
the development of fault-tolerant, zoomed data 
device which will enable to conduct organization and 
management of the employees’ remote production 
activities of the enterprise.

The prospects for the development of this 
scalable fault-tolerant information system are also 
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due to the fact that the openness of the architecture, 
scalability, a high level of independence of the 
functional subsystems of the complex, maintenance, 
practical development and application open up a 
fundamentally new possibility of distributed use by 
enterprises, united by a common communication 
intranet and Internet environment, responding 
general requirements for information systems and 
information security, intended for implementation in 
a single information educational space of the
Republic of Kazakhstan.

2 Research of ensuring fault tolerance

The development of scalable fault-tolerant 
application for digitalization of enterprise activities is 
due to the following shortcomings of many existing 
systems: the impossibility of processing big data, 
including unstructured data, weak data security, 
susceptibility to unauthorized access to data files, 
insufficient optimization of document flow routes, 
high cost of known systems. The main idea for 
creation of such application is multitasking: for 
study, work, teaching, online conference, etc.

Reliability. The system architecture supports a 
transactional model that guarantees the integrity of 
system data throughout all stages of their life cycle. 
Managed MongoDB storage allow one to organize 
reliable storage of documents.

Safety. For each object of the system, it can be 
specified which users or groups have the right to 
perform certain actions with it. Confidential 
electronic documents and tasks can be encrypted 
directly in the system by any Microsoft CryptoAPI-
compatible encryption provider, which guarantees 
protection even from users with unrestricted access 
to data. Logging of all user actions will allow 
restoring the history of work with system objects in 
the event of a security violation. Provides high 
protection against unauthorized access to document 
storages of all types.

Scalability. The invention enables to add some 
other features at customer’s option as well. This is the 
key factor for own data device of the enterprise.

Fault tolerance and speed. Thousand or even 
millions of concurrent connections in the world may 
become the cause of failure in operation even in the 
largest analogue projects. This invention may operate 
independently for a certain enterprise, and they may 
be supported separately from the basic flow. That 
way it is possible to obtain essential increases in as 
well operating speed of the application.

Big data processing. The invention enables to 
process large volume of data of different type, which 
is very topical at present time.

All control services can be installed both on one 
server and on multiple ones – in order to distribute 
the load and safety. Users randomly select a server 
and perform their actions.

Management manipulate has been defined as the 
system with the aid of which managers have an effect 
on other participants of their agencies to put into 
effect their strategies, and additionally assures that 
the sources are obtained and used correctly and 
correctly in achieving its objectives.

The work of the personnel Department of a fairly 
large enterprise is associated with the accumulation 
of a large amount of data about the individual data of 
employees. Traditionally, data is put away on paper. 
Also, it is difficult to quickly select the necessary data 
when hiring, firing, or compiling reports. The basis 
of the development was a number of reasons that 
arise due to the influence of the human factor, which 
negatively affect the quality and intensity of the 
human resources Department:

a) the possibility of an accidental error in 
manually filling out forms;

b) inability to quickly cope with a large amount 
of information;

c) the complexity of finding the necessary 
information;

The purpose of the development is to eliminate as 
much as possible random errors, the listed 
shortcomings of the existing system of work of the 
personnel Department, and to introduce into it factors 
that positively affect the quality and timing of the 
functions implemented in it:

a) reducing the execution time of each function;
b) automatic creation of documentation and 

reports;
c) simple and fast search;
d) automatic affixing of dates and service 

numbers;
All of the above indicates the relevance of the 

problem, a solution to which is presented in this 
diploma work.

Verbal description of the subject area. Main func-
tions of the company's human resources Department:

• hiring
• calculation from work
For a detailed description, you can divide the 

main functions into a number of additional ones. For 
example, hiring involves performing the following 
actions:
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2.1 Data Analysis
Data analysis is performed when a person is 

hired. To perform this function, the following 
documents are required: passport, work record and 
education document. Provided that the person has 
passed the interview, an order for employment is 
drawn up. The acceptance order must include the full 
name, position (workplace), date, and, accordingly, 
the order number.

2.2 The Preparation of an employment 
contract

Drawing up an employment contract is made 
according to the prescribed form of the contract. An 
employment contract (contract) is filled out when an 
employee is hired. Contains data: last name, first 
name, patronymic, service number, position 
(workplace), reason (number and date of the order for 
employment). After drawing up the employment 
contract, the corresponding mark is entered in the 
employment record and the employee's personal file 
is formed [2].

2.3 Formation of a personal file
Passport data and General information about the 

employee are stored in the personal file. In addition 
to the data required for drawing up an employment 
contract (full name, workplace (position), no. of the 
order of acceptance), it contains the employee's 
service number, personal and other data:

• Personal data:
- date of birth, place of birth;
- address;
- passport: series, number;
- pension certificate;
• Education;
• Employment history (employment history 

before working at the company) with the following 
data:

- enterprise;
- position;
- experience;
- article of dismissal;
• Documents (inventory of documents attached 

to the employee's personal file), indicating the fields:
- document type;
- identification number;
- date of acceptance;
- date of issue;
2.4 Changing the staffing table
The staff list of employees in the company (in the 

position format-the number of people working for 
this position), when hiring a new employee, must be 
changed accordingly.

2.5 Making marks in the personal file and 
work record

If there is a dismissal order, a corresponding note 
is entered in the personal file indicating the article of 
dismissal and the date of settlement, as well as the 
number of the dismissal order. In this case, a mark on 
the calculation is also put in the work record.

2.7 Making a service provisioning system
The technological support of the business 

processes continuity is, in our opinion, almost the 
priority task of IT system. Nobody needs in any 
separate feature-packed hardware and expensive 
software in case all this is not a reliable support, a 
basement for users’ daily successful operations.

The capability of any system to keep its 
operability after failure or abruption of one or several 
composite components is named as the system fault 
tolerance. The fault-tolerance system shall keep its 
operability in case of abruption of one node at least, 
and respectively, the main way to increase the fault 
tolerance is to create the hardware redundancy by 
way of reservation (redundancy).

Users may simultaneously create their requests. 
For their servicing some servers are required. The 
quantity of servers can be several or the great one. 
Advantages of this approach are as follows: a request 
is a stream of jobs, has quality of service contract, n 
is kept optimal to minimise energy consumption 
(n≤N). QoS contract: 

• Charge: For each accepted and completed 
stream a user shall pay a fee.

• Obligation: The average waiting time, w, of 
the jobs in an accepted stream shall not exceed a 
certain bound.

• For each stream where the average waiting 
time exceeds the bound, a user shall receive 
compensation.

Thus, a contract for a given type of service is 
characterised by the triple: (ri, qi, pi) = (charge, 
obligation, penalty). Objective. Maximize the 
average revenue per unit time, R [3]:

where: 
ai is the average number of type i streams 

accepted per unit time
wi is the average waiting time for the jobs in a 

type i stream
S is the average number of operative servers
C is the cost of a single server per unit time
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3 Analysis and technologies

One of the first technologies that were used 
in application is.NET Core. Many developers 
think that the nature of.NET platform is 
unfinished. And because of that, it is practically 
almost always under rework and upgrades. If 
earlier versions of the technology are tool for the 
applications with large functionality, in modern 
times the technology allows supporting the 
development of API and support of Visual 
Basic. The technology gives the developers a 
great deal of freedom and, at the same time, 
allows fully controlling all the processes, 
especially when uploading the product to 
industrial environment. And what about the 
SignalR library, which is the main gateway for
data exchange. SignalR is remarkably similar to 
SocketIO. Their main similarity is that they both 
support negotiation/fallback. Of course, it is 
important that SignalR is a library, not a server. 
Therefore, it should be placed on individual 
server together with.NET Core. There were also 
hosts for ASP.NET, Owin and self-host, that is 
why it would be possible to easily launch it in its 
own process, for example, right now it is a 
Windows service. Investigations showed that 
SignalR is supported by clients for JS, .NET, 
Silverlight, and Windows Phone 7 browsers. 
There are also clients for the same items as IOS, 
Mono Touch, etc. SignalR provided the project 
with much higher level of API than raw sockets, 
which is a great advantage compared to other 
similar technologies. It means that SignalR 
allows us to do such things as “RPC” from 
server to clients in a broadcast form.

The next investigation is related to Angular. 
Using the latest versions of Angular CLI 
allowed us to make the project structure in 
Model-View-Controller format. There was an 
opportunity to use Model-View or View-Model 
as well. When selecting this technology, the 
function of two-way data binding was of 
interest. In Angular, this function is designed so 
simply that there is no need to spare a lot of time 
to solve certain tasks. It allows aligning models 
and presentations without any problems. The 
following factors were the main reasons for 
technologies selection: Angular allows using 
HTML to create a user interface, Angular has a
small number of observable functions, it 
facilitates modification and changes of 

properties, huge support from community and 
framework designers themselves. Not every 
similar technology may afford some of the 
possibilities of Angular. 

WebRTC is a browser technology designed 
to implement the transmission of streaming data 
among several browsers or applications using 
the special technology of point-to-point 
transmission. One of particularities of this 
technology is that the technology enables to 
establish communication among users by using 
browser applications only. Previously this was 
becoming a kind of discovery for some 
developers of the community when they had 
been inquiring after the WebRTC: in fact, it is 
possible to create a video chat or even an audio 
chat independently of an outside server— you
need a certain browser only where the WebRTC 
is supported. The WebRTC does not require for 
downloading any additional extensions or plug-
ins. You need only to do some HTML or 
JavaScript coding and video streams, audio 
streams in a browser will be working with no 
trouble. Perhaps, there is the next question: for 
which projects the WebRTC is suited? Initially, 
the purpose of the WebRTC is to create video 
conferences using technologies independently 
of any additional servers. The technology is 
ideal for developing new applications for video 
conferences with the help of a browser. It means 
that for this project the WebRTC is ideally 
suited. The WebRTC does not use any outside 
servers which may be located in various servers 
where it is possible to implement the data 
security. But the technology operates via the 
secure network protocols which may provide 
with the safety of data or streams transmission. 
When the WebRTC-agent is run, it does not 
aware of who it needs to be connected with and 
what kind of information it will be shared. And 
in this situation the Signaling comes to the 
rescue. Signaling solves this problem. Signaling 
is required for two or several browsers could 
find and call each other before within the 
network before the data transmission was started
[4]. The Signaling may use the current or a 
secure protocol. SDP is a simple text protocol. 
Every SDP message consists of key-value pairs 
that are placed in the strict order (rfc4566), 
which, in return, comprise a set of streams [5].
As signaling the SignalR library had been used, 
and with the help of it, the WebRTC could find 
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each other. After setting the signaling, all sides 
of WebRTC browsers have enough data to 
connect each other. And after this, another 
created technology named ICE is used. 

ICE (Interactive Connectivity Establish-
ment) is a protocol of the WebRTC. The ICE 
enables to establish communication among 
several browsers. These browsers may be 
located both within the same network or maybe 

in various parts of the world. The ICE allows 
solving the problem of establishing the direct 
communication independently of various 
intermediate servers. After establishing the 
communication between two browsers, the 
WebRTC moves on to setting an encrypted 
transmission channel. Further, this channel will 
be used for audio/video and data transmission
[6].

Figure 1 – WebRTC. How it works

Other standards or technologies could be 
used to create streaming connections between 
the users, but the choice fell on WebRTC [7].
The main advantages include the following:

• No need to install additional SO.
• High quality of connection and in audio 

stream and video stream.
• Custom modifications may be incorpo-

rated into this project with open-source code.
• There is a built-in possibility of screen, 

desktop capture, etc.
• Cross-platform scripting.
• Possibility to create any interface based on 

HTML5 and JS technologies.
Firstly, creation of a project on Angular platform 

for customer part, development of initial UI/UX 
design, which will be further supplemented, as 
specific tasks are completed. Secondly, NodeJS was 

created with support of PeerJS. Thirdly, ASP .NET 
Core with SignalR library was created. This library 
allows exchanging messages with the server-side and 
the client in real-time. Operation with server part 
required HTTPS on the client-side for the stable 
operation of sockets; Fourth, creation of a database
[8]. MongoDB was chosen as the database. The 
necessary collections for the application to work 
were created in advance [9].

An interface was required to start the work. The 
interface could be created from scratch, without using 
various libraries. However, that would not be 
rational. So, Angular CLI was chosen. Angular is an 
open and free platform for creating a web application. 
It makes the work faster, and small tasks, usually 
consuming a lot of time, take a few seconds on 
Angular. Material UI for Angular and the usual 
Bootstrap were used as an initial design [10].
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Depending on the project, the following items are 
included:

1. Bootstrap@5.0.1
2. Uuid@8.3.2
3. Microsoft/signalr@5.0.7
4. PeerJS
5. MomentJS
6. Ngx-ui-loader
7. There are also built-in Angular dependencies, 

such as rxjs, router, angular forms, typescript, etc.
Bootstrap was used for a quick layout of required 

components, and Material UI was already used for a 
good version of project. On the one hand, it might 
seem that one Material UI would be enough. 
However, Material UI lacks some Bootstrap 
qualities, without which it is difficult to create a 
flexible interface. For example, 12 column grid, 
margins, etc. Many conferences require creation of a
unique ID for each of them. UUID dependency is 
used for these purposes.

One of the main technologies of this project is 
WebRTC (Web Real-Time Communications). It is 
some kind of standard for transfer of streaming audio 
data, video data and various content between 
browsers [11]. This method gives opportunity to turn 
a browser into a real-time terminal [12]. To start the 
conference, simply click on the conference link. 
Examples of using WebRTC:

• Google Meet is a ready-made service for 
instant messaging, as well as video and audio calls
[13]. Chromium browsers have many hidden 
WebRTC functions used by this application. Official 
documentation does not indicate these functions. 
Maybe it indicates some of them. For example, 
screen capture, background blur, etc [14].

• Jitsi Meet is an open-source application 
developed by 8x8. Technologies of this application 
are based on Simulcast, which means that there is
unstable work on weaker communication channels 
and rather high requirements for a web server.

• Zoom is the only application where WebRTC 
is not used. It was made for improvement of 
communication quality and for saving server 
resources.

It was decided to use PeerJS library for easier 
work with WebRTC. The task of this library is 
simple. This is convenience and simplicity. Also
needed a webserver to synchronize two clients for 
work with two clients [14]. The launch requires peer 

dependency, which keeps a lot of methods and 
properties. After connection of the library, the 
application can get PeerServer property and start it 
with port 9000 and path /peerjs. That is, after starting 
NodeJS server, the application can access PeerJS via 
path localhost:9000/peerjs. Of course, after the global 
publication, this path may change. On the client-side,
peerjs library is used for communication between the 
client and the server. After that, this stream can be 
controlled at your discretion [15].

In addition, as mentioned above, .NET Core is 
used for server part of the application. The correct 
work of the server part of the project requires 
connection with database and client part [16].
Standard REST API was used for these purposes. The 
server may receive various requests with different 
HTTP methods. Method GET is used for obtaining 
any data, and method POST is used for addition of 
new element. Methods PATCH, PUT are used for 
changing the element. Method DELETE is used for 
deleting. The request accepts a JWT token, which 
users receive when logging in [17]. This token 
controls the user roles. That is, you can control who 
will be allowed to delete, add or receive records. The 
next library for .NET Core is SignalR. SignalR is a 
library from Microsoft that specializes specifically 
for applications that work in real-time. That is, there 
is no need to update the page every time you receive 
any data from other users. The data will be sent 
immediately via the socket to all users in the group. 
The principle of the library is simple. One or more 
users are added to the same group [18]. Once added, 
they can send various data to all users of the group in 
the form of a text or even a file. Thus, they can 
communicate in real-time via chat or take a test 
together, etc.

The common pattern of the proposed “Digital 
Enterprise” data device with the streams of 
information is represented in Fig. 2, where the 
following is designated: 1 – data exchange web-server,
2 – stored data module, 3 – authentication module, 4 –
general software package, 5 – controlling 
videoconference units, 6 – participant’s module, 7 –
organizer’s module, 8 –features for the latest sessions 
viewing, 9 – features for voting, 10 – training process 
module, 11 – features for personification, 12 – features 
for viewing the participants’ list, 13 – training process 
module, 14 – training materials module, 15 –
timesheet module, 16 – statement module.
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Figure 2 – Pattern of “Digital Enterprise” data device with the streams of information

4 Description of results of the conducted 
research

Using the proposed development, it is possible to 
increase the level of use of information and 
communication technologies in enterprises several 
times. The developed information device allows you 
to significantly save various resources for data 
transmission and storage. In addition, the 
requirements for corporate infrastructure are reduced, 
since Digital Enterprise can be used through 
browsers and mobile devices, while increasing the 
efficiency of analysis and the efficiency of 
production decision-making.

The following is a description of the results of the 
development of the main modules that ensure the 
functioning of a web application:

The authentication module is the first stage of 
the device usage. Users may personally pass 
registration or ask an administrator to add their 
data in the database for further authorization. If the 
user who has such a mail address and a password 
is found in the database then the user will be 
enabled to operate further. To ensure security of 
the user’s data there is the open standard used for 
creating access tokens to JWT. Authorization and 
registration were implemented in order to store 
user data. This functionality allows registration of 
new users and storing their data for subsequent 
authorization [19]. When registering, the E-mail, 
password and name fields are filled in. During 
authorization, these data are pulled up and filled in 
on the client-side. Authorization should be 
required for the correct operation of the project and 
for data logging purposes. This functionality 
allows identifying people entering the conference. 

The data of authorized users can be stored in the 
database [20].

The problem of links also appeared in 
implementation of the functionality. When a new 
user joins a conference, the /conference link is used 
and a unique conference number is transmitted at the 
end. If an unauthorized user clicks the link, he/she 
will automatically go to the authorization page. At 
the same time, there is a risk of losing the unique 
conference number [21].

This problem was solved using the returnUrl 
principle. This principle is simple. When you go to 
the /conference page, the program records a unique 
conference number and transmits it to the 
authorization page. In turn, the authorization page 
stores the unique number. Upon successful 
authorization, the unique number will be 
automatically transmitted to the conference page.

The training module is one of the main modules, 
which is important for increasing the employees’ 
qualification. This module allows conducting the 
learning process, trainings for employees, including 
probationers and interns of the enterprise. The 
algorithm of roles division among users is developed 
in order to divide into students and teachers. At 
registration for the application, a user may 
automatically to get a role of a student. And in order 
to get a role of a teacher it is required to address to 
the administrator. Access to educational materials 
may be obtained on a page of educational materials. 
Every teacher is enabled to add materials for his 
future lessons. The lessons can be seen in the 
timesheet module which, in its turn, has a timetable 
for the next academic year. There is the knowledge 
evaluation is scheduled in the module – a teacher 
posts grades into a grade report sheet.
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Interactive screen sharing by all meeting 
participants. Screen sharing or interactive screen 
sharing is a handy feature that in turn allows you to 
share a user's screen with other users in real-time.
This feature allows to share screen with anyone in the 
conference and provided by the shareScreen option.

The chat was created for this purpose. When the 
session starts, it becomes possible to send messages 
to the rest of the conference participants. The chat 
appears on the lower right side when you click on the 
"Chat" button. In order to save space, it was decided 
to use a pop-up window that stands on top of all other 
parts of the application. At the top of the window,
there is an inscription "Messages" with a green 
indicator, which in turn means the possibility of 
sending a message. The window can be closed by 
clicking on the cross or on any other place except the 
chat itself. On the bottom side, there is a field for 
filling in the message. The send button is next to it. 
When the send button is clicked, a request
SendMessageToConference is sent to the server [22].
The component implements methods such as: 
initTextareaResizer,keepMessagesScrollInBottom, 
changeChatView.

• initTextAreaResizer is an algorithm that 
allows expanding the chat field (If the message is too 
long)

• keepMessagesScrollInBottom – Does 
automatic scrolling when a new message is added

“Recent Sessions" functionality is one of the first 
functionality that was developed. This functionality 
has the standard role of storing the latest sessions and 
the ability to restore the connection with the latest 
sessions. It was initially planned to use a database for 
storing the latest sessions, and it likely will be done 
so. But at the moment, the last sessions are stored in 
the local store. The local store holds an array with the 
objects of the last session. The session ID and the date 
of the last connection are recorded there. The data is 
stored in JSON format for further processing [23].

The next module is poll. The project required a 
new functionality for some diversification. In 
addition, the possibility of implementation of various 
functionalities should be demonstrated. The poll was 
created for these purposes. This functionality helps 
conference participants to create polls and vote 
anonymously. That is, no user will be able to see who 
voted for what. This is one of the main advantages
[24].

A new block called "Polls" was also created after 
"Recent Sessions" block. The poll can only be created 

during an active session. Every time someone tries to 
create a poll, they will be able to see a text with a 
description that only the conference organizer can 
create a poll. It helps to avoid creation of many polls 
in one session. As soon as the session starts, the 
organizer has the opportunity to click on the "Add 
question" button. As soon as he/she clicks, a modal 
window opens with the contents of the Angular 
component. 

This component contains a form, which should be 
filled by the organizer in order to create a new 
question. After filling in the "Enter a question" field, 
the user can click on the "Add" button. After 
confirmation, a SignalR request under the name 
questions is sent to all conference participants. As 
soon as such request comes from the server, the client 
part begins to draw a window with polls. A list of 
polls appears in the window, clicking on which you 
can vote. Every time a participant clicks on a poll, a 
request is sent to the socket that the participant 
clicked, and the data in the database should be saved 
and updated.

The Angular component, which adds new polls, 
keeps the save method. This method sends a request 
to SignalR method CreateQuestion, which in turn 
creates a question in the DB with the use of received 
data. The poll data is processes in cycle. When the 
value of the questions comes from the socket, the 
client part accepts the received data and puts it in the 
questions variable. After that, the total number of 
votes is calculated for each question in the cycle. This 
procedure is required for further calculations of the 
percentage of votes. The component part uses the 
built-in Angular cycle. If the number of polls is zero, 
then the list of polls is not shown. In the cycle, the 
percentage is calculated for each poll. The formula is 
simple: number of poll votes / total number of votes 
of all polls * 1

The function of module Conference input queue
of accepting new participants was developed in order 
to make the conference confidential. The organizer or 
other participants can accept new users who want to 
join the current conference. At the same time, the new 
user will wait until he/she is accepted, or until he/she 
cancels the call.

The mobile version of the app is very important 
for good UI/UX. Since more than half of users access 
websites and other applications through a 
smartphone. In some cases, the mobile version is 
more important than the desktop version. And that's 
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why it was decided to slightly refine the mobile 
version. Unnecessary details have been removed and 
hid large parts of the UI. However, they can still be 
opened by clicking on the corresponding buttons in 
the mobile version of the application [25].

Also, the administrative part is developed which 
allows seeing the analytics of all sessions. This is the 
total number of sessions, quantity of participants, 
quantity of organizers, quantity of users, interval 
between creation of sessions, etc. The data are 
prohibited to be removed as they are fixed which 
allows keeping the accurate analytics. This has the 
large potential when introducing new capabilities in 
the device as these data are also can be collected and 
analyzed.

5 Discussion and conclusion

The system with new functionalities is developed 
for enterprises, which can handle various tasks:
remote customer service to the company, local 
private conferences for employees, meetings, etc. 
Moreover, the using this application is regardless of 
the type of enterprise, small, medium, or large 
enterprise.

Currently, the number of online users is growing 
(because of Covid 19), and this process will continue 
for many reasons, such as post-pandemic. And not 
every project will be able to withstand the flow of 
thousands or even millions of users [26].

Main result is the data device for business 
communication in real time with the help of video 
and audio streams exchange, by using some 
developed updated features: a chat, anonymous 
surveys, training module, interactive screen sharing, 
etc.

The system refers to devices for implementing 
the employees’ remote production activities of the 
enterprise, to devices for organizing and managing 
the activities of the enterprise without any time 
restrictions, by number of participants. The system
represents the zoomed data device for digitalization 
of the enterprise activities by implementing the 
videoconference system with extended updated 
additional capabilities. The organizer may create its 
own sessions and hold online conferences. 
Participants may join the organizer’s conference and 
take active, among them interactive participation, 
these processes result in the video and audio streams 
intensive exchange. Except the video and audio 
streams the live exchange of messages or data which 

are translated to the stored data module. With the help 
of authentication device participants may login the 
applications via the link at any time of a session. The 
conference organizer is sharing the link and the 
participants who have clicked this link, may connect 
to the single stream of data exchange. The 
interrelated modules have different roles within one 
session. Majority of actions is controlled by the 
conference organizer who, at any time, may log out 
the current session or to disconnect from various 
accesses for the conference participants. The data 
stream is automatically translated to the database and 
the administrative part of the application. The 
administrative part has all data on users, on number 
of online sessions, information on all actions during
the session, etc. The organizer and participants may 
give access to the application to use camera and 
microphone for further operation of the program. 
Current system is assigned for increasing the 
efficiency of enterprises activities by enabling to 
implement the wide range of managerial and 
organizational production solutions in the real-time 
mode, including in case of distant locations from the 
main workplace. Besides, the features of the tasks to 
solve may be expanded at customer’s option – the 
enterprise itself.

Our developed application has several 
advantages. Primary advantages are: firstly, our 
application is not limited in operating time and does 
not require payment for the time of use; secondly, 
scalability, which was developed with using of the 
REST API (it is the ability to process requests from 
any operating system iOS, Android, Microsoft) or 
other systems will be able to use network requests to 
communicate with the API. This means that other 
systems can integrate thanks to the REST API and 
protected methods; the third advantage is “Interactive
Screen Demonstration”, Interactive screen sharing 
between all meeting participants; Another significant 
advantage is voting. This feature helps conference 
participants create polls vote anonymously.

It was possible to achieve the maximum data 
processing speed. This means that any requests will 
be processed quickly and efficiently. In addition, 
when developing, first of all, in addition to the 
server's properties, you should optimize the code. All
the possibilities of object-oriented programming on 
the server-side of the developed application were 
used. Moreover, thanks to this, it was possible to 
avoid the procedural programming style. 
Furthermore, the main advantage of the "Digital 
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Enterprise" project is that it was possible to develop 
a digital application that will be different for each 
enterprise since other new functions can be added to 
our application at the request of a customer – an 
enterprise following the specifics of the operation of 
this enterprise.

The top priority of its usage is multitasking. It can be 
used for various purposes: holding online meetings, 
voting, demonstration and discussion, increase in 
performance of the personnel (rated surveys, trainings, 
education) and others. The application developed is 
assigned for enterprise digitalization. It allows adding 
features at customer’s option and completely integrating 
into the information environment of an enterprise.

The developed application for real-time business 
communication through the exchange of video and 
audio streams, using the developed modern 
functionality: chat, anonymous surveys, used without 
restrictions, training module, interactive use of the 
screen, etc. The most important feature of this is the 
ability to add various functions depending on the 
requirements of an individual enterprise, while 
maintaining the range of use of existing capabilities.

Currently, the developed application "Digital 
Enterprise" is used for online meetings, training and
plan to expand its use in the activities of other 
companies.
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Numerical Simulation of Particle Dynamics in the Hydrogen-Air Mixing Layer 

Abstract. In this paper, supersonic plane turbulent mixing layer of gases with injection of solid 
particles is studied numerically. The gas phase are determined by DNS solving the multi-species Navier-
Stokes equations in the Eulerian approach , and the dynamic of solid particles  are traced in the Lagrangian 
approach. The dynamics of hydrogen – air mixing and the formation of the vortex system in the mixing 
layer and its effect on the distribution of solid particles in the two free-flow speeds are investigated. The 
study focuses on detailed analysis an influence of the vortex system in the supersonic turbulent mixing 
layer on the dispersion solid particles with different size. The results show that heavy particles almost do 
not react to vortex structures. It is revealed that medium particles tend to accumulate along the 
circumference of the vortex and along the braid between the two vortices. A quasi-equilibrium state with a 
gas flow of light particles is established.

Key words: two-phase flow, solid particles, multicomponent gas, mixing layer, Navier - Stokes 
equations.

Introduction

The understanding of the physics of mixing 
properties, ignition, and combustion, which are 
related to the turbulent supersonic mixing layer flow 
in the presence of particles, is strongly needed for 
the optimal design and operation of scramjet 
combustors. 

The two-phase flows involving solid, droplet, or 
suspensions are investigated intensively both 
experimentally [1-3] and numerically [4-13]. Quite a 
lot of research have been devoted to the study of 
particle dynamics in subsonic flows [7–10]. In [7] 
with a two-way coupling way. It was revealed in the 
process of vortex rolling up and vortices pairing, the 
particles with different Strouhal numbers have a very 
different pattern of dispersion. In [9] using DNS was 
found that the asymmetry of the developing mixing
layer leads to an increase in the number of particles 
moving from the upper faster flow to the lower flow. 
Authors [10] used two-way coupled Eulerian–
Lagrangian approach have been studied the particle 
dynamics in a turbulent boundary layer via DNS. 
They found the influence of the wall on the particle 

velocity and distribution is significant in the near wall 
region but is little in the outer region.

Limited number studies of particle dispersion in 
a supersonic flow have been performed [11-13]. For 
example, authors [11] showed the particle dispersion 
in a spatially developing compressible mixing layer. 
The direct numerical simulations were performed 
with different Stokes numbers. It has been shown the 
particles tend to accumulate in the peripheries of the 
vortical structures with high density, low vorticity 
inside the mixing layer, as well as the high-density 
regions behind the shocklets outside the mixing layer.

The Eulerian-Lagrangian approach is used for 
high-speed shear layers with monodisperse, 
adiabatic, inertial particles in the [12] to study the 
interactions of particles and flow turbulence and their 
effect on pressure fluctuations. It was found the 
particle–turbulence interactions change the local 
pressure intensity due to the displacement of the flow
(due to the particles) and significant turbulence 
changes.

In accordance with the above, the numerically 
detailed analysis and discuss the influence the vortex 
system in the turbulent supersonic multispecies 

https://orcid.org/0000-0001-7301-2035
https://orcid.org/0000-0003-1548-7061
https://orcid.org/0000-0003-4360-3728
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mixing layers on the dispersion solid particles with 
different size will be performed via DNS numerical 

simulation applying a high-order essentially 
nonoscillatory (ENO) scheme (Figure 1). 

Figure 1 – Scheme of the development of the mixing layer

Model of gaseous phase 

The basic equations are the system of two-
dimensional Navier−Stokes equations for 

a multispecies gaseous mixture, which is written 
in the Cartesian coordinate system in the 
conservative form:
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where ρ is the density, u and w are the velocity 
components, р is the pressure, tE is the total energy, 

kY is the mass fraction of the kth species, Wk is the 
molecular weight of the kth species ( 1,..., ,k N= N
is the number of species in the gas mixture), Re is the 
Reynolds number, Pr is the Prandtl number, Sc is the 
Schmidt number.

The equation of state for the mixture of perfect 
gases may be written as

2 ,
M
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W

ρ
γ∞ ∞

=
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where 
1

1

N
k

kk

YW
W

−

=

 
=  
 
∑ is the molar weight of the 

mixture of all gases, and 
1

1
N

k
k

Y
=

=∑ .

The equations for the total energy have the 
following form:
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h h c dT= + ∫ is the specific enthalpy of the thk

component.
The specific heats at constant pressure are 

computed for each component cpk via the molar 
specific heats Cpk by the formula / ,pk pkc C W=
where Cpk are determined from experimental data 
with the aid of the fourth-order polynomial 
interpolation in temperature:
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The numerical values of empirical constants jka
have been taken from the table JANAF [28] at normal 
pressure ( ) 1 p atm= and standard temperature 

293T K= .
The mixture molecular viscosity is determined by 

Wilke’s formula [14]
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iµ is the molecular viscosity of the thi
component, it is calculated by the formula 
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=∑ iσ is the collision diameter of the 

thi component, the values of components are 
presented in the work [14]: σ1 = 2.63, σ2 =
= 3.30, σ3 = 3.5, σ4 = 3.050, σ5 = 0.50, σ6 = 0.560, σ7

= 3.50, (2.2)*
iΩ is the integral of collisions for the 

momentum transfer, *
i iT kT ε= is the reference 

temperature, /i kε is the parameter of the potential 
function of the intermolecular interaction. According 
to the work [15], ( )(2.2)* * 1.i iTΩ =

The turbulent flow is assumed quasi-two-
dimensional, and the system of the Navier−Stokes 
equations is solved with the aid of the two-dimensional 
DNS approach without using the additional closing 
turbulence models.

Disperse phase model

The following assumptions are adopted for the 
dynamic particles: the particles are the spheres of the 
same size; the interaction of particles with one 
another is not taken into account; the particles motion 
does not affect the gas flow; the forces of Saffman 
and Magnus do not consider hence the small 
aluminum particles are considered. In accordance 
with these assumptions, the equations for the motion 
trajectory ( )px and the velocity ( )pu of particles are 

written as follows:

                    ,p p
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=
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                 (3)
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solid particle, pρ is the density of the solid particle 
of the pth component, Fp is the drag force acting from 
the gas side on the particle of radius rp which is 
determined as

( )2
D

1 ,
2

p pp pF C r u u u uπ ρ= − −
   



here CD is the drag coefficient, µ is the coefficient of 
the gas dynamic viscosity.

For the case of a turbulent flow around a particle 
at 1Re > , different formulas are used for the drag 
coefficient CD (based on the Stokes formula 

D 24 Re)C = with regard for gas properties and 
motion regime. The most known formula is the one 
proposed in the [16], which is also used in the present 
work in the form:

2 3
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is the Reynolds number 

built in terms of the particle radius rp.
The governing equations (1)−(3) are written in 

dimensionless form. As the non-dimensionalization 
parameters, the following reference values of the 
upper flow have been taken: , , , ;ku T Yρ∞ ∞ ∞ ∞ the 
pressure and total energy are related to the value 

2 ,uρ∞ ∞ the reference length is the vorticity inlet 

thickness ( )
( )

0
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.
u u
u zωδ
∞ −

=
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The time scale is 

defined as .t uωδ ∞≈ The same parameters as for 
the gaseous phase are taken for disperse phase at the 
non-dimensionalization.

Initial and boundary conditions 

The parameters of gas flows are specified at the 
inlet as follows:

the upper flow

0 0 0 0 0M ,u u RT Wγ= = 0,w = 0,p p= 0,T T=

0k kY Y= at 0x = , 10 ,z H≤ <
the lower flow
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at 1 20, ,x H z Hδ= + ≤ < 1 2.zH H Hδ= + +

Hz is the height and Hx – the length of the region 
under consideration.

At the inlet, the particle velocities are set equal to 
the flow velocities at the injection point. In a thin 
mixing layer, the initial velocity u are determined by 
the hyperbolic tangent function
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( )xθδ is the thickness of the momentum loss, 

( )u u u u∞= − ∆ is the gas mean velocity, 

0( )u u u∞∆ = − is the difference of inlet velocities. 
The initial conditions are set in the same way as the 
inlet boundary conditions. The non-reflecting 
boundary conditions are specified at the outlet, 
bottom, and top boundaries, where the gas fluxes and 
perturbations pass through the boundary and do not 
reflect back [17]. The inflow perturbation at the inlet 
the boundary conditions, in which one adds for the 
velocity fields ( )u z a random phase :distu

( ) ,distru u z u= +
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where
3
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m
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here ( )u z is the hyperbolic tangent function defined 
by formula (4). The Am is the perturbation ampli-
tude, which is satisfying the condition that the gi-
ven product AmΔu must be equal to 0.1−0.2% of the 
maximum velocity of gases at the inlet. The perturb-

bation frequency mω are taken: 2 2
18 10m
π πω≤ ≤ The 

( )Gaussian z is the Gauss function the maximum 
value of which is equal to unity at z = 0and α is a 
random number.

Method of solution

Numerical solution of the system of equations 
(1), i.e., the gaseous phase, is carried out in two 
stages. At the first stage, one computes the vector of 
the thermodynamic parameters U



and at the second 
stage, the mass fraction of the thk species 1,7.kY =
For a more detailed consideration of the flow at the 
inlet of the mixing layer, the grid clustering is intro-
duced with the aid of the following transformations:  

( ) ,xξ ξ= ( ).zη η=                    (6)

In this case, the system of equations (1) in 
generalized coordinates is written as:

v2 vm

v2 vm

E EU E F
t

F F
ξ η ξ ξ

η η

∂ ∂∂ ∂ ∂
+ + = + +

∂ ∂ ∂ ∂ ∂

∂ ∂
+ +
∂ ∂

   

 

      (7)

where 

1U U
J

=


 , xE E
J
ξ =  
 



 , zF F
J
η =  
 



 ,

2 2
x

v vE E
J
ξ =  
 



 , x
vm vmE E

J
ξ =  
 



 ,

v2 v2
zF F

J
η =  
 



 , z
vm vmF F

J
η =  
 

 ,

( , , )
( , , )

J
x z y
ξ η ζ∂

=
∂

– Jacobian transformation.

The numerical solution algorithm is based on a 
finite-difference third-order ENO scheme, which 
have been described in detail in the work [18-21].

Using the known values of the original variables 
and equation (2), the temperature field is computed 
with the aid of the equation

( ) ( )( )

( )

2

2 2

M
1 0,
2

tf T E H T R T
W

u w

ρ
γ

ρ

∞ ∞

= − − −

− + =

(8)

where H is the molar enthalpy of the gas mixture. 
The solution of the algebraic equation (8) for 
temperature is found by the Newton−Raphson 
iteration method [15].

The system of the ordinary differential equations 
(3) for the particles is solved with the explicit second 
order Euler method. 

Results and Discussion

For the verification of the numerical method, the 
test problem of the shear flow of the multispecies 
gases without particles is solved. The numerical 
results are compared with computations of the [22]. 
For that the test problem is performed with follows 
conditions: the inflow lower air are a mixture of 
nitrogen (N2) and oxygen (O2) 2

0.232,OY =

2
0.768NY = ; the inflow upper flow the mixture of 

nitrogen (N2) and hydrogen (H2) 2
0.1,HY =

2
0.9NY = .The flow parameters for air – M∞ = 2.1,

T∞ = 2000K, p∞ = 101321Pa, for nitrogen-hydrogen 
mixture – M∞ = 2, T∞ = 2000K, p∞ = 101321Pa. The 
convective Mach number ( ) / ,c cM u u a∞ ∞= −

( ) ( )0 0 0/cu a u a u a a∞ ∞ ∞= + + , amounted here to 
Mc = 0.38. The dimensionless length and height of the 
domain are Hx = 350, Hz = 120. The geometric 
parameters of the problem under consideration are 
dimensioned to the initial thickness of the momentum 
loss which at the entrance is 9.35x105m. For 
numerical simulation, the finest grid spacing is
specified as non-dimensional 0.03 around the mixing 
layer center and the cell numbers in the x and z 
directions are 626x241.

Figure 2 shows turbulent shear stresses 

и in the 
sections x = 320. Turbulent characteristics, such as 
the intensity of turbulence and Reynolds stresses 
have quantitatively small discrepancies. 

uuuu ∆′′= /2σ uwuuw ∆′′′′= /σ
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Figure 2 - Comparison of the calculated data obtained by the ENO scheme (solid line) 
and the numerical results of Martinez et al. [22] (circle points) for the profiles 

of turbulent shear stresses at section 0320x ωδ= , a) uuσ , b) uwσ

The numerical simulation of the posed problem 
was carried out for the dimensionless domain 

320, 80.x zH H= = The inflow lower air with

2 2
0.232, 0.768O NY Y= = and upper flow (the 

mixture of nitrogen (N2) and hydrogen (H2)) with 

2
1,HY =

2
0NY = are taken. The Mach number of 

injected upper hydrogen-nitrogen mixture is M0 = 2
and for lower air 1.5M∞ = . The gas flow tempera-

ture is adopted equal T0 = 600, 1200T∞ = , the 

pressure 0 1p p atm∞= = . The aluminum particles 
of the three sizes of diameters   95 ,d mµ=

  9,5 ,d mµ=   1,9d mµ= are injected from five 
holes at the entrance simultaneously which is located 
near the center of the mixture layer
( 0, 20, 30, 40, 50, 60).x z= =

The graphs below show non-stationary vortex 
system obtained by numerical simulation. The 

dynamics of hydrogen – air mixing are illustrated in 
Figure 3 by instantaneous hydrogen concentration 
and streamlines at different time: 

,) 100a t = ,) 200b t = ,) 400c t = ,) 600d t =
 1) 000.te =
As follows from figures, a significant 

curvature of the streamlines begins at time 
100t = , in the cross section 50x = as a result of 

flow instability (Figure 3a). It is confirmed by the 
distribution of hydrogen contours, where 
formation of vortices begins in this section 
(Figure 3a) and the whirling vortex captures the 
airflow and simultaneously the hydrogen mixture 
takes out leading to the mixing layer expands. 
Over time, the number of arising vortices 
increases conducting to a considerable growth of 
the mixing layer in the hydrogen-air mixture. 
Therefore, the intensification of vortex twisting
closed hydrogen zones are formed in the centers
of their rotation (Figure 3d)

b)a)
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Figure 3–Distribution of the hydrogen mass concentration (left) and distribution 
of streamlines (right) at different time:  100,   200,   4) ) ) )00 ,   600,  e  1000)a t b t c t d t t= = = = =

The dynamics of vortex bubbles and entrained 
particles (particle dispersion over time) is shown in 
Figure 4, which illustrates instantaneous vorticity 
contours and particle trajectories at various moments 

100, 200,) ) 0 ,) 4 0a t b t c t= = =
0) 6 0,d t = ) 1000.e t =

Numerical experiments reveal that neighboring 
vortices merge (pair) and form larger ones at 
moments of time = = =t 200,t 400,t 600 (Figure 3 
b – d). Apparently, each such merging lead to the 
entrainment of the non-whirling gas in the mixing 
layer thereby to the thickening of mixing layer. The 
generation of three vortex systems is observed at a 
distance from =x 40 to =x 180 by the moment 
of time =t 200 in Figure 4b and the number of 
vortices grow to 4 and 5 at times =t 400 and 

=t 600 , respectively. A stable turbulent vortex 
structure forming with time =( t 1000 ) and 
consisting of seven vortices is shown in Figure 4 e. 

The particle distribution provided in the same 
figure demonstrate that particles injected into the 
rapid upper flow move much faster compared to 
particles injected into the slower lower flow at the 

initial time 100t = . Hence, for example, the 
particles that started moving from the inlet point 

0x = and injected at the height =z 50,60
propagate by the moment of time until the cross 
section =x 200 .Part of them gets into the vortex 
zone = ÷( x 80 160 ) and the trajectories of these 
particles become circular. 

However, the slow moving particles (the particles 
injected from lower stream at height 

= =( z 20,z 30 ) are still not captured by vortices 
and continue moving along their own trajectories and 
reach the position =x 80 by the moment of time 

=t 100 . It follows from Figure 4 b – d, e that the 
particles are entrained completely into the vortex 
zone of the mixing layer over time, despite that 
dispersion of particles injected into the slower flow is 
much less compared to the particles which move in 
the faster flow.

As you can see from numerical experiments, that 
particles have tendency to accumulate in the 
periphery of vortex structures, which is visible from 
Figure 4, therefore, they are captured by vortices 
practically uniformly.

a)

b)

c)

d)

e)
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Figure 4–Distribution of vorticity contours (left) and distribution of particles (right) at different time
 100,   200,   4) ) ) )00 ,   600,  e  1000)a t b t c t d t t= = = = =

The above result shows that particles injected 
into the faster flow are more dispersed than 
particles injected into the slow flow, which are in 
qualitative agreement with the observed behavior 
of particles in the developing mixing layer.
Despite that, the mixing of particles 

between the two flows is shifted towards low 
velocity. It is confirmed in Figure 5, where 
presented the quantitative distribution of particles 
in the upper (Figure 5a) and in the low (Figure 5 
b) mixing layers along the centerline of the x –
axis at time =t 1000 .

Figure 5 – Quantitative distribution of particles of the upper (a) 
and lower (b) flows over the cross section x at time 1000t = .
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The number of particles is determined as follows:

( )cp
1 22

rms
cp1

( ) ,
N

i

i

N x
N x

N=

 
 =
 
 
∑

here cpN is the total number of grid cells, iN ( x ) is 

the number of particles in the thi cell. As is seen in 
the Figure 5, the number of particles in the lower 
airflow is larger in comparison with their number in 
the upper flow of the hydrogen-nitrogen mixture.

Figures 6-7 provide numerical results with three 
different particle sizes of ) 95a d mkm= (heavy),

=b )d 9.5 mkm (medium), =c )d 1.85 mkm
(light). The following shows an analysis of the in-
fluence of particle sizes on the dispersion of particles 
and their location in the turbulent mixing layer.

Figure 6 shows the motion pattern of particles 
with different diameters ) 95,a d = ) 9.5,b d =  

) 1.85c d = at the time points 100t = (left) and 
200t = (right). Fluid flow practically does not affect 

the distribution of heavy particles due to the absence 
of large stable structures at the time 100t = (Figure 
6a).

However, medium and light particles are already 
transported through the first vortices, which leads to 
a curvature of the particle’s trajectories, which can be 
observed in Figure 6 b, c. It can be seen here that the 
particles are moving away from the vortex cores, 
accumulating in the areas surrounding the vortices 
and in the areas of the braid. The trajectories of heavy 
particles do not change at time 200t = (Figure 6), 
even though larger vortices are created at this time 
(see Figure 3), this is since the intrinsic momentum 
of the particles is significantly greater than the 
momentum generated by the vortices. In this case, 
medium and light particles are attracted by large 
vortices from large distances to the mixing layer. The 
particle distribution becomes non-uniform and a 
large area of the vortex core still has not particles.

Figure 6 – Particle’s trajectories at times 100t = (left) and 
200t = (right) ) 95, ) 9.5, ) 1.85a d b d c d= = =

Figure 7 demonstrated dispersion of particles 
with different diameters ) 95,a d = ) 9.5,b d =

) 1.85c d = at times =t 600 and =t 1000 . One 
can see that the movement and distribution of 
particles in the mixing layer are strongly influenced 
by size. Heavy particles move along rectilinear 
trajectories. The particles almost do not react to the 
turning and rotation of large vortex structures, a small 
dispersion is observed only downstream.

However, medium-sized particles tend to 
accumulate along the circumference of the vortex and 
along the braid between the two vortices, which leads 
to appearing some "empty" areas where the solid 
particles are almost not observed (Figure 7b). This is 
due to the effects of deformation of the flow field in 
combination with centrifugal effects. This result 
means that the simulated flow can create almost 
linearly ordered particle dispersion structures at 
certain particle sizes.
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On the contrary, light particles are carried 
throughout the flow field, including the vortex nuclei, 
which is clearly seen in the cross section 

< <160 x 320 (Figure 7c). Since these particles 

react faster to flow changes, the structure of the 
particle dispersion resembles the flow vortex 
structure. In other words, light particles are in a quasi-
equilibrium state with the gas.

Figure 7 - Particles trajectories at times 600, 1000t t= =
) 95, ) 9.5, ) 1.85a d b d c d= = =

Conclusion

A supersonic plane turbulent mixing layer of gas–
particles for the flow of two parallel streams of 
hydrogen (upper high–speed) and air (lower low–
speed) is numerically studied. It was found that the 
hydrogen – air mixing are generated non-stationary 
vortex system. It is revealed that neighboring vortices 
pair and form larger ones over time. Thereby, mixing 
layer is thickened. The particle distribution indicates 
that the particles injected into the fast upper stream 
move much faster than the particles injected into the 
slower lower stream. Particles are eventually 
completely entrained into the vortex zone of the 
mixing layer, even though the dispersion of particles 
injected into a slower flow is much smaller than 
particles that move in a faster flow. Numerical
experiments show that particles tend to accumulate 
on the periphery of vortex structures. Numerical 
results with three different particle sizes at various 
time are also examined. It is confirmed that the 
movement of particles and their distribution in the
mixing layer are strongly influenced by size. Heavy 
particles almost do not react to vortex structures. At 
the same time, medium particles tend to accumulate 
along the circumference of the vortex and along the 
braid between the two vortices. On the contrary, 
particles with a small diameter are carried by the gas 

flow throughout the flow field, including the vortex 
cores.
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An Initial-Boundary Value Problem for Kelvin-Voigt Equations 

with ( ))(),(),( xmxqxp Structure

Abstract. A proof of a existence global in time of solutions of initial-boundary value problems for 
nonlinear equations mostly is not easy, even in some cases it is impossible. However, by establishing some 
qualitative properties of its solutions, one can find answers to such questions. For example, by establishing 
the blowing up in a finite time property of a solution, one can show that a solution does not exist globally 
in time. Thus, in last years, the investigating the qualitative properties of solutions such as localization 
and/or blow up in a finite time, has been developing rapidly. 

In this work, we study the nonlinear initial-boundary value problem for the generalized Kelvin-Voigt 
equations describing the motion of incompressible viscoelastic non-Newtonian fluids. The equations 
generalized by replacing the diffusion and relaxation terms in equation with p(x)-Laplacian and q(x)-
Laplacian, respectively, and adding a nonlinear absorption term with variable exponents and coefficients.
A definition of a weak solution is given. Under suitable conditions for variable exponents and coefficients, 
and data of the problem, the blowing up of weak solution is established.

Key words: Kelvin-Voigt equation, blow up, p-Laplacian, damping term. 

1. Introduction

In this work, we study the following initial-
boundary value problem for the modified Kelvin-

Voigt equations (without convective term) perturbed 
by 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥), 𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥)- Laplacian diffusion, relaxation and 
damping term with variable exponents and 
coefficients

( ) ,),(,)()()( 2)(2)(2)(
T

xmxp
t

xq
t QtxvvxvDvDxvDvDxdivv ∈++=∇+ −−−

 γµχπ     (1) 

( ) TQtxvdiv ∈= ,,0 (2) 

that supplemented by the following initial and 
boundary conditions 

( ) ( ) ,,, 00
Ω∈=

=
xxvtxv

t
 (3) 

( ) .0, =
TГ

txv (4) 

Here ,, 2≥⊂ nRnΩ is a bounded domain with a 
smooth boundary Ω∂ and ( )TQT ,0×= Ω is the

bounded cylinder with lateral ( )TГТ ,0×∂= Ω ,

( ) ( )TvvvD 

∇+∇=
2
1

is the rate of the strain tensor,

the vector function ( ) ( )nvvvtxv ,...,,, 21=


is a 
velocity field, the scalar function ( )tx,π is a
pressure, µ is a viscosity kinematic coefficient, and
χ is a viscosity relaxation coefficient. The 
coefficients γµχ ,, and the exponents mpq ,,
are given measurable functions onΩ , such that

( ) ( )
( ) ( )
( ) ( ) ,,

,,

,,

∞<≤≤<∞<γ≤γ≤γ<

∞<≤≤<∞<χ≤χ≤χ<

∞<≤≤<∞<µ≤µ≤µ<

+−+−

+−+−

+−+−

mxmmx

qxqqx

pxppx
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00

00
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where “+ ” and “− ” on power denote the supess
and infess values on Ω of corresponding 

functions, for example, for the function ( )xσ :

( ) ( )xessxess
xx

σ=σσ=σ
∈

−

∈

+

ΩΩ
inf:,sup: .

The system of equations (1)-(2) with
2== qp and 0=γ and with constant coeffi-

cients is called the classical linear Kelvin-Voigt 
equations and it is used as the model of the motion 
of incompressible non-Newtonian fluids [1-3]. The 
name of the Kelvin-Voigt equations has been 
appeared in works of Oskolkov [4-8], though 
neither Kelvin nor Voigt have suggested any 
system of equations and these equations have been 
used in some cases even before the above 
Oskolkov’s works. For instance, in 1966, 
Ladyzhenskaya [9] has suggested these classical 
Kelvin-Voigt equations as a regularization to the 3-
dimensional Navier-Stokes equations to ensure the 
existence of unique global solutions, see also [2, 
10-11] and references therein.

The various initial-boundary value problems for 
the classical linear and nonlinear Kelvin-Voigt 
equations have been studied by several authors, for 
instance, in [2], [4-11] for homogenous fluids, i.e. 
when the density is a known constant, and in [12], for 
nonhomogeneous fluids, i.e. when the density is 
unknown function. 

On the other hand, the equation (1) is the 
pseudo-parabolic type equation, and the blow up 
properties of solutions of such equations with p-
Laplacian with variable and constant exponents were 
studied in [13-15] (see the references therein).

In last years, as PDE generalized by p-Laplacian 
and nonlinear damping terms, an investigation of 
modified equations of hydrodynamics, in particular, 
the Navier-Stokes equations modified with p-
Laplacian diffusion and with a damping term is
rapidly developing, see [16-19]. 

The system (1)-(4) with a convective term, 
when all exponents and coefficients are constant, has
been studied in [20]-[22], where the existence and 
uniqueness and the qualitative properties of weak 
solutions as large time behaviors and blow up in a 
finite time, are established.

Organization of this paper: in section 2, we 
introduce functional spaces, the inequalities and 
preliminary results used in the analysis. Later, in 
section 3 we state and prove our main result, in which 
we establish the conditions under which the weak

solutions to the investigating problems are blow up in 
a finite time.

2. Notation and Preliminaries

In this section, we introduce the necessary 
definitions and preliminary results to state the main 
results of this paper. For the definitions and notations 
of the function spaces used throughout the paper and 
for their properties, we address the reader to e.g. the 
monographs [19, 25] cited in this work. We just fix 
the following notations for the functions spaces of 
mathematical fluid mechanics:

( ){ }
( )

( ).:

;:

,::

, Ω

Ω

Ω

p
p WofnormtheinofclosureV

LofnormtheinofclosureH

vdivCv

1

2
0 0

℘=

℘=

=∈=℘ ∞ 

Let ∞<≤ p1 and 1≥∈ nRn ,Ω , be a 
domain. We will use the classical Lebesgue spaces 

( )ΩpL whose norm is denoted by Ω,p• . For any 

nonnegative k, ( )ΩpkW , denotes the Sobolev 

space of all functions ( )ΩpLu∈ such that the 

weak derivatives uDα exist, in the generalized 
sense, and are in ( )ΩpL for any multi-index α
such that k≤α≤0 .

Let [ ]∞→ ,: 1Ωp be a measurable function 
and we define 

)(sup:),(inf: xpesspxpessp
xx ΩΩ ∈

+

∈

− == .

Given [ ]∞→ ,: 1Ωp we denote by 

( )Ω)( ⋅pL the space of all measurable functions u
in Ω such that its semimodular is finite

∞<= ∫⋅

Ω

dxxuA xp
p

)(
)( )(: .

The space ( )Ω)( ⋅pL is called Lebesgue space 
with variable exponent equipped with the norm

,:inf: )(),( 







≤






λ

>λ= ⋅⋅
10 uAu pp Ω

and ( )ΩpL becomes a Banach space with this norm.
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The weak solution to the problem (1)-(4) is 
understood as the following sense

Definition 1. The vector function ( )txv ,

is 
called a weak solution to the problem (1)-(4), if:

(i) ( ) ( ) ( )( ) ( )( ) ( )T
xm

xp
xp

xq QLVTLVHTLtxv )(
)(

)(
)( ;,;,, ∩∩∩∈ ∞ ΩΩΩ 00

,

(ii) ( ) ( ) Ωineaxvxv .., 00 

= ;

(iii) and for every ( ) ( ) ( ) ( ) ( )ΩΩΩΩ )(
)()(

xm
xpxq LVVHx ∩∩∩∈ϕ



and for a.e. 0≥t holds

( ) ∫∫∫
Ω

−

Ω

−

Ω

− =++⋅ dxvvxdxDvDvDxdxDvDvDxv
dt
d xmxpxq ϕγϕµϕχϕ  2)(2)(2)( )(:)(:)( . (6)

3. Main result

In this section, we establish the conditions for
the coefficients, exponents and data of the 
problem, 

that a weak solution to the problem (1)-(4) blows up
in a finite time, i.e. the weak solution does not exist 
globally in time. 

Theorem 1. Let the conditions (5) be fulfilled 
and for the exponents ( ) ( )xmxqxp ),(, hold the 
conditions: 

−+ ≤ mp and { }.,max +− > qm 2     (7)

Let us assume, that also 
( ) ( )ΩΩ )()( xmxp LVv ∩∈0

 and 

( )
( )

( ) ( )
( )

( ) 000 ≥






 µ
−

γ∫ dxvD
xp
xv

xm
x xpxm

Ω



. (8)

Then there exists a finite time ∞<maxT
(defined by (18)) such that a weak solution to 
problem (1)-(4) blows up.

Proof. The proof of Theorem 1 is based on the 
methods, presented in [23-24].
Let us first introduce the following functional

( ) ( )
( )

( ) .
2
1

0

2
2∫ ∫ 













+=Φ

Ω

t
xq ddxvD

xq
xvt τχ 

Under the conditions of Theorem 1, for every 
nontrivial solution of (1)-(4) and for all 0>t

( ) ( )
( )

( ) .0
2
1 2

2
≥+=Φ′ ∫

Ω

dxvD
xq
xvt xq



χ
   (9)

Testing now (6) by v and using

( )
( )

( ) ( ) ( ) 2 : .q x q x
t

xd Dv dx x Dv Dv Dv dx
dt q x

χ
χ −

Ω Ω

 
=  

 
∫ ∫

   

we have 
( )
( )

( )

( ) ( ) ( ) ( )( )

2

2,

1
2

q x

m x p x

xd v Dv dx
dt q x

x v x Dv dx

χ

γ µ

Ω
Ω

Ω

 
+ =  

 

= −

∫

∫

 

 

.    (10)

Combining (9) and (10), we obtain 

( ) ( ) ( ) ( ) ( ) ( )( ) .∫ µ−γ=′′
Ω

Φ dxvDxvxt xpxm 

(11)

Next, taking tv=ϕ in (6) for all 0≥t , we get

( ) ( )

( )
( )

( ) ( )
( )

( )

22 2

2,

.

q x

t t

m x p x

v x Dv Dv dx

x xd v Dv dx
dt m x p x

χ

γ µ

−

Ω
Ω

Ω

+ =

  
= −      

∫

∫

  

 

   (12)

Integrating (12) by τ from 0 to t and applying 
the assumption (8), we get
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( ) ( )
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
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


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∫

∫∫

∫ ∫

Ω

ΩΩ

−

Ω

tdxtvD
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xtv
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dxvD
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xv

xm
xdxtvD
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xtv
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x

ddxvDvDxv

xpxm

xpxmxpxm

t

t
xq

t







µγ

µγµγ

τχ

(13)

Applying (7), we get the following inequality 

( )
( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1 1( ) ( ) ( ), 0.

m x p x m x p x

m x p x

x x x x
v t Dv t dx v t Dv t dx

m x p x m p

x v t x Dv t dx t t
m m

γ µ γ µ

γ µ

− +
Ω Ω

− −
Ω

   
− ≤ − ≤       

′′≤ − ≤ Φ ∀ >

∫ ∫

∫

   

 

Then, it follows from (13) that 

( ) ( ) ( ).10
0

222
2 t

m
ddxvDvDxv

t

t
xq

t Φ′′≤












+< −

−

Ω
∫ ∫ τχ 

(14)

Next, applying the Hölder and Young inequalities together with (5), we derive the following chain of 
inequalities for tt <≤ '0 :

( ) ( ) ( ) ( ) ( )

( ) ( )

22
2 2

21 1
2 22 2

2, 2,

1
22 2

2, 2,

:
t t

q x
t t

t t

t
q x q x

t t
t

t t

t
t t

t t d vv dx x Dv Dv Dv dx d

v v Dv dx Dv Dv dx d

v d v d

τ τ χ τ

χ χ τ

τ τ

−

′ ′ Ω Ω

−

Ω Ω
′ Ω Ω

Ω Ω
′ ′

    
′ ′ ′ ′′Φ −Φ  = Φ = + ≤    

     

  
     + ≤            

 
 
 
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∫
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    

  ( ) ( )
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21 1 1
2 2 22 2

2 2 2 2

2 2
.

t t
q x q x

t
t t

t t
q x q x

t t
t t

Dv dxd Dv Dv dxd

v Dv dx d v Dv Dv dx d

χ τ χ τ

χ τ χ τ

−

′ ′Ω Ω

−

′ ′Ω Ω

 
      + ≤             
   
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∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

  

    

(15)

It follows from (15) and (1), (2), that
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( ) ( )
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1 ( )2 ( )
2
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max 2,
, 0.
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q x q x
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t t

t
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q
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+

−
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   
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∫ ∫

    

  

       (16)

We want to prove that the functional ( )tΦ
becomes unbounded (blows up) at a finite moment. 
Let us assume that for contradiction, the blow-up
does not occur in a finite time, i.e. the nontrivial
solution v exists for all time 0>t . Since,
( ) ( )tt Φ′Φ , and ( )tΦ′′ are nonnegative, there exists

a time 0≥′t , such that they are strong positive for 
all tt ′≥ , and it is necessary that ( ) ∞→Φ′ t as

∞→t . Notice that for every 







∈

−

2
,1 mσ

( )
( ) 021 →

Φ′
′Φ′

≥− − t
t

m
σ

as ∞→t . 

It follows that for every fixed 







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−

2
,1 mσ there 

exists a moment tt ′>0 such that 
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m
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σ

for all ( ) .0, 00 >Φ> ttt

Using (15) and the last inequality, we get 
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The direct integration of (17) leads to the inequality 
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0
0

0
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Φ
Φ

ΦΦ
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ttTt
Φ−

Φ
+=→
σ

.   (18)

On the other hand, by using the above assumption on
existence of a weak solution v to the problem (1)-
(4) for all time 0>t , we obtain that the functional 
( )tΦ is bounded at a finite moment maxT :

( )

( )

2 2
max 2 2

0,

2 2

2 2
0

1sup
2 2

1
2 2

t T

t

T v v

v v d t

χ

χ τ

∈

 ∞ > + ∇ ≥ 
 

 ≥ + ∇ ≡ Φ 
 ∫

 

 

. 

But this is impossible, because by (18) the functional 
( )tΦ is unbounded at a finite moment maxT , i.e.

( ) max, Ttast →∞→Φ  and it contradicts the
existence of a solution v of the problem (1)-(4) for
all time 0>t . Therefore, it follows from this 
contradiction that the weak solution to the problem 
(1)-(4) blows up in a finite time, and it completed the 
proof of the Theorem 1.

(t )
(t )

(t) ≤ Φ′(t)








Φ
Φ′

Φ
σ

σ
0

0 for all 0t > t .  (17) 
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In this work, the nonlinear initial-boundary value 
problem for the generalized Kelvin-Voigt equations 
describing the motion of incompressible viscoelastic 
non-Newtonian fluids is considered. The equations 
has been generalized replacing the diffusion and 
relaxation terms in equation with 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥) -Laplacian 
and 𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥) -Laplacian, respectively, and adding a 
nonlinear absorption term with variable exponents 
and coefficients. 

The functional spaces with their norms and some 
necessary inequalities regarding to the variable 
exponents have been introduced. Under suitable 
conditions on exponents and coefficients, and on the 
data of the problem, the blowing up in a finite time 
property of weak solutions is established. As it is 
known from theory of PDE, this property means that 
the weak solutions of the problem do not exist global 
in time.
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Simulation of Ternary Fluid Mixtures Separation
by Phase-Field Free Energy LBM

Abstract. This article reviews the mathematical and computer modeling of the process of ternary fluid 
mixture separation by free energy based phase field Lattice Boltzmann equations method. The process 
under study is considered in a limited area having the shape of a rectangle. Three different sets of fluid 
components with different structures are specified. The mathematical model constructed to describe this 
process is based on the Navier-Stokes equation for an incompressible fluid and the Cahn-Hilliard equation. 
The numerical model is built on the basis of LBM using the D2Q9 model. Numerical experiments were 
performed for two scenarios: (1) – investigate the model without gravity, in order to determine the patterns 
of the surface tension effect and (2) – investigate the model with gravity force. Numerical results showed a 
spinodal separation depending on the initial fractions of fluid concentrations. The results obtained 
determine the adequacy of the constructed model for a three-component fluid.

Key words. Three-component fluid, fluid mixtures separation, Cahn-Hilliard equation, free energy, 
lattice Boltzmann method.

Introduction
 
The study of multiphase and multicomponent 

flows dynamics is primarily necessary because they 
are often found in nature, and also take place in 
industrial and production processes, which requires a 
detailed study of a number of engineering problems. 
As an application example of numerical simulation of 
multiphase and multicomponent fluid flows, one can 
note the oil and gas production, the chemical 
processing of raw materials, as well as the steam-
water mixture flows in boilers and condensers.

Various models can be used to model multiphase 
and multicomponent fluid flows [1-4]. Depending on 
the thickness of the transition layer between the 
phases, two main approaches can be distinguished: 
sharp interface models (transition layer between 
phases has zero thickness) and diffuse interface
models (transition layer between the phases has a 
finite thickness). In our paper, we use the second 
approach. Van der Waals was the first to consider the 
transition layer between phases as a layer of finite 
thickness [5]. Currently, the Cahn-Hilliard approach

[6] is widely used to describe the diffuse interface 
models.

This paper presents a mathematical model of 
incompressible three-component fluid flow using the 
phase field method based on the solution of the 
complete Navier-Stokes equation and the Cahn-
Hilliard convective equation. The numerical model is 
based on free energy LBM using the D2Q9 scheme. 
The accuracy and efficiency of the existing method 
have been tested on the basis of solving a number of 
problems. The results obtained determine the 
correctness of the constructed model for a three-
component fluid.

 
Problem statement

The process under study is considered in a limited 
area having the shape of a rectangle with dimensions
[0, 𝐿𝐿𝐿𝐿] × [0, 𝐿𝐿𝐿𝐿] (Figure1). In this area there are three 
fluid components with density 1 2,ρ ρ  and 3ρ , the 
ratio of which is: 1 2 3ρ ρ ρ> > . A less dense fluid is 
indicated in blue, a medium density fluid in green, 
and a denser fluid in red.

https://orcid.org/0000-0002-0642-327X
https://orcid.org/0000-0003-3632-5483
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Figure 1 – Scheme of the computational domain

The mathematical model of the process includes 
the continuity equation, the momentum equation for 
the mixture and the Cahn-Hilliard convective 
equation:

𝛻𝛻𝛻𝛻 ∙ 𝑢𝑢𝑢𝑢�⃗ = 0,
𝜕𝜕𝜕𝜕(𝜌𝜌𝜌𝜌𝑢𝑢𝑢𝑢��⃗ )
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝛻𝛻𝛻𝛻(𝜌𝜌𝜌𝜌𝑢𝑢𝑢𝑢�⃗ 𝑢𝑢𝑢𝑢�⃗ ) =

= −𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻 + 𝛻𝛻𝛻𝛻[𝜂𝜂𝜂𝜂(𝛻𝛻𝛻𝛻𝑢𝑢𝑢𝑢�⃗ + 𝛻𝛻𝛻𝛻𝑢𝑢𝑢𝑢�⃗ 𝑇𝑇𝑇𝑇)] + 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 + 𝐹⃗𝐹𝐹𝐹𝑏𝑏𝑏𝑏 ,
𝜕𝜕𝜕𝜕(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝛻𝛻𝛻𝛻(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢�⃗ ) = 𝛻𝛻𝛻𝛻(𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝛻𝛻𝛻𝛻𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 = 1,2,3

    (1)

where 𝑢𝑢𝑢𝑢�⃗ are the velocity components, p is the 
pressure, ρ is the density, η is the dynamic 
viscosity, iс is the phase field for the fluid 
components: 1 2 3 1,c c c+ + = 𝑔⃗𝑔𝑔𝑔 is the gravitational 

acceleration, iM is the mobility coefficient, iµ is 

the chemical potential, 𝐹⃗𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 + 𝐹⃗𝐹𝐹𝐹𝑏𝑏𝑏𝑏 = ∑ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝛻𝛻𝛻𝛻𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +3
𝑖𝑖𝑖𝑖=1

𝜌𝜌𝜌𝜌𝑔⃗𝑔𝑔𝑔 is the total force of surface tension and gravity.
For a system of a multicomponent medium, the

Landau free energy functional F can be determined 
based on the concentrations of fluids as follows [7]:

𝐹𝐹𝐹𝐹(𝑐𝑐𝑐𝑐,𝛻𝛻𝛻𝛻𝑐𝑐𝑐𝑐) = ∫ �𝐹𝐹𝐹𝐹0(𝑐𝑐𝑐𝑐) + �
𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
2
𝛻𝛻𝛻𝛻𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖

3

𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖=1

� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

where 𝐹𝐹𝐹𝐹0(с) = � 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[𝑔𝑔𝑔𝑔(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖) − 𝑔𝑔𝑔𝑔(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖) − 𝑔𝑔𝑔𝑔(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +
3

𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖=1

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)] is the bulk free energy, c – 1 2 3( , , )с c c is the 
phase variable of fluid components, 𝑔𝑔𝑔𝑔(𝑐𝑐𝑐𝑐) = 𝑐𝑐𝑐𝑐2(1 −
𝑐𝑐𝑐𝑐)2 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 3

𝐷𝐷𝐷𝐷
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −3𝐷𝐷𝐷𝐷

4
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are the 

constants, where 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the surface tension between 
the fluids and 𝐷𝐷𝐷𝐷 is the thickness of the transition 
layer between fluids.

The variation of the free energy function 𝐹𝐹𝐹𝐹 with 
respect to the concentration fractions of fluids yields 
the chemical potential for component 𝑖𝑖𝑖𝑖 as

𝜇𝜇𝜇𝜇1 = 2𝛽𝛽𝛽𝛽11(−28𝑐𝑐𝑐𝑐13 + 18𝑐𝑐𝑐𝑐12 − 2𝑐𝑐𝑐𝑐1) + 2𝛽𝛽𝛽𝛽12(−4𝑐𝑐𝑐𝑐23 − 12𝑐𝑐𝑐𝑐12𝑐𝑐𝑐𝑐2 − 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐22 + 6𝑐𝑐𝑐𝑐22 + 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐2 − 2𝑐𝑐𝑐𝑐2) +
2𝛽𝛽𝛽𝛽13(−4𝑐𝑐𝑐𝑐33 − 12𝑐𝑐𝑐𝑐12𝑐𝑐𝑐𝑐3 − 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐32 + 6𝑐𝑐𝑐𝑐32 + 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐3 − 2𝑐𝑐𝑐𝑐3) − (𝜆𝜆𝜆𝜆11∇2𝑐𝑐𝑐𝑐1 + 𝜆𝜆𝜆𝜆12∇2𝑐𝑐𝑐𝑐2 + 𝜆𝜆𝜆𝜆13∇2𝑐𝑐𝑐𝑐3) ,

𝜇𝜇𝜇𝜇2 = 2𝛽𝛽𝛽𝛽21(−4𝑐𝑐𝑐𝑐13 − 12𝑐𝑐𝑐𝑐12𝑐𝑐𝑐𝑐2 − 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐22 + 6𝑐𝑐𝑐𝑐12 + 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐2 − 2𝑐𝑐𝑐𝑐1) + 2𝛽𝛽𝛽𝛽22(−28𝑐𝑐𝑐𝑐23 + 18𝑐𝑐𝑐𝑐22 − 2𝑐𝑐𝑐𝑐2) +
2𝛽𝛽𝛽𝛽23(−4𝑐𝑐𝑐𝑐33 − 12𝑐𝑐𝑐𝑐22𝑐𝑐𝑐𝑐3 − 12𝑐𝑐𝑐𝑐2𝑐𝑐𝑐𝑐32 + 6𝑐𝑐𝑐𝑐32 + 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐3 − 2𝑐𝑐𝑐𝑐3) − (𝜆𝜆𝜆𝜆21∇2𝑐𝑐𝑐𝑐1 + 𝜆𝜆𝜆𝜆22∇2𝑐𝑐𝑐𝑐2 + 𝜆𝜆𝜆𝜆23∇2𝑐𝑐𝑐𝑐3),

c
iµ
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𝜇𝜇𝜇𝜇3 = 2𝛽𝛽𝛽𝛽31(−4𝑐𝑐𝑐𝑐13 − 12𝑐𝑐𝑐𝑐12𝑐𝑐𝑐𝑐3 − 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐32 + 6𝑐𝑐𝑐𝑐12 + 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐3 − 2𝑐𝑐𝑐𝑐1) + 2𝛽𝛽𝛽𝛽22(−4𝑐𝑐𝑐𝑐23 − 12𝑐𝑐𝑐𝑐22𝑐𝑐𝑐𝑐3 − 12𝑐𝑐𝑐𝑐1𝑐𝑐𝑐𝑐32 + 6𝑐𝑐𝑐𝑐22 +
12𝑐𝑐𝑐𝑐2𝑐𝑐𝑐𝑐3 − 2𝑐𝑐𝑐𝑐1) + 2𝛽𝛽𝛽𝛽33(−28𝑐𝑐𝑐𝑐33 + 18𝑐𝑐𝑐𝑐32 − 2𝑐𝑐𝑐𝑐3) − (𝜆𝜆𝜆𝜆31∇2𝑐𝑐𝑐𝑐1 + 𝜆𝜆𝜆𝜆32∇2𝑐𝑐𝑐𝑐2 + 𝜆𝜆𝜆𝜆33∇2𝑐𝑐𝑐𝑐3).

We substitute the above chemical potential iµ  
for component 𝑖𝑖𝑖𝑖 into the equation (1), as a result, the 
system will be complete. The system of equations (1) 
has the following initial conditions:

𝑢𝑢𝑢𝑢 = 𝑣𝑣𝑣𝑣 = 0,

𝑐𝑐𝑐𝑐1(𝑥⃗𝑥𝑥𝑥, 0) = 𝑐𝑐𝑐𝑐1̅ + 𝛼𝛼𝛼𝛼 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑥⃗𝑥𝑥𝑥)

𝑐𝑐𝑐𝑐2(𝑥⃗𝑥𝑥𝑥, 0) = 𝑐𝑐𝑐𝑐2̅ + 𝛼𝛼𝛼𝛼 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑥⃗𝑥𝑥𝑥)

𝑐𝑐𝑐𝑐3(𝑥⃗𝑥𝑥𝑥, 0) = 1 − 𝑐𝑐𝑐𝑐1(𝑥⃗𝑥𝑥𝑥, 0) − 𝑐𝑐𝑐𝑐2(𝑥⃗𝑥𝑥𝑥, 0)

Boundary conditions:
On the bottom wall at 0=y :

31 20,  0.∂∂ ∂
= = = = =

∂ ∂ ∂
cc cu v

y y y
On the side walls at 𝑥𝑥𝑥𝑥 = 0, 𝐿𝐿𝐿𝐿:

for 1 2 3, , , ,u v c c c – periodic boundary conditions.
On the bottom wall at 𝑦𝑦𝑦𝑦 = 𝐿𝐿𝐿𝐿:

31 20,  0.∂∂ ∂
= = = = =

∂ ∂ ∂
cc cu v

y y y

Numerical method

The numerical solution of this model is based on 
the D2Q9 scheme of the lattice Boltzmann equations 
method. The lattice Boltzmann equation in the 
Batnagar-Gross-Krook (BGK) approximation is 
written as follows:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥⃗𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝚤𝚤𝚤𝚤���⃗ 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥) = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 �−
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥) − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥)
𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓

+ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖� 

𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑥⃗𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝚤𝚤𝚤𝚤���⃗ 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) − 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥) =
∆𝛥𝛥𝛥𝛥
𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚

[𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥) − 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥,���⃗ 𝛥𝛥𝛥𝛥)]

where 1,2,3=m – fluid components, , m
i if g –

velocity and phase field distribution functions, ie –

discrete lattice velocity, 𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓 = 1
2

+ 𝑐𝑐𝑐𝑐1 �𝜏𝜏𝜏𝜏1 −
1
2
� +

𝑐𝑐𝑐𝑐2 �𝜏𝜏𝜏𝜏2 −
1
2
� + (1 − 𝑐𝑐𝑐𝑐1 − 𝑐𝑐𝑐𝑐2) �𝜏𝜏𝜏𝜏3 −

1
2
� , 𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 = 0.8 –

relaxation times, iF – force component, t∆ – latti-

ce time step, ,,eq m eq
i if g – equilibrium distribution 

functions for velocity field and phase field, respect-
tively.

The equilibrium distribution functions are 
determined by the following formulas [8]

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧𝜌𝜌𝜌𝜌 −�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑖𝑖𝑖𝑖 = 0
𝑖𝑖𝑖𝑖≠0

𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖𝜌𝜌𝜌𝜌 �1 + �
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚
𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

3

𝑚𝑚𝑚𝑚=1

+
𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

+
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛽𝛽𝛽𝛽 − 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

2𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
� , 𝑖𝑖𝑖𝑖 ≠ 0

𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 −�𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑖𝑖𝑖𝑖 = 0

𝑖𝑖𝑖𝑖≠0

𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖 �
𝛤𝛤𝛤𝛤𝑚𝑚𝑚𝑚𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

+
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
+
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝛽𝛽𝛽𝛽�𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛽𝛽𝛽𝛽 − 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

2𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
� , 𝑖𝑖𝑖𝑖 ≠ 0

 

 
where / 3sc c= is the lattice speed of sound,
c x / t∆ ∆= , x∆ and t∆ are the lattice space and 
time steps, which are equal to unity.

In the D2Q9 model the discrete velocities are 

calculated using the formulas

(0,1,1,0, 1, 1, 1,0,1)
(0,0,1,1,1,0, 1, 1, 1)

ix

iy

e c
e c

   

   
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The values of weight coefficients are as follows

𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

4
9

, 𝑖𝑖𝑖𝑖 = 0,

1
9

, 𝑖𝑖𝑖𝑖 = 1 − 4,

1
36

, 𝑖𝑖𝑖𝑖 = 5 − 8

 

In this paper, to add the force term 𝐹⃗𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 +
𝐹⃗𝐹𝐹𝐹𝑏𝑏𝑏𝑏 = ∑ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝛻𝛻𝛻𝛻𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜌𝜌𝜌𝜌𝑔⃗𝑔𝑔𝑔3

𝑖𝑖𝑖𝑖=1 to LBM we apply the scheme 
suggested by Guo et al. [9]

2 4

( )1
2

i i i
i i

f s s

e u e e utF F
c c

∆ω
τ

   − ⋅
= − + ⋅       

    



Equations for the distribution functions can be 
divided into two steps, collision and streaming:

 
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
∗(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) +

+𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥(−
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥)
𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓

+ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)

 
𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,∗(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) = 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) +

+𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥(−
𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) − 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥)

𝜏𝜏𝜏𝜏𝑐𝑐𝑐𝑐
) 

 
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥⃗𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

∗(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) 
 
𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑥⃗𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) = 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖

𝑚𝑚𝑚𝑚,∗(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥)

After the second step, it is necessary to calculate 
the macroscopic variables for density, velocity and 
phase field:

𝜌𝜌𝜌𝜌 = �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ,𝜌𝜌𝜌𝜌𝑢𝑢𝑢𝑢�⃗
8

𝑖𝑖𝑖𝑖=0

= �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝚤𝚤𝚤𝚤���⃗ +
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
2
𝐹⃗𝐹𝐹𝐹, 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 =

8

𝑖𝑖𝑖𝑖=0

�𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
8

𝑖𝑖𝑖𝑖=0

Derivatives of macroscopic 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 are calculated 
using the following second-order isotropic 
differences [7]:

∇2𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚(𝑥⃗𝑥𝑥𝑥, 𝛥𝛥𝛥𝛥) = ∑ 2𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖[𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚(𝑥⃗𝑥𝑥𝑥+𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝛥𝛥𝛥𝛥𝜕𝜕𝜕𝜕,𝜕𝜕𝜕𝜕)−𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚(𝑥⃗𝑥𝑥𝑥,𝜕𝜕𝜕𝜕)]
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2∆𝜕𝜕𝜕𝜕2

8
𝑖𝑖𝑖𝑖=1 .

For the velocity field, as the no-slip boundary 
condition in fixed walls ( wx ) the bounce back 
scheme is used [10]:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥⃗𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) = 𝑓𝑓𝑓𝑓−𝑖𝑖𝑖𝑖(𝑥⃗𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥), 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ⋅ 𝑟𝑟𝑟𝑟�⃗ > 0, 
 

where the phase is constant and the boundary 
conditions for the concentration distribution 
functions are chosen as follows:

𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑥⃗𝑥𝑥𝑥𝑤𝑤𝑤𝑤 , 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) =

= 𝑔𝑔𝑔𝑔−𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 (𝑥⃗𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) + 2𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤,   𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ⋅ 𝑟𝑟𝑟𝑟�⃗ > 0, 

where wc  – near-wall phase.
The Neumann condition for the phase on all other 

walls:

𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑥⃗𝑥𝑥𝑥𝑤𝑤𝑤𝑤 , 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) = 𝑔𝑔𝑔𝑔−𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 (𝑥⃗𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥), 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ⋅ 𝑟𝑟𝑟𝑟�⃗ > 0.

Algorithm for applying the lattice Boltzmann
equations method [11]:

1) Discretization of the physical domain and 
non-dimensionalization of the related parameters

2) Choice of simulation parameters
3) Domain initialization
4) Executing the collision step
5) Application of the boundary conditions
6) Executing the streaming step
7) Calculation of the macroscopic parameters.

Simulation results

We consider the evolution of the ternary fluid
mixture in a rectangular computational domain with 
dimensions: 𝑁𝑁𝑁𝑁𝑥𝑥𝑥𝑥 × 𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦 , 𝑁𝑁𝑁𝑁𝑥𝑥𝑥𝑥 = 80,𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦 = 80 . The 
physical size of the length is 𝐿𝐿𝐿𝐿 = 0.01 𝑚𝑚𝑚𝑚. The space 
and time steps are defined as 𝛥𝛥𝛥𝛥𝑥𝑥𝑥𝑥 = 𝐿𝐿𝐿𝐿

𝑁𝑁𝑁𝑁𝑥𝑥𝑥𝑥
=

0,000125,𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 = 0.000117188.
Physical quantities: the density – 𝜌𝜌𝜌𝜌1 = 1000 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚3 ,

𝜌𝜌𝜌𝜌2 = 750 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚3 , 𝜌𝜌𝜌𝜌3 = 500 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚3 and the viscosity –
𝜇𝜇𝜇𝜇1 = 𝜇𝜇𝜇𝜇2 = 𝜇𝜇𝜇𝜇3 = 0.01 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟 ∗ 𝑠𝑠𝑠𝑠 , the acceleration of 
gravity – 𝑔𝑔𝑔𝑔 = 9.8 𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
.  Dimensionless quantities: 

Reynolds number –  𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒 = 234.787, the capillarity 
number – 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 = 0.000417399  and Atwood 
number 𝐴𝐴𝐴𝐴 = 0.142857. 
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Computer simulation by the lattice Boltzmann 
equations method is performed in lattice units, i.e. the 
physical parameters of the model are replaced by 
their lattice analogs using transformation coefficients
𝐶𝐶𝐶𝐶𝑢𝑢𝑢𝑢 = 1.06667, Cg=9102.22. LBM parameters: the
density – 𝜌𝜌𝜌𝜌1 = 1.33,𝜌𝜌𝜌𝜌2 = 1,𝜌𝜌𝜌𝜌3 = 0.67 , relaxation 
times – 𝜏𝜏𝜏𝜏1 = 𝜏𝜏𝜏𝜏2 = 𝜏𝜏𝜏𝜏3 = 0.8, the surface tension –
𝜎𝜎𝜎𝜎12 = 𝜎𝜎𝜎𝜎13 = 𝜎𝜎𝜎𝜎23 = 0.01, the surface thickness –
𝐷𝐷𝐷𝐷 = 2, the acceleration of gravity – 𝑔𝑔𝑔𝑔 =
0.00107666, and 𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.293484.

The simulation results (Figure 2, 3) show the 
dynamic change of fluids – the mixture separation of 
immiscible fluids depending on the fractions of fluid 
concentrations. The average values of the con-
centration fractions are taken equal to (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) =

(0.4,0.2,0.4), �1
3

, 1
3

, 1
3
� , (0.25, 0.25, 0.5) . In the 

first scenario (Figure 2), which does not take into 
account the acceleration of gravity, one can see the 
spinodal decomposition of the mixture over time, 
resulting from the influence of surface tension 
between the fluids.

In the second scenario (Figure 3), which takes 
into account the acceleration of gravity, at an early 
stage (𝑇𝑇𝑇𝑇 < 1 𝑠𝑠𝑠𝑠) a less dense fluid (𝜌𝜌𝜌𝜌3 = 500) begins 
to rise, while a denser fluid (𝜌𝜌𝜌𝜌1 = 1000) begins its 
downward movement. Eventually, stable three layers 
of fluid components are formed: the denser fluid at 
the bottom and the less dense fluid at the top.

The results obtained determine the adequacy of 
the constructed model for a three-component fluid.

(a) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (b) 𝑇𝑇𝑇𝑇 = 1.76 𝑠𝑠𝑠𝑠 (c) 𝑇𝑇𝑇𝑇 = 3.5 𝑠𝑠𝑠𝑠

(d) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (e) 𝑇𝑇𝑇𝑇 = 1.76 𝑠𝑠𝑠𝑠 (f) 𝑇𝑇𝑇𝑇 = 3.5 𝑠𝑠𝑠𝑠

(g) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (h) 𝑇𝑇𝑇𝑇 = 1.76 𝑠𝑠𝑠𝑠 (i) 𝑇𝑇𝑇𝑇 = 3.5 𝑠𝑠𝑠𝑠

Figure 2 – Ternary fluid separation depending on time for different fractions of fluid concentrations: (a)-(c) 
(𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = (0.4,0.2,0.4), (d)-(f) (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = �1

3
, 1
3

, 1
3
�, 

(g)-(i) (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = (0.25,0.25,0.5).
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(a) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (b) 𝑇𝑇𝑇𝑇 = 1.2 𝑠𝑠𝑠𝑠 (c) 𝑇𝑇𝑇𝑇 = 2.3 𝑠𝑠𝑠𝑠 (d) 𝑇𝑇𝑇𝑇 = 4 𝑠𝑠𝑠𝑠

(e) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (f) 𝑇𝑇𝑇𝑇 = 1.2 𝑠𝑠𝑠𝑠 (g) 𝑇𝑇𝑇𝑇 = 2.3 𝑠𝑠𝑠𝑠 (h) 𝑇𝑇𝑇𝑇 = 4 𝑠𝑠𝑠𝑠

(i) 𝑇𝑇𝑇𝑇 = 0.2 𝑠𝑠𝑠𝑠 (g) 𝑇𝑇𝑇𝑇 = 1.2 𝑠𝑠𝑠𝑠 (k) 𝑇𝑇𝑇𝑇 = 2.3 𝑠𝑠𝑠𝑠 (l) 𝑇𝑇𝑇𝑇 = 4 𝑠𝑠𝑠𝑠

Figure 3 – Effect of body force on the time evolution of density contours of a ternary fluid mixture
for different fluid concentration fractions: (a)-(d) (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = (0.4,0.2,0.4), 

(e)-(h) (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = �1
3

, 1
3

, 1
3
�, (i)-(l) (𝑐𝑐𝑐𝑐1̅, 𝑐𝑐𝑐𝑐2̅, 𝑐𝑐𝑐𝑐3̅) = (0.25,0.25,0.5).

Conclusion

The paper proposes a mathematical and 
numerical model for studying the separation process 
of a three-component fluid. To implement this model, 
a 2D numerical algorithm has been developed based 
on the D2Q9 scheme of lattice Boltzmann equations
method in a limited cavity in the shape of a rectangle.
Numerical simulation was carried out with and 
without taking into account gravity. The results of 
numerical simulation showed that, depending on the 
initial fractions of fluid concentrations, spinodal 
separation occurs in different ways. From a physical 
point of view, this is explained by the effect of 
surface tension between fluids. Due to the influence 
of gravity, over time, denser, medium-density and 
less dense fluids begin to arrange themselves in 

order, from bottom to top, respectively. The stability 
of the process sets in when the denser fluid
component moves down completely. The results of 
this paper prove the applicability of the methods used 
in the paper for solving problems of this type.
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Scattering phase shifts of lithium isotopes

Abstract. Investigation of few body cluster systems is very important in nuclear physics. Problems 
appearing in few body systems can in principle be divided into two classes: bound state problems and 
scattering problems. The bound state problems are usually related to the spectroscopy of such systems while 
scattering problems describe their reactions. The main focus in the work is the scattering problem for 
systems consisting of two cluster systems. The single channel two body scattering problem is considered 
in the framework of different spin parity states for lithium isotopes. 

Scattering phase shifts on negative and positive parity states of 5Li, 6Li and 7Li nuclei are calculated 
applying two-body 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝, 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 and 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 systems and the complex scaling method. 6Li and 7Li are stable 
nuclei and their ground and low-lying excited states are considered in this work. 

In this study, we calculated scattering phase shifts of the negative parity 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2−
states for 𝑝𝑝𝑝𝑝 −wave of 5Li, 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2−, 5/2−, 3/2− and 1/2− states for 𝑝𝑝𝑝𝑝 − and 𝑓𝑓𝑓𝑓 −waves of 7Li and the 
positive parity 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+, 2+, 3+ states for 𝑠𝑠𝑠𝑠 − and 𝑑𝑑𝑑𝑑 − waves of 6Li.

Key words: phase shifts, structure of light nuclei, two-body system, low-lying excited states, ground 
state.

Introduction

\During last several decades, scientists have tried 
and failed to provide a complete solution to scattering 
in complex nuclear system, one of the most 
fundamental phenomena in nuclear physics. Nuclear 
physics is one of the most rapidly developing fields 
of natural science in terms of theoretical and 
experimental research, many important and 
interesting issues remain still unclear in this area. The 
nuclei are complex objects consisting of several 
interacting nucleons where neutrons and protons 
have been arranged with different combinations.
Light nuclei have exotic properties owing to 
peculiarities of the nuclear forces and quantum states 
of nucleon systems. To understand the characteristic 
properties of every nucleus, we use appropriate 
nuclear models and effective nuclear and Coulomb 
interactions [1-2].

The nuclear models can contain quasistationary 
or virtual states of nuclei, as well as their excited 
states located on the complex energy plane close to 
the real physical region of existence of the nuclei [3-
7]. Nuclear models not only focused on the 
description of nuclear structures and reactions, but
also considered nuclear fission and nuclear decay. At
the beginning of development for nuclear models, it
was known that the nucleons tend to group into 
clusters were extremely important in determining the 
structure of light nuclei. Consequently, the cluster 
structure of nucleus ground and excited (resonance or 
virtual) states became the focus of theoretical and 
experimental studies. Light nuclei are loosely bound 
and change their configurations when they interact 
with nucleons or other nuclei at relatively small 
distances. It was informed that a nucleus cluster 
structure is displayed in reactions with neutrons at 
low energies and with protons at energies higher than 
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Coulomb potential barrier. In the reactions of neutron 
scattering for various nucleus in the low-energy 
region is quite well measured by experimentally but 
the measured data for proton scattering on light 
nuclei at low energies is rare.

In this work, we apply the complex scaling 
method (CSM) [8-9] to the 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝, 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 and 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡
two-body models for obtaining ground and low-lying
excited states of 5Li, 6Li and 7Li nuclei. Applying the
CSM and 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝 two-body model for the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2−
and 1/2− states of 5Li, 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 two-body model for the
𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ , 2+, 3+ states of 6Li and 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 two-body 
model 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2−, 5/2−, 3/2− and 1/2− states of 7Li.

For 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝 and 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 systems the negative parity 
states of 𝑝𝑝𝑝𝑝 − and 𝑓𝑓𝑓𝑓 − waves are considered for the 
calculation of scattering phase shifts. The phase shifts 
for positive parity states in 𝑠𝑠𝑠𝑠 − and 𝑑𝑑𝑑𝑑 − waves of 
𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 system is calculated.

Complex Scaling Method and Two Body 
Model

The Schrödinger equation, 𝐻𝐻𝐻𝐻�𝛹𝛹𝛹𝛹 = 𝐸𝐸𝐸𝐸𝛹𝛹𝛹𝛹 , is 
transformed as

𝐻𝐻𝐻𝐻𝜃𝜃𝜃𝜃𝛹𝛹𝛹𝛹𝜃𝜃𝜃𝜃 = 𝐸𝐸𝐸𝐸𝜃𝜃𝜃𝜃𝛹𝛹𝛹𝛹𝜃𝜃𝜃𝜃, (1)

where the complex scaled wave function is defined 
as

𝛹𝛹𝛹𝛹𝜃𝜃𝜃𝜃 = 𝑈𝑈𝑈𝑈(𝜃𝜃𝜃𝜃)𝛹𝛹𝛹𝛹 = 𝑒𝑒𝑒𝑒
3
2𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃𝛹𝛹𝛹𝛹(𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃). (2)

The factor 𝑒𝑒𝑒𝑒
3
2𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 comes from the Jacobian of the 

coordinate transformation for 𝑟𝑟𝑟𝑟. The Hamiltonian in 
Eq. (1) is 

𝐻𝐻𝐻𝐻𝜃𝜃𝜃𝜃 = 𝑈𝑈𝑈𝑈(𝜃𝜃𝜃𝜃)𝐻𝐻𝐻𝐻𝑈𝑈𝑈𝑈−1(𝜃𝜃𝜃𝜃). (3)

To solve Eq. (1), we expand the wave functions 
𝛹𝛹𝛹𝛹𝜃𝜃𝜃𝜃(𝑘𝑘𝑘𝑘, 𝑟𝑟𝑟𝑟) to a finite number of 𝐿𝐿𝐿𝐿2 basis functions, the 
Gaussian basis functions 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟) for 𝑖𝑖𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑁𝑁,

𝛹𝛹𝛹𝛹𝜃𝜃𝜃𝜃(𝑘𝑘𝑘𝑘, 𝑟𝑟𝑟𝑟) = ∑ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘,𝜃𝜃𝜃𝜃) 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖 . (4)

The coefficients 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘, 𝜃𝜃𝜃𝜃) and the discrete spectra 
are obtained by solving the eigenvalue problem

∑ 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃  𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘,𝜃𝜃𝜃𝜃) = 𝐸𝐸𝐸𝐸𝜃𝜃𝜃𝜃𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘,𝜃𝜃𝜃𝜃) 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖 ,         (5)

𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 = �𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖�𝐻𝐻𝐻𝐻𝜃𝜃𝜃𝜃�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖�,                      (6)

where 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 are the matrix elements of the complex 
scaled Hamiltonian given in Eq. (3).

Applying the CSM to two-body 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝 model the 
Hamiltonian is expressed as 

𝐻𝐻𝐻𝐻� = ∑ 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑇𝑇�𝑐𝑐𝑐𝑐.𝑚𝑚𝑚𝑚.
2
𝑖𝑖𝑖𝑖=1 + 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁(𝑟𝑟𝑟𝑟) + 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟𝑟𝑟), (7)

where 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇�𝑐𝑐𝑐𝑐.𝑚𝑚𝑚𝑚. are the kinetic energy operators of 
the 𝑖𝑖𝑖𝑖 −th cluster and the center-of-mass of the total 
system, respectively. 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁 is alpha-proton potential, 
𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟𝑟𝑟) is Coulomb potential. For the 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 and 
𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 two-body models the same Hamiltonian given 
in Eq. (7) is applied.

For each partial wave, we use Gaussian functions 
with different size parameters as basis functions

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖ℓ(𝑟𝑟𝑟𝑟, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) = 𝑁𝑁𝑁𝑁ℓ(𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) 𝑟𝑟𝑟𝑟ℓ exp �− 1
2𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

2 𝑟𝑟𝑟𝑟2�, (8)

𝑁𝑁𝑁𝑁ℓ(𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) = 1
𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖
ℓ+3/2 �

2ℓ+2

(2ℓ+1)‼ √𝜋𝜋𝜋𝜋
�
1/2

,            (9)

where the parameters (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖: 𝑖𝑖𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑁𝑁) are give by 
a geometrical progression of the form 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑏𝑏0𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖−1 ,                       (10)

where 𝑏𝑏𝑏𝑏0 and 𝛾𝛾𝛾𝛾 are the first term and the common 
ratio, respectively. 

Results and Discussion

𝜶𝜶𝜶𝜶 + 𝒑𝒑𝒑𝒑 two body system
Phase shifts of the elastic scattering of proton

from an alpha particle are shown in Figure
1. Calculated phase shifts for the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and
𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− states generated by the total orbital 
momentum 𝐿𝐿𝐿𝐿 = 1 , which has a resonant state for 
each partial state. We obtained resonance state 
energy 0.74 MeV with decay width 0.59 MeV for 
𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and resonance state energy 2.10 MeV and 
its decay width 5.82 MeV for 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− states. As 
can be seen from Figure 1 a), a narrow decay width 
state is calculated for the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− state and the
calculated scattering phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2−
state increases rapidly from 1 MeV due to the small 
decay width. A resonance energy with large decay 
width for the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− state is obtained and the 
calculated phase shifts approaches 𝜋𝜋𝜋𝜋 2⁄ which shows 
a clear resonance behavior in Figure 1 b).
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Figure 1 –The scattering phase shifts of 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝 system /
for 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− (a) and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− (b).

𝜶𝜶𝜶𝜶 + 𝒅𝒅𝒅𝒅 two body system
6Li is a stable nucleus and excited energy levels

are observed by experimentally. Calculated phase 
shifts for the elastic 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 scattering of the orbital 
momentum 𝐿𝐿𝐿𝐿 = 0 and 2 , the total angular 
momentum 𝐽𝐽𝐽𝐽 are presented in Figure 2. In this 
calculation we consider only even parity states of 6Li

and ignored odd parity states because phase shifts for 
negative parity states are very small as comparing 
with even parity states. The 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ for the orbital 
momentum 𝐿𝐿𝐿𝐿 = 0 is a ground state of 6Li. The 
calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ for 𝐿𝐿𝐿𝐿 = 0
indicate an attractive interaction nature and it is 
displayed by dotted line in Figure 2.

Figure 2 – The scattering phase shifts of 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 system of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ state for 𝐿𝐿𝐿𝐿 = 0,
and the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3+, 2+, 1+ states for 𝐿𝐿𝐿𝐿 = 2. The dotted, dashed, dotted-dashed 

and solid lines denote the calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ state for 𝐿𝐿𝐿𝐿 = 0, 
and the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+, 2+, 3+ states for 𝐿𝐿𝐿𝐿 = 2, respectively.

In the case of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3+ state for 𝐿𝐿𝐿𝐿 = 2, the 
resonance energy is obtained and the calculated 
phase shifts for this state shows a sharp resonance 
behavior because of the very small resonance width.
The calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3+ state 
increases sharply ~1 MeV and it approaches 𝜋𝜋𝜋𝜋 which 
is displayed by solid line in Figure 2, and it implies a 
resonance state with small decay width. In Figure 2, 

the dotted-dashed and dashed lines represent the 
calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 2+ and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+
states for 𝐿𝐿𝐿𝐿 = 2, respectively. It can be seen from 
Figure 2, the calculated phase shifts for the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 2+
and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+ states express resonance behavior.
Phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 2+ state presents by the 
dotted-dashed line, and it increases gradually from 3
MeV and approaches 5𝜋𝜋𝜋𝜋 6⁄ . The dashed line 
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expresses the calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1+
state and it increases smoothly from 4.5 MeV and 
approaches 𝜋𝜋𝜋𝜋 2⁄ .

𝜶𝜶𝜶𝜶 + 𝒕𝒕𝒕𝒕 two body system
We display phase shifts of the elastic 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡

scattering in Figure 3. In this time, we study only 
negative parity states of 7Li for 𝐿𝐿𝐿𝐿 = 1, and 3 waves.
The positive parity states are negligibly small as 
comparing with odd parity states.

Due to the Coulomb interaction, phase shifts are 
very small at the energy range 0 < 𝐸𝐸𝐸𝐸 < 0.5 MeV.

Phase shifts for the negative parity state and for the total 
angular momentum 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2− and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 5/2− for 
𝐿𝐿𝐿𝐿 = 3 exhibit a resonance behavior which approach 𝜋𝜋𝜋𝜋
and 5𝜋𝜋𝜋𝜋 6⁄ . As can be seen from Figure 3, the solid line 
expresses the calculated phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2−
state and it implies a sharp resonance state obtained.
The dotted-dashed line displays the results of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 =
5/2− state and it shows resonance behavior too. 

The phase shifts of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 =
1/2− state for 𝐿𝐿𝐿𝐿 = 1 are drawn by dotted and dashed 
lines in Figure 3. The phase shifts behaviors for 𝐿𝐿𝐿𝐿 =
1 state show attractive nature.

Figure 3 – The scattering phase shifts of 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 system of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2−
and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− state for 𝐿𝐿𝐿𝐿 = 1 and the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2−, 5/2− states for 𝐿𝐿𝐿𝐿 = 3. 

The dotted, dashed, dotted-dashed and solid lines denote the calculated phase shifts 
of the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− state for 𝐿𝐿𝐿𝐿 = 1 and the 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 7/2−, 5/2− states for 𝐿𝐿𝐿𝐿 = 3.

Conclusions

In this work we discussed the calculated 
scattering phase shifts for the different spin parity 
states of 5Li, 6Li and 7Li nuclei applying two body 
model. The negative parity states of 𝐿𝐿𝐿𝐿 = 1 and 𝐿𝐿𝐿𝐿 = 3
waves are considered for 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝 and 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 systems. 
The scattering phase shifts are calculated in positive 
parity states of 𝐿𝐿𝐿𝐿 = 0 and 𝐿𝐿𝐿𝐿 = 2 waves for 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑
system.

The 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 3/2− and 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 1/2− states of 𝛼𝛼𝛼𝛼 + 𝑝𝑝𝑝𝑝
system have a resonant state for each partial state and 
the calculated phase shifts show resonance behavior. 

We calculate scattering phase shifts of 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑
system for 𝐿𝐿𝐿𝐿 = 0 and 2 waves where only even
parity states are considered. The phase shifts for 
negative parity states are very small as comparing 
with even parity states in 𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑 system. 6Li has the 
𝐻𝐻𝐻𝐻𝑒𝑒𝑒𝑒2
3 + 𝑡𝑡𝑡𝑡 cluster configuration and it reported in Ref. 

[10], the ( 𝐻𝐻𝐻𝐻𝑒𝑒𝑒𝑒2
3 + 𝑡𝑡𝑡𝑡 ) configuration of 6Li is only 

slightly less probable than the (𝛼𝛼𝛼𝛼 + 𝑑𝑑𝑑𝑑) configuration. 
7Li nuclei is modelled as 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡 two clusters and 

scattering phase shifts of 𝐿𝐿𝐿𝐿 = 1 , and 3 waves are 
calculated. The positive parity states are negligibly 
small as comparing with odd parity states in 𝛼𝛼𝛼𝛼 + 𝑡𝑡𝑡𝑡
system.
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Arbitrary amplitude nonlinear waves in a four-component quantum plasma

Abstract: Based on the approach of arbitrary amplitude Sagdeev pseudo-potential, the fully 
nonlinear structures, such as soliton and double-layer waves, of a four-component quantum plasma 
system have been extensively investigated. The plasma system under consideration consists of inertial 
positive and negative dust species and inertialess quantum ions and electrons. For simplicity, the dust 
grains are considered to have a constant surface charge. For typical plasma parameters, like Mach 
number, temperatures ratio, densities ratios and quantum parameter, the bifurcation analysis enables us to 
distinguish three types of nonlinear waves, namely compressive soliton, rarefactive soliton and double 
layer depending on the magnitude of the configurational plasma parameters. The formations and the 
existence ranges of both solitons and double layers are studied and found to be highly sensitive to the 
values of the chosen plasma parameters and the quantum indices as well. The implications of the obtained 
results have a wide relevance in the study of space and laboratory quantum dusty plasmas where the 
positive and negative dust particulates are presented, and quantum effects are taken into account.

Key words: Four-component quantum dusty plasma; Sagdeev pseudo-potential; Solitary waves and
double-layers

Introduction

The topic of propagating linear and nonlinear 
waves in quantum dusty plasma had a great deal of 
interest due to its wide application in quantum 
plasma media such as in high-intensity laser-
produced plasmas, dense astrophysical objects and 
ultra-small electronic devices [1-5]. It is well known 
that dusty plasma is the most general form of 
plasmas in most of space and astrophysical bodies 
which comprising with electrons, positive ions, 
neutral molecules and massive micrometer-sized 
charged dust grains. In addition to plasma 
laboratory, dusty plasmas are also observed in 
pulsar magnetospheres, active galactic nuclei, 
planetary rings, solar atmosphere, interstellar 
medium, comet tails and noctilucent clouds [6-14].
Dusty plasma may have dust grains with negative 
charge, dust grains with positive charge or may have 
both types of dust grains depending on the charging 
processes [15-17]. Due to the presence of large 
number of charged particles in dusty plasma media, 
many reports indicate that there are two sorts of 
low-frequency waves in dusty plasmas, called dust 

acoustic (DA) waves and dust-ion acoustic (DIA) 
waves [18, 19]. Consequently, investigation of
nonlinear wave characteristics in such media has 
been studied by many researchers [18, 20, 21].
Mannan and Mamun [18] studied the DA solitary 
waves associated with general and realistic self-
gravitating dusty plasma medium composed of 
positive and negative charged warm dust grains as 
well as non-thermal ions. The population effect of 
non-thermal ions is examined and found that it 
modifies the basic properties of the obtained DA 
solitary waves. Khaled et al. [20] studied the 
presence of DA solitary waves in a dusty plasma 
medium with opposite polarity of dust grains and 
Maxwellian distributed electrons and ions taking 
into account the polarization force effect. They 
observed that the propagation characteristics of the 
obtained DA solitary waves are significantly 
modified due to the polarization force effect. In 
Farooq et al. [21] work, they investigated the 
polarization force effect on the nonlinear properties 
of DA solitary waves in a four component dusty 
plasma composed of positive and negative dust 
grains, non-Maxwellian electrons follows hybrid 

https://orcid.org/0000-0003-3291-511X
https://orcid.org/0000-0002-1961-4577
https://orcid.org/0000-0002-3975-1085
mailto:hayamfawzi1990@yahoo.com
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Cairns–Tsallis distribution and Maxwellian ions. As 
a result of the presence of non-Maxwellian 
electrons, it is found that the polarization force 
acting on negatively charged dust is different from 
that acting on positively charged dust.

In quantum plasma media, the plasma behaves 
like degenerate plasma when its components are at 
higher densities and low temperature as well as the 
thermal de Broglie wavelength of charged species 
becomes same or larger than the inter-particle 
distance [22-24]. Quantum effects of plasma species 
are found to play an important role in many plasma 
physics applications such as in ultra-cold plasmas, 
ultra-small electronic devices, nanostructure 
devices, semiconductors, laser produced plasmas as 
well as in astrophysical plasmas such as interiors of 
white dwarfs and neutron stars [25-30]. In quantum 
plasma, the classical hydrodynamic equations are no 
longer suitably at all and should be modified [31], 
where the Bohm potential term may be added in the 
momentum equation. This of course makes the 
procedure of finding an explicit form for the 
pseudo-potential function very difficult. This leads 
some authors [32, 33] to restrict their studies only 
on small amplitude nonlinear wave’s 
approximations, accordingly. The presence of 
different types of nonlinear waves such as solitary 
waves, shock structure and double layers in 
quantum dusty plasma had been investigated by 
many researchers in the framework of KdV-type 
equations. For instance, El-Hanbaly et al. [32]
investigated the propagation characteristics of DA 
solitary waves interaction in four-component 
quantum dusty plasma and the quantum effects of 
plasma species are discussed. They found that the 
quantum parameters of electrons and ions played an 
important role on the features of the DA solitary 
waves such as phase shifts in trajectories due to 
collision. Nonlinear properties of DA solitary waves 
considering dust polarity effects as well as electrons 
and ions quantum effects in magnetized quantum 
dusty plasma were analyzed by Gao [33]. By 
performing numerical analysis, he found that the 
nature of solitary waves was modified depending on 
the effects of quantum electrons and ions. However, 
most of these studies have only focused on the use 
of reductive perturbation technique. 

In order to investigate the fully nonlinear 
structures in quantum plasma, Sagdeev pseudo-
potential technique and bifurcation analysis have 
been widely used [34, 35]. For example, Abulwafa 
et al. [34] have used the Sagdeev pseudo-potential 

technique and bifurcation analysis to study the 
properties of DA double-layers in four-component 
dusty plasma with q-non-extensive distributed 
electrons and ions. They investigated that the 
behavior of the double-layers solution is extremely
sensitive to the non-extensive parameters of 
electrons and ions as well as the Mach number 
strength. El-Monier and Atteya [35] used the 
bifurcation analysis to investigate the DA wave 
propagation in four-component dusty plasma. 
Abulwafa et al. [36] investigated the formation and 
propagation of small amplitude nonlinear waves in a
four-component quantum dusty plasma. Therefore,
we plan to extend the previous our study by 
investigating the fully nonlinear arbitrary amplitude
waves in quantum dusty plasma by employing the
Sagdeev pseudo-potential technique and bifurcation
analysis. The effect of physical parameters such as
Mach number M, dust charge-mass ratio R,
temperature ratio σ , electron density ratio eµ , ion 
density ratio iµ and electron quantum parameter He

are studied and found that they play vital role on the 
formation of both compressive and rarefactive 
solitary waves and on the creation of compressive 
double layers.

The quantum dusty plasma basic equations are 
presented in Sect. 2. Sagdeev Pseudo-potential and 
phase portrait analysis are derived in Sect. 3. 
Nonlinear analysis are explained and discussed in 
Sect. 4 while in Sect. 5, the conclusion is provided.

Basic Equations

Quantum dusty plasma system has four
components comprising of inertial positive and 
negative dust species and inertialess quantum ions 
and electrons is considered. Such dusty plasma 
medium can be existed in many astrophysical 
situations such as Jupiter's magnetosphere, upper 
and lower mesosphere and comet tails [37-41]. For 
simplicity, the dust grains are considered to have a 
constant surface charge. The normalized basic 
equations of the considered system are described as 
follows:

The dynamic equations for quantum electrons 
and ions are described by
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where j = e and i refer to electrons and ions,
respectively. jn represents the density number, jH

= )/()/( 2
−− mmZC jdpdω =

)/()/( −− ZmmTk jFiBpdω is the quantum factor
that is defined as the ratio of the quantum energy to 
the thermal energy of the particle, 

2/1)/( −−= mZTkC FiBd is the DA speed, 
2/122

0 ]/)(4[ −−−= meZnpd πω is the dust plasma 
frequency and the temperature ratios are

FiFee TT /==σσ , 1−=iσ and 1=eδ , 1−=iδ .
Both continuity and momentum equations for 

the two dust species are given by
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where k = + and − refer to positive dust and 
negative dust, respectively, nk is the particle density 
number, uk is the particle fluid velocity and the dust 
charge-mass ratios are βα /==+ RR where 

−+= ZZ /α and −+= mm /β while 1−=−R .
Finally, the Poisson's equation of the given

quantum dusty plasma system can be written as

0/ 22 =+−+−∂∂ ++− iiee nnnnx µµµφ . (3)

The following normalizations Ddxx λ/→ ,

pdtt ω→ , )(0)()( / kjkjkj nnn → , dkk Cuu /→ ,

)2/( FiBTkeφφ → have been applied into (1)-(3). In 
the above equations, φ is the electrostatic potential,

)(0 kjn refers to the unperturbed plasma species 
density number. Here, 

2/12
0 )]4/(2[ eZnTk FiBDd −−= πλ is the dust Debye 

length and the species density ratio is
)/( 00 −−= nZnZ jjjµ . In addition, Bk , FjT , kZ ,

)(kjm and e refer to the Boltzmann constant, the 
species type Fermi temperature, the number of 
electronic charge residing on the surface of the dust 
particle, the particle mass and electronic charge,
respectively.

The quantum effects due to dust grains are 
ignored in the considered model as they have large 
inertia in comparison with both electrons and ions. 
In addition, the two quantum factors eH and iH
are governed by the relation ie HH / = ei mm / .

Sagdeev Pseudo-potential Analysis

To investigate the existence and propagation of 
the arbitrary amplitude localized electrostatic waves 
in the plasma system under consideration, we 
consider moving coordinate ansatz

         Mtx −=ζ ,                         (4)

that moves parallel to the mentioned waves with 
Mach number M.

Inserting the travelling wave transformation (4) 
in the system of equations (1) and (2), one gets a 
system of nonlinear coupled ordinary differential 
equations, viz.
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while the Poisson's equation can be rewritten as

2 2( ) / ( )
( ) ( ) ( )e e i i

d d n
n n n
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µ ζ µ ζ µ ζ
−

+ +

= −
− + −

.             (7)

where all physical quantities in (5) and (6) become 
only functions of a single variable ζ .

With appropriate boundary conditions, viz. 1→n ,
0/ →ζddn , 1→u and 0→φ as ±∞→ζ , the 

forms of density functions jn of electrons and ions 

and kn of dust particles in terms of electrostatic 
potential φ can be explicitly obtained after 
integrating (5) and (6) as

)(ζjn = 222 /]/)(21[]/)(21)[/(]/)(21[ 4
1

4
1

ζσζφσζφσδσζφ ddH jjjjjj ++++
− ,              (8)

)(ζkn = φkRMM 2/ 2 − .                                                         (9)

By looking upon (8), one may see that the 
density function of both electrons and ions )(ζjn
depend obviously on the corresponding quantum 
factors Hj, whereas (9) shows that the dependence of 
dust densities )(ζkn on Hj is not exist. In addition, 
in order to guaranty the plasma state variables 

)(ζkn are analytical functions (i. e; real) we have 
to recall the well-known classical inequality,

)2/(2
max kRM=≤ φφ where maxφ refers to the

maximum value of φ (the amplitude of nonlinear 

waves in the plasma). However, it provides us a 
useful check for high amplitude limits in terms of 
the dust charge-mass ratio R and Mach number M.
Inserting the forms of )(ζjn and )(ζkn , (8) and 
(9), into the reduced Poisson’s equation (7), one 
obtains

22 / ζφ dd = − )(φρ ,             (10)

where the charge density )(φρ is represented by

)(φρ = − φ2/ 2 +MM + φµ RMM 2/ 2 −+

− 24/124/12 /)/21()/21)(/()/21( ζσφσφσσφµ ddHee ++++ −

+ 24/124/12 /)21()21()21( ζφφφµ ddHii −−+− − ,                                    (11)

Now, the advantage of using Sagdeev pseudo-
potential technique is that the four-component 
quantum system equations are reduced to a single 
equation (10). This implies that studying the fully
nonlinear structures of the plasma system is 
equivalent to study the solution of (10).

Multiplying (10) by ζφ dd / and integrating 
once, the order of (10) is reduced by one and can be 
written in the form of an energy balance integral 
equation

2/)/( 2ζφ dd + )(φV = E ,         (12)
where

)(φV = )(φρφ
φ

′′− ∫ d ,               (13)

and Е is the integration constant. The first term of 
(12) refers to the kinetic energy whereas )(φV is 
known as Sagdeev pseudo-potential energy
function. This procedure is called Sagdeev pseudo-
potential formalism. Using appropriate boundary 
conditions φ = ζφ dd / = 0/ 22 →ζφ dd , at 

±∞→ζ , the right side of (12) goes to zero.

Having integrated (13), φ = )(φφ
φ

′−′+ ∫ Vd ,

the existence and propagation of the fully nonlinear 
structures in our plasma system can be identified 
exactly.

It is noted that knowing the explicit form of the 
Sagdeev potential )(φV enables us to obtain the 
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maximum and minimum values of the Mach number 
(Mmax, Mmin) at which the permitted nonlinear waves 
exist. The maximum value of Mach number Mmax
can be defined, in terms of plasma parameters, by 
solving the algebraic equation 0)( max =φV for M
where )2/(2

max kRM=φ , the maximum values of 
the electrostatic potential φ for compressive and 
rarefactive waves. But on the other side, the 
minimum value of the Mach number Mmin can be 
determined by solving the inequality 0/ 22 <φdVd

at 0=φ . The interval of Mach number (Mmin−
Mmax) leads us to identify the existence range at 
which the formula of nonlinear waves exists and 
propagates in the plasma model. It is anticipated 
from the above analysis that the existence and 
propagation of the nonlinear waves in the plasma 
system requires the values of Mach number M
included in maxmin MMM << , otherwise, the 
existence of nonlinear waves is not possible.

With the knowledge of the explicit form of 
Sagdeev potential function )(φV , the existence 
conditions for the localized nonlinear waves are 
readily examined. However, the conditions for 
solitary waves to exist are:

(i) 0/)( == φφ ddVV at 0=φ , which implies 
that the associated electric field ( )(φE = ζφ dd /− )
and the charge density )(φρ equal zero at the origin 
( 0=φ ). Also, at the origin the potential condition 

0/ 22 <φdVd should be satisfied, implying that the 
curve has maximum at )0,0( and hence the origin 
can be viewed as fixed unstable point.

(ii) The final condition 0)( <φV , is necessary 
for obtaining the configurational plasma parameters 
for which this condition holds. This means that the 
electrostatic potential φ follow the interval

max0 φφ << for compressive waves or 0max <<φφ
for rarefactive solitary waves. Here, maxφ denotes
the first non-zero root of 0)( =φV .

On the other side, the existence of the double-
layer requires the following two conditions:

(i) 0/)( == φφ ddVV at 0=φ , and maxφφ = .

(ii) 0/ 22 <φdVd at 0=φ , and maxφφ = .
Therefore, we are interested to specify the fully 

nonlinear structures propagating in the plasma 
system. The crucial point of this methodology is that 
the form of the Sagdeev potential function should be 

known explicitly by integrating (13). Since the 
integration procedure is very difficult task, it is 
convenient to deal with such equation numerically.
Then, we recall the bifurcation analysis to 
investigate the behavior and properties of the fully 
nonlinear structures graphically. In addition, the 
impact of some relevant plasma parameters on the 
nonlinear waves can be also examined.

Nonlinear Analysis

First, we shall investigate the influence of the 
physical plasma parameters such as (Mach number 
M, dust charge-mass ratio R, temperature ratio σ ,
electron density ratio eµ , ion density ratio iµ and 
electron quantum parameter He) on the profile of the 
nonlinear structures. The obtained results can be 
summarized in Figures (1) – (5), where the physical 
plasma parameters follow 330

0 102 −×≈ mne ,

KTFe
2100.1 ×≈ , 330

0 101 −×≈ mni ,

KTFi
2106/1 ×≈ , 326

0 105 −
− ×≈ mn , 310≈−Z ,

kgm 1710−− ≈ , 327
0 105.1 −

+ ×≈ mn , 310≈+Z ,

kgm 1710−+ ≈ [2, 42, 43].
In Figs (1), the Sagdeev potential function 
)(φV , phase portrait ( ζφφ dd /, ), electrostatic 

potential )(ζφ and associated electric field )(ζE
are shown graphically for different values of the 
Mach number M. The chosen values of the Mach 
number M are taken in our calculations according to 
the allowed interval (Mmin – Mmax), where the other 
physical parameters are 0.1=R , 0.6=σ ,

4.0,eµ = 0.2=iµ , 3.0=eH . Note that the width 
of the Sagdeev potential well means the amplitude 
of the solitary wave and its depth refers to the slop 
of the solitary pulse. In Fig (1a), it is seen that the 
dash-dotted potential curve (M = 1.255) and dashed 
curve (M = 1.265) refer to the coexistence of both 
compressive and rarefactive localized pulses. 
Obviously, increasing the Mach number, the 
potential well gets wider and deeper. This means 
that faster electrostatic pulse gets taller and narrower 
as the Mach number increases. Also, it can be seen 
that the amplitude and width of the rarefactive 
solitary waves are clearly greater than those of the 
compressive waves. The corresponding trajectories
in the phase portrait diagram ( ζφφ dd /, ), Fig (1b), 
have obviously two stable centers at )0,( 1φ and 
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)0,( 2φ beside one unstable saddle point at )0,0( ,
where 1φ and 2φ are the values of the electrostatic 
potential φ at which the Sagdeev potential )(φV is 
minimum. The trajectories enclosing the two centers 
points and passing through the saddle point is called 
homoclinic orbits, which refer to stable solitary 
waves. The profiles and properties of the solitary 
waves )(ζφ and the associated electric field )(ζE
are shown graphically in Figs (1c) and (1d). Now, it
is concluded that our plasma system supports the 
formation of both compressive and rarefactive to 
coexist in this plasma configuration. Moving to 
higher value of the Mach number, the dashed line 
curve in the potential diagram, Fig (1a), shows
another feature of the nonlinear waves. The dotted 
curve at M = 1.27278825 denotes to the
coexistence of both compressive double-layer and 
rarefactive nonlinear solitary wave. The existence of 
double-layer can be seen as a sudden change of the
electrostatic potential pulse )(ζφ due to the 
presence of space charge. The corresponding 
trajectory in the phase-portrait, Fig (1b), has two 
unstable saddle points at )0,0( and )0,( maxφ
beside a stable center point at )0,( 1φ . The trajectory 
passing through two unstable saddle points is called 
heteroclinic orbit and refers to double layer. On the 
other side of φ ( 0<φ ), there exist one stable 
center point at )0,( 2φ and one unstable saddle point 
at )0,0( . The orbit going from saddle point 
confirms the existence of rarefactive nonlinear 
waves. The behavior of the electrostatic potential 

)(ζφ and the associated electric field )(ζE
(dotted line curve) can be graphically shown as in 
Figs (1c) and (1d). Further increasing the Mach 
number, the solid curve at M = 1.28 shows that 
the positive amplitude nonlinear wave is no longer 
exist and we are only left with the rarefactive 
solitary wave in this plasma configuration.

In addition to the Mach number M, the effect of 
dust charge-mass ratio R on the formation and 
existence range of nonlinear waves can be also 
shown by introducing the bifurcation diagrams, Figs 
(2). In Figs (2a) and (2b), the dashed-dot curve at R
= 1.03 and the dashed curve at R = 1.0 reveal that 
the coexistence of both compressive and rarefactive 

solitary waves can be observed. On the other side, 
when R – 0.96159 (dotted curve) another feature of 
special interest arises, where compressive double-
layer and rarefactive solitary wave coexist.
Decreasing further slightly the value of R (R =
0.95), only rarefactive solitary waves may be 
observed. The bifurcation curves also illustrate that 
the amplitude of the rarefactive solitary waves is 
greater than those of compressive solitary waves. 
From above, one may conclude that the dust charge-
mass ratio R plays a significant role in formation of 
different types of nonlinear waves in this plasma 
system. The profiles of the different types of 
electrostatic solitary waves and the associated 
electric field are graphically shown in Figs (2c) and 
(2d), where the amplitude (width) decreases 
(increases) as R increases. This implies that the dust 
charge-mass ratio R would shrink the formation of 
nonlinear solitary waves.

Furthermore, in the same manner the effects of 
other configurational plasma parameters can be also 
achieved. However, the temperature ratio σ and the 
electron density ratio eµ have the same behavior as 
that of the dust charge-mass ratio R, where the 
amplitude (width) of the nonlinear solitary waves
decreases (increases) as σ and eµ increases as 
shown in Figs (3) and (4), respectively. In the 
contrary, the effect of the ion density ratio iµ has 
an opposite property, where the amplitude (width) 
of the nonlinear waves increases (decreases) with an 
increasing in iµ . This means that the nonlinear 
electrostatic solitary waves and the strength of the 
associated bipolar electric field get stronger by
increasing iµ , as shown clearly in Fig (5).

Finally, in order to see the impact of quantum 
index He, the bifurcation analysis is graphically 
plotted, Figs (6), for different values of He (He =
0.0, 1.0, 2.0, 3.0) where the other chosen parameters
are M = 1.25, R = 1.0, 0.6=σ , 0.4=eµ ,

0.2=iµ . Obviously, this analysis supports the 
coexistence of both compressive and rarefactive
solitary waves, where the amplitudes are nearly the 
same while the depth of the soliton decreases as He

increases, as evidently in Figs (6). In addition, the 
strength of the associated electric field increases 
slightly as He increases.
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(a) Sagdeev pseudo-potential )(φV (b) Phase portrait ζφ dd /

(c) electrostatic potential )(ζφ (d) electrostatic field )(ζΕ

Figure 1 – Nonlinear structure functions at different values 
of M for 0.1=R , 0.6=σ , 0.4=eµ , 0.2=iµ , 3.0=eH
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(a) Sagdeev pseudo-potential )(φV (b) Phase portrait ζφ dd /

(c) electrostatic potential )(ζφ (d) electrostatic field )(ζΕ

Figure 2 – Nonlinear structure functions at different values 
of R for 25.1=M , 0.6=σ , 0.4=eµ , 0.2=iµ , 3.0=eH
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(a) Sagdeev pseudo-potential )(φV (b) Phase portrait ζφ dd /

(c) electrostatic potential )(ζφ (d) electrostatic field )(ζΕ

Figure 3 – Nonlinear structure functions at different values 
of σ for 25.1=M , 0.1=R , 0.4=eµ , 0.2=iµ , 3.0=eH
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(a) Sagdeev pseudo-potential )(φV (b) Phase portrait ζφ dd /

(c) electrostatic potential )(ζφ (d) electrostatic field )(ζΕ

Figure 4 – Nonlinear structure functions at different values 
of eµ for 25.1=M , 0.1=R , 0.6=σ , 0.2=iµ , 3.0=eH
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(a) Sagdeev pseudo-potential )(φV (b) Phase portrait ζφ dd /

(c) electrostatic potential )(ζφ (d) electrostatic field )(ζΕ

Figure 5 – Nonlinear structure functions at different values 
of iµ for 25.1=M , 0.1=R , 0.6=σ , 0.4=eµ , 3.0=eH
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(a) Sagdeev pseudo-potential )(φV (b) Phase portrait ζφ dd /

(c) electrostatic potential )(ζφ (d) electrostatic field )(ζΕ

Figure 6 – Nonlinear structure functions at different values 
of eH for 25.1=M , 0.1=R , 0.6=σ , 0.4=eµ , 0.2=iµ
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Conclusions

In this work, we have considered a four-
component quantum dusty plasma consisting of 
positive and negative dust particulates, electrons and 
ions that are assumed to be quantum mechanical. In 
order to examine the fully arbitrary nonlinear waves 
in such plasma model, Sagdeev pseudo-potential 
method has been first employed. The inclusion of 
the quantum effect makes the mathematical 
manipulations difficult task. Therefore, we recall the 
bifurcation analysis to achieve this task graphically 
rather than analytically. Based on bifurcation 
analysis, one may be able to distinguish three types 
of nonlinear arbitrary amplitude waves, namely 
compressive solitons, rarefactive solitons and 
double-layers depending on the magnitude of the 
configurational plasma parameters. The effects of 
some relevant plasma parameters on the profile of 
electrostatic potential )(ζφ and the associated 
bipolar electric field )(ζE have been extensively 
studied. The nonlinear arbitrary solitary waves get 
stronger as the Mach number M and ion density 
ratio iµ increase, while the dust charge-mass ratio 
R, temperature ratio σ and electron density ratio eµ
have opposite properties. Additionally, the analysis 
reveal that, in a certain plasma configuration, the 
coexistence of both compressive and rarefactive 
solitary waves occurs, while double-layer and 
rarefactive soliton are found to coexist also. The 
existence of double-layer provides us the existence 
range of compressive waves, for example Mach 
number M value of double-layer can be viewed as 
the maximum range of compressive solitons. In 
other plasma configuration, the analysis shows that 
the double-layer is no longer exist and we have left 
only with arbitrary amplitude rarefactive solitary 
waves. It is also found that the quantum index He
influence the width of electrostatic potential profile 
only, while the amplitude remains nearly the same.

The present results of this work are applicable to 
investigate the dynamical characteristics of 
nonlinear waves in quantum space dusty plasmas.
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GAMMA-RADIATION-INDUCED ATTENUATION OF LIGHT IN PURE-SILICA CORE 
OPTICAL FIBER IN LONG-WAVELENGTH REGION

Abstract. The dependences of the spectra of radiation-induced attenuation (RIA) of light in a pure-
silica core (PSC) optical fiber (OF) during and after gamma-irradiation up to 590 kGy at a dose rate of 7.6 
Gy/s in the near infrared range have been investigated. It was shown that starting with an absorbed dose 
of ~100 kGy, the RIA at 1550 nm becomes larger than at 1310 nm due to an increase in long-wavelength 
(LWL) RIA. The absorption band, with a maximum at a wavelength near 1800 nm, responsible for the 
LWL RIA is fully defined for the first time. At an absorbed dose of 590 kGy at wavelengths of 1310 and 
1550 nm, the RIA is 14.1 and 23.3 dB/km, respectively. During 3.5 years of annealing of the OF at room 
temperature the RIA in the entire spectral range of 1100-1700 nm decreases by 40-50%. The LWL RIA 
can be complex, consisting of short-lived and long-lived components. The short-lived component may be 
LTIRA (low temperature infra-red absorption).

Key words: Optical fibers, radiation-induced attenuation, RIA, pure-silica core fiber, long-
wavelength RIA.

Introduction

Optical fibers (OF) have currently found wide 
application in various fields of science and 
technology from high-speed information 
transmission to fiber lasers and precision sensors of 
various physical quantities. Nevertheless, the use of 
OFs in nuclear and fusion installations, including 
the international experimental fusion reactor ITER, 
leads to degradation of their optical properties due 
to the appearance of additional radiation-induced 
attenuation (RIA) of light [1-4]. This phenomenon 
considerably limits the use of OF in conditions of 
increased radiation levels and, therefore, there is an 
urgent need to reduce RIA to an acceptable level for 
a particular application. 

It is known [5] that OFs will be used in the 
ITER diagnostic systems as transport from fiber-
optic sensors operating at a wavelength of λ=1550
nm. When exposed to ionizing radiation, the optical 
transmittance at this wavelength is significantly 
reduced due to the long-wavelength (LWL) RIA 
with a maximum at wavelengths λ>1600 nm.
Unfortunately, the physical nature and basic 
properties of this RIA remain questionable. It is 
worth noting that it is the LWL RIA that limits the 
radiation resistance of OF in applications in intense 
gamma-neutron fields and is a limiting factor for a 
wider implementation of OF in diagnostic and 
control systems in nuclear and fusion facilities. 
Therefore, the study of the mechanisms of 
occurrence and properties of long- wavelength RIA 
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is an important and urgent task for OF applications 
at increased levels of ionizing radiation, especially 
in strong radiation fields.

It is known that the most radiation-resistant are 
OFs with a pure silica core (PSC) and fluorine-
doped silica core [6]. During reactor irradiation, 
radiation color centers (RCCs) are formed in the 
glass network of a fiber core, which absorb the light 
signal propagating through the fiber at the operating 
wavelength. This is the main cause of the RIA. The 
relevant wavelength for many OF applications is 
telecommunication wavelengths of 1310-1550 nm.
RIA at these wavelengths is determined by the 
"tails" of the RCC absorption bands with maximums 
in the short-wavelength (SWL) and LWL regions. 
Since the majority of RCCs are located in the visible 
and UV range, the main works available in the 
scientific literature [1, 2, 7] are devoted specifically 
to the study of SWL RIA. And, thus, the main RCCs 
responsible for SWL RIA, the mechanisms of their 
formation, and their main properties are known. 
However, all these data are practically absent in the 
case of LWL RIA. In general, there are no papers on 
systematic studies of the properties of LWL RIA in 
the scientific literature.

It is only known that it is determined by the 
appearance of an absorption band with a maximum 
at a wavelength of λ>1700 nm [8]. The amplitude of 
this band grows monotonically with irradiation and 
becomes the main mechanism of RIA, limiting the 
radiation resistance in the near-infrared range at 
high absorbed doses [8-10], corresponding to 
applications in reactor facilities.

There are two main hypotheses about the nature 
of this RIA. The first one was formulated back in 
the late 1990s and consists in the fact that the LWL
RIA, according to the authors [11], is caused by 
changes in the vibrational spectra of the glass 
network due to the appearance of structural defects 
of the three-coordinated silicon atom type due to the 
breaking of regular Si-O bonds. However, in this 
case, the RIA would have to grow structureless with
increasing wavelength in the 1500-2500 nm
wavelength range, but subsequent work has shown 
that the absorption band of LWL RIA should reach 
a maximum at 1800-2200 nm [8], with its behavior 
similar to LTIRA (low temperature infrared-red 
absorption) [12, 13] of self-trapped holes (self-
trapped holes STH). Therefore, a number of papers 
[8, 9, 14] have suggested that this RIA is also 
caused by STH absorption. However, it is known 
that STH have extremely low thermostability [15], 

and LWL absorption is highly stable even at room 
temperature.

Hence, the lack of understanding of the physical 
nature of LWL RIA, the mechanisms of appearance 
and its properties is a weighty limiting factor for 
further implementation of fiber-optic controls in 
applications in intense radiation fields.

This work is devoted to a study of the behavior 
of LWL RIA in pure-silica-core OF during and after 
gamma irradiation in the near-infrared range.

Materials and Methods 

In Devyatykh Institutute of Chemistry of High-
Purity Substances of RAS a preform with a pure-
silica-core and a F-doped cladding with refractive 
index difference Δn~0.0095 (Figure 1) was made by 
MCVD (Modified Chemical Vapor Deposition). 
The reflective cladding (2 in Figure 1) contained 
about 2 wt% fluorine appearance.

An OF with an outer diameter of 125 µm in 
acrylate coating was drawn from the preform at the 
Dianov Fiber Optics Research Center of RAS. 
Optical loss at a wavelength of 1550 nm did not 
exceed 0.3 dB/km. The cutoff wavelength of the 
first higher mode was λc=1480 nm.

Investigations of optical loss in the initial and 
gamma-irradiated lightguide were performed by the 
"cut-off" technique in the range of 900-2100 nm 
using a spectral setup based on the MDR-12
monochromator, the light source was a halogen 
lamp.

To study the RIA spectra, 100 m of OF was 
wound on a plastic coil 160 mm in diameter and 100 
mm in height. The OF was irradiated with a 60Co γ-
source with an average gamma-quantum energy of 
1.25 MeV at a dose rate of 7.6 Gy/s. The entire 
irradiation process can be divided into two stages. In 
the first one, the OF was irradiated for 180 min 
followed by relaxation for 30 min. In the second 
one, the OF was irradiated for 1112 min followed by 
relaxation for 15 min. The irradiation was conducted 
at +25°C until the time of 1082 min, after which the 
temperature increased to +40°C when the ventilation 
was switched off.

Near-infrared spectra were recorded using an 
Avantes AvaNIR 128 spectrometer (900-1700 nm) 
with a HL-2000 halogen lamp as the light source. In 
the first stage of the irradiation, the recording step 
was 1 min, and in the second stage, 30 min, except 
for the second relaxation, where the step was also 1 
min. To minimize the photobleaching phenomenon, 
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the visible light was cut off using a λ>900 nm filter, 
so that the injected light power did not exceed 0.5 
μW. The absorbed dose for the whole irradiation 

was ~590 kGy. The spectra of total optical loss of 
the irradiated OF were taken after 3.5 years of 
irradiation.
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Figure 1 – Fiber refractive-index profile:
1- substrate tube, 2- F-doped reflective cladding, 3- pure silica core.

Results and Discussion

Figure 2 shows the dependence of RIA during 
irradiation and relaxation at wavelengths of 1310 
nm and 1550 nm. At the first stage of irradiation 
RIA (up to 180 min) at wavelength 1310 nm is 
greater than at 1550 nm. At the very beginning of 
gamma exposure there is a sharp increase in RIA up 
to absorbed dose ~3.7 kGy (point 1 on Figure 2), 
after that RIA begins to decrease, herewith so-called 
transient absorption is greater at 1310 nm, at 
maximum it reaches 17.5 dB/km.

The spectra (Figure 3a) show that this RIA is 
due to the absorption band with a maximum at 
wavelengths λ<1000 nm. This dependence of the 
RIA is standard for PSC OF [16-18]. This behavior 
is known to be characteristic of the absorption of 
self-trapped holes STH, which have absorption 
bands at 660 and 760 nm [15, 16]. The rapid 
relaxation after 180 min of irradiation is also due to 
the thermal decay of STH at room temperature 
because of their low thermal stability [15, 19].

We can see from the spectra (Figure 3a) that the 
SWL RIA tail from STH actually decreases during 
irradiation (spectra 1, 2) and relaxation (spectrum 
3). However, the spectra also show that the LWL
RIA begins to grow as well. The LWL RIA is due to 
the relaxation of loss at 1550 nm to a higher level 
(Figures 2 and 3a).

At the beginning of the second stage of 
irradiation we see a similar picture: RIA at 1310 nm 
increases sharply up to the level of 15 dB/km and 
then begins to decrease during irradiation (Figures 2 
and 3b). Starting with an absorbed dose of 96.7 kGy 
(242 min. in Figure 2) the RIA at 1550 nm 
wavelength already becomes larger than at 1310 nm. 
The spectra (Figure 3b) show that this is due to the 
fact that the LWL RIA begins to prevail over the 
SWL RIA. Similar RIA kinetics are also observed 
during reactor irradiation of OF [3,4], which 
suggests similar mechanisms for the appearance of 
LWL RIA during both gamma- and mixed gamma-
neutron irradiation.

Interesting is the behavior of RIA when the 
temperature increases from 25 to 40 °C (points 5-6
in Figure 2). It can be seen that there is a decrease in 
RIA caused by the thermal decay of the RCC. The 
spectra (Figure 3b) show that the SWL tail mainly
decreases, indicating the low thermal stability of 
STH. However, there is a small relaxation in the 
LWL region as well (Figure 2). Indeed, it was 
shown in [3] that increasing the temperature during 
reactor irradiation from 200 to 350 °C results in a 
15-30% decrease in RIA at the 1550 nm 
wavelength. Therefore, increasing the temperature 
can be used to reduce the LWL RIA.

After stopping irradiation at an absorbed dose of 
590 kGy for 15 minutes, relaxation of RIA occurs at 
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both wavelengths (Figure 2). From RIA spectra (Fig. 
3b) one can see that the SWL tail relaxes to a greater 
extent and the LWL one much less. At an absorbed dose 
of 590 kGy, the RIA at 1310 nm was 14.1 dB/km and 
23.3 dB/km at 1550 nm. After 15 minutes of relaxation, 
the RIA at 1310 and 1550 nm was 11.1 and 20.7 

dB/km, respectively. The presence of a fast relaxation 
component of the LWL absorption (Figure 3b) may 
indicate that the LWL RIA is complex, the fast 
component of which may be LTIRA (low temperature 
infra-red absorption) [12], whose maximum band also 
lies in the spectral region of λ>1700 nm.

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

1310 nm

7
6

5

4

3

1

T=40 oC

RI
A 

(d
B/

km
)

time (min)

irradiation off

T=25 oC

2

1550 nm

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Do
se

 (M
G

y)

I II

Figure 2 – RIA and dose (green curve) evolution with time of irradiation 
and post-irradiation recovery at wavelengths 1310 nm (red curve), 1550 nm (blue curve).
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Figure 4 shows the spectra of total and 
radiation-induced optical loss. From the spectra of 
total optical loss for the initial OF and irradiated to a 
dose of 590 kGy it is clear that in the LWL region 
starting from 2000 nm the spectra coincide (Figure
4). Similar spectra of initial and irradiated optical 
fibers were obtained in [10] for light guides with a 
germanium-doped core and in [8] for optical fibers 
with pure- and nitrogen-doped silica core. From the 
difference in the spectra of total loss of the 
irradiated and initial OF, we find the RIA spectrum, 
from which it is clear that an asymmetric band with 
a maximum at a wavelength near 1800 nm with a 
gentle SWL part and a steep decline in the LWL
part is responsible for the LWL absorption. Note 
that a similar RIA band was observed in [8], but the 
LWL decline of the RIA band was not prescribed.
Therefore, in this study, we observed the absorption 
band responsible for the LWL RIA in its full form 
for the first time.

This band is very similar to LTIRA by its 
maximum position and spectrum shape, which is 
caused by STH absorption [12]. The hypothesis 
that the LWL RIA belongs to LTIRA, as noted 
above, was previously stated in [9, 14, 20] and 
the obtained RIA spectrum (Fig.4) also supports 
this hypothesis. However, LTIRA is known to be 
stable only at low temperatures, while long-wave 
RIA is highly stable at room temperature.
Comparing the spectrum of RIA registered after 

15 min and after 3.5 years, we can see that after 
irradiation in the entire spectral range 1100-1700 
nm at room temperature, the relaxation of RIA 
occurs by only 40-50%. Despite the new 
information obtained on the behavior of long-
wave RIA, the question of determining the 
physical nature of LWL RIA and its main 
properties remains open.

Conclusion

The dependence of RIA in the PSC OF during 
and after gamma-irradiation up to 590 kGy at a dose 
rate of 7.6 Gy/s in the near-IR range has been 
investigated. The mechanisms affecting RIA in the 
near-infrared range have been established: 
absorption of STHs having bands with maximums at 
660 and 760 nm and LWL absorption.

It was shown that starting with an absorbed dose 
of ~100 kGy, the RIA at 1550 nm becomes larger 
than at 1310 nm because of the prevalence of LWL
RIA over STH absorption. For the first time, the 
absorption band, with a maximum at wavelength 
around 1800 nm, responsible for the LWL RIA is 
fully defined. At an absorbed dose of 590 kGy at 
wavelengths of 1310 and 1550 nm, the RIA is 14.1 
and 23.3 dB/km, respectively. During 3.5 years of 
annealing of the OF at room temperature the RIA in 
the entire spectral range of 1100-1700 nm decreases 
by 40-50%.
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ADIABATIC THEORY OF MOTION OF BODIES IN THE HARTLE-THORNE SPACETIME

Abstract: We study the motion of test particles in the gravitational field of a rotating and deformed 
object within the framework of the adiabatic theory. For this purpose, the Hartle-Thorne metric written in 
harmonic coordinates is employed in the post-Newtonian approximation where the adiabatic theory is 
valid. As a result, we obtain the perihelion shift formula for test particles orbiting on the equatorial plane 
of a rotating and deformed object. Based on the perihelion shift expression, we show that the principle of 
superposition is valid for the individual effects of the gravitational source mass, angular momentum and 
quadrupole moment. The resulting formula was applied to the inner planets of the Solar system. The 
outcomes are in a good agreement with observational data. It was also shown that the corrections related 
to the Sun's angular moment and quadrupole moment have little impact on the perihelion shift. On the 
whole, it was demonstrated that the adiabatic theory, along with its simplicity, leads to correct results, 
which in the limiting cases correspond to the ones reported in the literature.

Key words: adiabatic theory, the Hartle-Thorne metric, post-Newtonian approximation, harmonic 
coordinates, perihelion shift.

Introduction

In most cases, real astrophysical objects rotate 
and their shapes are different from a sphere.
Therefore, when one considers the motion of test 
particles in the gravitational field of real objects, it 
is necessary to account for the influence of both 
proper rotation and deformation of the source. A 
convenient way to consider the geometry of the 
source is to study its multipole moments of which 
the most important are the mass 𝑀𝑀𝑀𝑀, angular 
momentum 𝐽𝐽𝐽𝐽, and quadrupole moment 𝑄𝑄𝑄𝑄. The 
solution to the field equations for a static, 
spherically symmetric object in vacuum is well-
known in the literature as the Schwarzschild metric 
[1]. This solution describes new effects that could 
not be explained within the classical Newtonian 
theory of gravity [2, 3]. In 1918, Lense and Thirring 
derived an approximate external solution that takes 
into account the rotation of the source up to the first 
order in the angular momentum [4]. According to 

this work, rotation generates and additional 
gravitational field which leads to the dragging of 
inertial frames (known as the Lense-Thirring effect). 
In 1959, Erez and Rosen derived a solution for a 
static, axially symmetric object by including of a 
quadrupole parameter [5]. However, the first 
approximate solution that takes into account both 
angular momentum and quadrupole moment was 
found by Hartle and Thorne in 1968 [6, 7]. This 
solution allows us to investigate the external 
gravitational field of astrophysical objects, starting 
from massive main sequence stars up to neutron and 
quark stars [8]. It should be mentioned that there are 
several vacuum exact solutions to the Einstein field 
equation, which account for higher-order multipole 
moments with additional parameters such as electric 
charge, dilatonic charge, scalar fields, etc [9 – 12 ]. 
However, for simplicity, here we will focus on the 
approximate Hartle and Thorne solution and will 
study the motion of test bodies within the adiabatic 
theory.
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An interesting approach for studying the motion 
of test particles in general relativity was proposed 
by Abdildin [13, 14], by using the conceptual 
framework developed by Fock [15]. In Ref. [13], the 
Fock metric was generalized to consider the rotation 
of the source (up to the second order in the angular 
momentum) and its internal structure in the post-
Newtonian (~1/𝑐𝑐𝑐𝑐2) approximation, where 𝑐𝑐𝑐𝑐 is the 
speed of light in vacuum. This extended Fock metric 
was originally presented in harmonic coordinates, 
which facilitate the study of the motion of test 
particles by using the vectors associated to the 
trajectories. One of the most important 
consequences of Abdildin's works was the 
implementation of the adiabatic theory to study the 
motion of bodies in general relativity [14], which 
drastically simplifies the form of the equations of 
motion derived previously in [16, 17]. In this work, 
we will show this advantage explicitly for the 
motion of test particles in the gravitational field of a 
rotating deformed object.

The work is organized as follows. In Section 1, 
we introduce the basic concepts of the adiabatic 
theory. In Section 2, we present the external Hartle-
Thorne solution, which is then implemented in 
Section 3 within the framework of the adiabatic 
theory to obtain an expression for the perihelion 
shift. Then, in Section 4, we compute the shift for 
the inner planets of the Solar system. Finally, 
Section 5 contains the conclusions of our analysis.

Adiabatic theory

The application of adiabatic theory for the 
investigation of motion in general relativity, as 
proposed in [14]} for closed orbits, is based on the 
use of the vector elements of the orbits, asymptotic 
methods of the theory of nonlinear oscillations, and 
adiabatic invariants.

The main idea is that the motion can be 
described by a Lagrangian which is essentially the 
perturbation of a known Lagrangian. Consider, for 
instance, the Kepler problem for the motion of a 
relativistic particle in a central field. Then, 
corresponding perturbed Lagrangian function can be 
expressed as

𝐿𝐿𝐿𝐿 = −𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2 +
𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣2

2
+
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚0

𝑟𝑟𝑟𝑟
+ 𝐹𝐹𝐹𝐹(𝑟𝑟𝑟𝑟, 𝑣⃗𝑣𝑣𝑣),       (1)

where 𝐹𝐹𝐹𝐹 is the perturbation function. Accordingly, 
the corresponding Hamilton function is written as

𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2 −
𝑝𝑝𝑝𝑝2

2𝑚𝑚𝑚𝑚
−
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚0

𝑟𝑟𝑟𝑟
− 𝐹𝐹𝐹𝐹(𝑟𝑟𝑟𝑟, 𝑣⃗𝑣𝑣𝑣), (2)

where 𝑝⃗𝑝𝑝𝑝 = 𝜕𝜕𝜕𝜕𝐿𝐿𝐿𝐿/𝜕𝜕𝜕𝜕𝑣⃗𝑣𝑣𝑣 is the momentum of the test 
particle.

The motion of a test particle can be described by 
the orbital angular momentum vector 𝑀𝑀𝑀𝑀��⃗ and the 
Laplace-Runge-Lenz vector 𝐴𝐴𝐴𝐴, which are integrals 
of motion defined as:

𝑀𝑀𝑀𝑀��⃗ = [𝑟𝑟𝑟𝑟 × 𝑝⃗𝑝𝑝𝑝],                         (3)

𝐴𝐴𝐴𝐴 = �
𝑝⃗𝑝𝑝𝑝
𝑚𝑚𝑚𝑚

× 𝑀𝑀𝑀𝑀��⃗ � −
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟

𝑟𝑟𝑟𝑟,𝐴𝐴𝐴𝐴 = 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,      (4)

where 𝐴𝐴𝐴𝐴 is the magnitude (absolute value) of the 
Laplace-Runge-Lenz vector, 𝑟𝑟𝑟𝑟 is the radius vector of 
the test particle, 𝐺𝐺𝐺𝐺 is the gravitational constant, 𝑚𝑚𝑚𝑚0
is the mass of a gravitational source (central object), 
𝑚𝑚𝑚𝑚 is the mass of the test particle, and 𝑚𝑚𝑚𝑚 is the orbit 
eccentricity. The vectors 𝑀𝑀𝑀𝑀��⃗ and 𝐴𝐴𝐴𝐴 characterize the 
shape and position of the orbit in space. Namely, the 
vector 𝑀𝑀𝑀𝑀��⃗ is directed perpendicularly to the orbit 
plane and the vector 𝐴𝐴𝐴𝐴 is directed towards the 
perihelion of the orbit. Thus, one can write the 
equations of motion in a general form as follows:

𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀��⃗
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀�����⃗ + �Ω���⃗ × 𝑀𝑀𝑀𝑀��⃗ �,                   (5)

𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴���⃗ + �Ω���⃗ × 𝐴𝐴𝐴𝐴�,                       (6)

where 𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀�����⃗ , 𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴���⃗ are the unit vectors directed along 𝑀𝑀𝑀𝑀��⃗
and 𝐴𝐴𝐴𝐴, respectively, and Ω���⃗ is the angular velocity of 
rotation of the ellipse “as a whole”, which is the 
sought function in this theory. The explicit form of 
Ω���⃗ depends on the considered physical system. In 
Ref. [13], it is shown that the angular velocity can 
be computed as

Ω���⃗ =
𝜕𝜕𝜕𝜕𝐻𝐻𝐻𝐻�

𝜕𝜕𝜕𝜕𝑀𝑀𝑀𝑀��⃗
,                                  (7)

where 𝐻𝐻𝐻𝐻� is the Hamiltonian averaged over the 
period of the test particle's Keplerian orbit. The 
averaged Hamiltonian depends on the orbital 
angular momentum 𝑀𝑀𝑀𝑀��⃗ and the adiabatic invariant 
𝑀𝑀𝑀𝑀0 of the system
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𝑀𝑀𝑀𝑀0 =
𝑀𝑀𝑀𝑀

�1 − 𝐴𝐴𝐴𝐴2
𝛼𝛼𝛼𝛼2

.                             (8)

where 𝛼𝛼𝛼𝛼 = 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚.
The knowledge of the angular velocity Ω���⃗ allows 

us to investigate many relativistic effects without 
solving Eqs. (5) and (6) explicitly. The invariant (8) 
allows to write Eqs. (5) and (6) in a more compact 
form as

𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀��⃗
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀�����⃗ + �Ω���⃗ × 𝑀𝑀𝑀𝑀��⃗ �,                   (9)

𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴���⃗
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= �Ω���⃗ × 𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴���⃗ �,                      (10)

Thus, in the adiabatic theory, Eqs. (9) and (10) 
and the expression (7) are the mathematical basis for 

the investigation of the motion of bodies. In other 
words, these equations completely solve the 
problem of evolution in the quasi-Kepler problem.

In Fig. 1, we show the position of the vector 
elements and the proper angular momentum of the 
central object 𝐽𝐽𝐽𝐽, which is directed along the 𝑧𝑧𝑧𝑧 axis. 
Note that when 𝜃𝜃𝜃𝜃 = 𝜋𝜋𝜋𝜋/2 the directions of 𝑀𝑀𝑀𝑀��⃗ and 𝐽𝐽𝐽𝐽
coincide with the 𝑧𝑧𝑧𝑧 axis.

Hartle-Thorne metric

The Hartle-Thorne metric is an approximate 
vacuum solution of the Einstein field equations. It 
describes well enough the gravitational field of 
rotating deformed astrophysical objects and, 
therefore, it is chosen as an example in this work. Its 
general form (in geometric units 𝐺𝐺𝐺𝐺 = 𝑐𝑐𝑐𝑐 = 1) in 
spherical coordinates (𝑑𝑑𝑑𝑑,𝑅𝑅𝑅𝑅,Θ,𝜑𝜑𝜑𝜑) is given by

Figure 1 – Schematic illustration of a central object and a test particle 
with its vector elements, where 𝜃𝜃𝜃𝜃 is the polar angle between 

the 𝑧𝑧𝑧𝑧 axis and the radius vector 𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = −�1 −
2𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
� �1 + 2𝑘𝑘𝑘𝑘1𝑃𝑃𝑃𝑃2(cosΘ) − 2 �1 −

2𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
�
−1 𝐽𝐽𝐽𝐽2

𝑅𝑅𝑅𝑅4
(2 cos2Θ− 1)� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 +

+ �1 −
2𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
�
−1
�1 − 2�𝑘𝑘𝑘𝑘1 −

6𝐽𝐽𝐽𝐽2

𝑅𝑅𝑅𝑅4
�𝑃𝑃𝑃𝑃2(cosΘ) − 2 �1 −

2𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
�
−1 𝐽𝐽𝐽𝐽2

𝑅𝑅𝑅𝑅4
� 𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅2 +

+𝑅𝑅𝑅𝑅2[1 − 2𝑘𝑘𝑘𝑘2𝑃𝑃𝑃𝑃2(cosΘ)]�𝑑𝑑𝑑𝑑Θ2 + sin2Θ  𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑2� −
4𝐽𝐽𝐽𝐽
𝑅𝑅𝑅𝑅

sin2Θ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑,                             (11)
where

𝑘𝑘𝑘𝑘1 =
𝐽𝐽𝐽𝐽2

𝑚𝑚𝑚𝑚0𝑅𝑅𝑅𝑅3
�1 +

𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
� +

5
8
𝑄𝑄𝑄𝑄 − 𝐽𝐽𝐽𝐽2/𝑚𝑚𝑚𝑚0

𝑚𝑚𝑚𝑚0
3 𝑄𝑄𝑄𝑄22(𝑥𝑥𝑥𝑥),                                              (12)
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𝑘𝑘𝑘𝑘2 = 𝑘𝑘𝑘𝑘1 +
𝐽𝐽𝐽𝐽2

𝑅𝑅𝑅𝑅4
+

5
4
𝑄𝑄𝑄𝑄 − 𝐽𝐽𝐽𝐽2/𝑚𝑚𝑚𝑚0

𝑚𝑚𝑚𝑚0
2𝑅𝑅𝑅𝑅

�1 −
2𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
�
−1/2

𝑄𝑄𝑄𝑄21(𝑥𝑥𝑥𝑥)                                       (13)

are functions of the 𝑅𝑅𝑅𝑅 coordinate, and

𝑄𝑄𝑄𝑄21(𝑥𝑥𝑥𝑥) = (𝑥𝑥𝑥𝑥2 − 1)1/2 �
3𝑥𝑥𝑥𝑥
2

ln �
𝑥𝑥𝑥𝑥 + 1
𝑥𝑥𝑥𝑥 − 1

� −
3𝑥𝑥𝑥𝑥2 − 2
𝑥𝑥𝑥𝑥2 − 1

�,

𝑄𝑄𝑄𝑄22(𝑥𝑥𝑥𝑥) = (𝑥𝑥𝑥𝑥2 − 1) �
3
2

ln �
𝑥𝑥𝑥𝑥 + 1
𝑥𝑥𝑥𝑥 − 1

� −
3𝑥𝑥𝑥𝑥3 − 5𝑥𝑥𝑥𝑥
(𝑥𝑥𝑥𝑥2 − 1)2�                                                  (14)

are the associated Legendre functions of the second 
kind [18, 19], 𝑃𝑃𝑃𝑃2(cosΘ) is the Legendre 
polynomial, and 𝑥𝑥𝑥𝑥 = 𝑅𝑅𝑅𝑅/𝑚𝑚𝑚𝑚0 − 1. This metric is 
characterized by three parameters: the source mass 
𝑚𝑚𝑚𝑚0, angular momentum 𝐽𝐽𝐽𝐽 (up to the second order), 
and quadrupole moment 𝑄𝑄𝑄𝑄 (up to the first order).

The Hartle-Thorne metric describes the 
gravitational field of slowly rotating and slightly 
deformed astrophysical objects [20]. The metric [11] 
can be reduced by appropriate coordinate 
transformations to the Fock metric [21], to the Kerr 
metric [22], and to the Erez-Rosen metric [23, 24] in the 
corresponding limiting cases. For the purpose of this 
work, the metric [11] must be written in harmonic 
coordinates and expanded in a series of powers of 1/𝑐𝑐𝑐𝑐2.

Harmonic coordinates are important for many 
problems in general relativity [15]. Such coordinates 
are associated with the conditions under which 
spacetime is considered homogeneous and isotropic 
at large distances from the gravitational field source.
In turn, a consequence of the homogeneity and 

isotropy of the spacetime is the conservation of 
energy, momentum and angular momentum, which 
are in fact first integrals of the motion equations. In 
general, harmonic coordinates can be used in the 
study of gravitational fields generated by ordinary 
stars [25], black holes [26], as well as in the study of 
quantum gravity [27], supergravity [28], and in 
numerical relativity [29].

It should be emphasized that the geodesics in the 
Hartle-Thorne spacetime have been studied in the 
literature both analytically and numerically [30 –
32]. Here, unlike in the literature, we employ an 
alternative method to derive the perihelion shift 
formula in post-Newtonian physics.

Method

As already mentioned, in the present work we
need the Hartle-Thorne metric expanded in powers 
of 1/𝑐𝑐𝑐𝑐2. In harmonic coordinates it is written as 
follows [21, 33]:

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = �1 −
2𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0

𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟
+

2𝐺𝐺𝐺𝐺𝑄𝑄𝑄𝑄
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos𝜃𝜃𝜃𝜃) +
2𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0

2

𝑐𝑐𝑐𝑐4𝑟𝑟𝑟𝑟2
−

4𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0𝑄𝑄𝑄𝑄
𝑐𝑐𝑐𝑐4𝑟𝑟𝑟𝑟4

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃)� 𝑐𝑐𝑐𝑐2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 −

− �1 +
2𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0

𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟
−

2𝐺𝐺𝐺𝐺𝑄𝑄𝑄𝑄
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃)� [𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟2 + 𝑟𝑟𝑟𝑟2(𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃2 + sin2 𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑2)] +
4𝐺𝐺𝐺𝐺𝐽𝐽𝐽𝐽
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟

sin2 𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑,            (15)

This representation allows us to explicitly 
identify relativistic corrections. Thus, in the 𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
component of the metric tensor, the first three terms 
refer to the Newtonian theory and the last two terms 
to the relativistic theory because of the multiplier 𝑐𝑐𝑐𝑐2

outside the parenthesis. Moreover, terms 
proportional to 1/𝑐𝑐𝑐𝑐2 also appear in the spatial part 
of the metric.

Now, directly from the metric (15) one finds the 
Lagrange function of the test particle

𝐿𝐿𝐿𝐿 = −𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2 +
𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣2

2
+
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟

−
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) +
𝑚𝑚𝑚𝑚

2𝑐𝑐𝑐𝑐2
�
𝑣𝑣𝑣𝑣4

4
+

3𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑣𝑣𝑣𝑣2

𝑟𝑟𝑟𝑟
−
𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0

2

𝑟𝑟𝑟𝑟2
� +

 +
𝑚𝑚𝑚𝑚

2𝑐𝑐𝑐𝑐2
�−

3𝐺𝐺𝐺𝐺𝑣𝑣𝑣𝑣2𝑄𝑄𝑄𝑄
𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) +
2𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0𝑄𝑄𝑄𝑄

𝑟𝑟𝑟𝑟4
𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) −

4𝐺𝐺𝐺𝐺�𝑣⃗𝑣𝑣𝑣 ∙ �𝑟𝑟𝑟𝑟 × 𝐽𝐽𝐽𝐽��
𝑟𝑟𝑟𝑟3

� ,                        (16)
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and besides

𝑣⃗𝑣𝑣𝑣 =
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

, 𝑣𝑣𝑣𝑣2 =
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟2 + 𝑟𝑟𝑟𝑟2(𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃2 + sin2 𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑2)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2
. (17)

Only in harmonic and isotropic coordinates, it is 
possible to write the linear velocity in the form 
indicated above.

Next, it is necessary to derive the Hamiltonian, 
which we will subsequently average. The expression 
to determine the Hamilton function is given as [34]:

𝐻𝐻𝐻𝐻 = (𝑝⃗𝑝𝑝𝑝 ∙ 𝑣⃗𝑣𝑣𝑣) − 𝐿𝐿𝐿𝐿,                       (18)

First, we look for the form of the generalized 
momentum 𝑝⃗𝑝𝑝𝑝. Thus,

𝑝⃗𝑝𝑝𝑝 =
𝜕𝜕𝜕𝜕𝐿𝐿𝐿𝐿
𝜕𝜕𝜕𝜕𝑣⃗𝑣𝑣𝑣

= �1 +
𝑣𝑣𝑣𝑣2

2𝑐𝑐𝑐𝑐2
+

3𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0

𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟
−

3𝐺𝐺𝐺𝐺𝑄𝑄𝑄𝑄
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃)�𝑚𝑚𝑚𝑚𝑣⃗𝑣𝑣𝑣 −
2𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟3

�𝑟𝑟𝑟𝑟 × 𝐽𝐽𝐽𝐽�.                         (19)

Taking into account (16) – (19), the Hamiltonian takes the following form:

𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2 +
𝑝𝑝𝑝𝑝2

2𝑚𝑚𝑚𝑚
−
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟

+
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) −
𝑝𝑝𝑝𝑝4

8𝑐𝑐𝑐𝑐2𝑚𝑚𝑚𝑚3 −
3𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑝𝑝𝑝𝑝2

2𝑐𝑐𝑐𝑐2𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+

+
𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0

2𝑚𝑚𝑚𝑚
2𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟2

+
3𝐺𝐺𝐺𝐺𝑄𝑄𝑄𝑄𝑝𝑝𝑝𝑝2

2𝑐𝑐𝑐𝑐2𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟3
𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) −

𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚𝑄𝑄𝑄𝑄
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟4

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) +
2𝐺𝐺𝐺𝐺�𝑝⃗𝑝𝑝𝑝 ∙ �𝑟𝑟𝑟𝑟 × 𝐽𝐽𝐽𝐽��

𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟3
.                     (20)

For simplicity, we consider the motion of test 
particle on the equatorial plane, i.e., 𝜃𝜃𝜃𝜃 = 𝜋𝜋𝜋𝜋/2. Now, 
according to the adiabatic theory, we should average 
each term in (20) over the period 𝑇𝑇𝑇𝑇, where the 
average of a function 𝑓𝑓𝑓𝑓 is defined as:

𝑓𝑓𝑓𝑓̅ =
1
𝑇𝑇𝑇𝑇
� 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇

0
.                       (21)

In this work, for convenience, averaging is 
carried out using the non-relativistic orbital angular 
momentum 𝑀𝑀𝑀𝑀 in polar coordinates

𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟2
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

,                        (22)

which allows us to change from an integral over 𝑑𝑑𝑑𝑑 to 
and integral over 𝜑𝜑𝜑𝜑. Here, we use the solution to the 
Kepler problem [34]

𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃

1 + 𝑚𝑚𝑚𝑚 cos𝜑𝜑𝜑𝜑
, 0 < 𝜑𝜑𝜑𝜑 < 2𝜋𝜋𝜋𝜋,               (23)

where 𝑚𝑚𝑚𝑚 is the orbit eccentricity as before, 𝑃𝑃𝑃𝑃 is the 
semilactus rectum, and 𝜑𝜑𝜑𝜑 is the polar angle. 
Therefore, it turns out that

𝑓𝑓𝑓𝑓̅ =
1
𝑇𝑇𝑇𝑇
� 𝑓𝑓𝑓𝑓(𝜑𝜑𝜑𝜑)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑

𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
2𝜋𝜋𝜋𝜋

0
=

=
𝑚𝑚𝑚𝑚
𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀

� 𝑓𝑓𝑓𝑓(𝜑𝜑𝜑𝜑)𝑟𝑟𝑟𝑟2𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
2𝜋𝜋𝜋𝜋

0
.                   (24)

In addition, to average terms in Eq. (20) with the 
momentum 𝑝⃗𝑝𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑣⃗𝑣𝑣𝑣, we use the following form of 
the test particle velocity:

𝑣⃗𝑣𝑣𝑣 =
𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃

{−𝚤𝚤𝚤𝚤 sin𝜑𝜑𝜑𝜑 + 𝚥𝚥𝚥𝚥(𝑚𝑚𝑚𝑚 + cos𝜑𝜑𝜑𝜑)}.        (25)

It is also important to mention that one is free to 
choose the direction of the central body rotation. For 
simplicity and practical purposes, it is preferred to 
align it along the 𝑧𝑧𝑧𝑧 axis as 𝐽𝐽𝐽𝐽 = 𝐽𝐽𝐽𝐽𝑘𝑘𝑘𝑘�⃗ . For a test particle 
moving in the equatorial plane, its orbital angular 
momentum direction coincides with the proper 
angular momentum of the central body, i.e., 𝑀𝑀𝑀𝑀��⃗ ↑↑ 𝐽𝐽𝐽𝐽,
hence 𝑀𝑀𝑀𝑀��⃗ = 𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘�⃗ .

Applying Eq. (21) to each term in Eq. (20) and 
using the formula for the period 𝑇𝑇𝑇𝑇 = 2𝜋𝜋𝜋𝜋𝑀𝑀𝑀𝑀0

3

𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼2
[34], one 

obtains the averaged Hamilton function:
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𝐻𝐻𝐻𝐻� = 𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2 −
𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼2

2𝑀𝑀𝑀𝑀0
2 −

3𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼4

𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0
3𝑀𝑀𝑀𝑀

+
15𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼4

8𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0
4 +

2𝑚𝑚𝑚𝑚2𝛼𝛼𝛼𝛼4𝐽𝐽𝐽𝐽
𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0

3𝑀𝑀𝑀𝑀2 −

−
𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼4𝑄𝑄𝑄𝑄

2𝑚𝑚𝑚𝑚0𝑀𝑀𝑀𝑀0
3𝑀𝑀𝑀𝑀3 −

3𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼6𝑄𝑄𝑄𝑄
2𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0

3𝑀𝑀𝑀𝑀5 +
5𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼6𝑄𝑄𝑄𝑄

4𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0
5𝑀𝑀𝑀𝑀3 .                                                 (26)

As expected, the averaged Hamiltonian depends 
on the adiabatic invariant 𝑀𝑀𝑀𝑀0 and the orbital angular 
momentum 𝑀𝑀𝑀𝑀. The next step is to find the form of 

the angular velocity Ω���⃗ . For this, according to Eq. 
(7), we need to take the partial derivative of 𝐻𝐻𝐻𝐻� with 
respect to 𝑀𝑀𝑀𝑀��⃗ . The result is the following:

Ω���⃗ = �
3𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼4

𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0
3𝑀𝑀𝑀𝑀2 −

4𝑚𝑚𝑚𝑚2𝛼𝛼𝛼𝛼4𝐽𝐽𝐽𝐽
𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0

3𝑀𝑀𝑀𝑀3 +
3𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼4𝑄𝑄𝑄𝑄

2𝑚𝑚𝑚𝑚0𝑀𝑀𝑀𝑀0
3𝑀𝑀𝑀𝑀4 +

15𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼6𝑄𝑄𝑄𝑄
2𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0

3𝑀𝑀𝑀𝑀6 −
15𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼6𝑄𝑄𝑄𝑄

4𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0
5𝑀𝑀𝑀𝑀4� 𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀�����⃗ .                   (27)

Finally, to find the perihelion shift angle ∆𝑔𝑔𝑔𝑔, we 
multiply the angular velocity module Ω���⃗ by the 
orbital period 𝑇𝑇𝑇𝑇 of a test particle. Thereby, we get 
the form:

∆𝑔𝑔𝑔𝑔 =
6𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0

𝑐𝑐𝑐𝑐2𝑃𝑃𝑃𝑃
−

8𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃

+

+
3𝜋𝜋𝜋𝜋𝑄𝑄𝑄𝑄
𝑚𝑚𝑚𝑚0𝑃𝑃𝑃𝑃2

+
15𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(1 + 𝑚𝑚𝑚𝑚2)

2𝑐𝑐𝑐𝑐2𝑃𝑃𝑃𝑃3
,             (28)

where 𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀2/𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼 = 𝑎𝑎𝑎𝑎(1 − 𝑚𝑚𝑚𝑚2), 𝑎𝑎𝑎𝑎 is the semi-
major axis of the orbit.

From Eq. (28), we can see that for the 
considered problem the principle of superposition of 
effects is valid due to the approximate character of 
the solution as given in terms of the source mass, 
angular momentum and quadrupole moment. The 
first term corresponds to the solution of the 
Schwarzschild problem (i.e., due to the curvature of 
spacetime caused by the mass of the central body); 
the second term arises as a result of accounting for 
the rotation of the source (it appears as the frame 
dragging effect – the Lense-Thirring effect); the 
third term is the classical correction due to the 
quadrupole moment, as a consequence of the source 
deformation; and the fourth term is the relativistic 
correction for the quadrupole moment.

It should be noted, that the effect of perihelion 
shift (rotation) in the Schwarzschild problem is 
associated with the appearance in the Hamiltonian 
of the dependence on orbital momentum 𝑀𝑀𝑀𝑀. In 
classical mechanics, i.e., in the Kepler problem, 

there is no such dependence and the perihelion 
remains motionless.

Furthermore, the resulting expression (28) for 
the perihelion shift in the limits

• 𝐽𝐽𝐽𝐽 = 0,𝑄𝑄𝑄𝑄 = 0 reduces to the Schwarzschild 
case [14, 35];

• 𝐽𝐽𝐽𝐽 ≠ 0 (𝐽𝐽𝐽𝐽2 = 0),𝑄𝑄𝑄𝑄 = 0 reduces to the Lense-
Thirring effect [14, 35];

• 𝐽𝐽𝐽𝐽 = 0,𝑄𝑄𝑄𝑄 ≠ 0 reduces to the case c of a static 
deformed source [36];

• 𝐽𝐽𝐽𝐽 ≠ 0 (𝐽𝐽𝐽𝐽2 ≠ 0),𝑄𝑄𝑄𝑄 ≠ 0 reduces to the case of 
the external Fock’s metric [33].

To be more precise, in the extended Fock metric 
𝑄𝑄𝑄𝑄 = κ 𝐽𝐽𝐽𝐽2

𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2
, different values of κ, correspond to the 

following limiting cases (in the ~1/𝑐𝑐𝑐𝑐2
approximation):

• at κ = 1 for the Kerr metric;
• at κ = 4/7 for the liquid body metric;
• at κ = 15/28 for the solid body metric.
When comparing, one must keep in mind that in 

Ref. [14] the angular momentum of the central body 
is denoted by 𝑆𝑆𝑆𝑆0 = 𝐽𝐽𝐽𝐽 and quadrupole moment in 
[36] is denoted by 𝐷𝐷𝐷𝐷, which is linked with 𝑄𝑄𝑄𝑄 of this 
work by 𝑄𝑄𝑄𝑄 = −𝐷𝐷𝐷𝐷/2.

Analysis of the results

Now we apply Eq. (28) to estimate the 
perihelion shift of the Solar system inner planets: 
Mercury, Venus and Earth. For calculations, we use 
the Sun mass, radius, angular momentum and 
quadrupole moment. The test body is a planet so 
that its shape and size are not taken into account. 
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Usually, the quadrupole parameter 𝐽𝐽𝐽𝐽2 is chosen 
instead of the quadrupole moment 𝑄𝑄𝑄𝑄. There is a 
straightforward relation between them [35]:

𝐽𝐽𝐽𝐽2 =
𝑄𝑄𝑄𝑄

4𝑚𝑚𝑚𝑚0𝑅𝑅𝑅𝑅2
,                         (29)

where 𝑚𝑚𝑚𝑚0, 𝑅𝑅𝑅𝑅 are the Sun mass and radius, 
correspondingly. The last experimentally measured 
value of the solar quadrupole parameter is given in 
[37] as 𝐽𝐽𝐽𝐽2 = (2.25 ± 0.9) ∙ 10−7. As for the Sun 
angular moment, unfortunately, there are no values 
in the literature based on observational and 
experimentally studied data. Therefore, to find it, we 
can use the general formula for the angular 
momentum [34]:

𝐽𝐽𝐽𝐽 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,                              (30)
where 𝐼𝐼𝐼𝐼 is the angular velocity of a body rotating 
around its axis and 𝐼𝐼𝐼𝐼 = 2

5
𝑚𝑚𝑚𝑚0𝑅𝑅𝑅𝑅2 is the moment of 

inertia of a sphere. It should be noted that the 
rotation of the Sun is differential, i.e., it decreases 
with the distance from the equator to the poles. 
However, as an example, one can choose the value 
of the angular velocity on the equator 𝐼𝐼𝐼𝐼 = 2.9 ∙
10−6 rad/s [38]. So, the Sun angular momentum is 
approximately 𝐽𝐽𝐽𝐽 = 2.79 ∙ 1042 kg ∙ m2/s.

Table 1 presents the orbital parameters of Mercury, 
Venus, and the Earth [39, 40]. Moreover, all the 
corrections given in Eq. (28) are calculated separately to 
estimate the individual contribution of each effect. All 
values are calculated for 100 Earth years.

Table 1 – Orbital parameters and perihelion shift angles of Mercury, Venus, and the Earth

Planets Mercury Venus Earth
Semi-major axis, 𝑎𝑎𝑎𝑎 (km) 57909082 108208600 149597870

Eccentricity, 𝑚𝑚𝑚𝑚 0.2056 0.0068 0.0167
Semilactus rectum, 𝑃𝑃𝑃𝑃 (km) 55460308 108203681 149556105

Sidereal period, 𝑇𝑇𝑇𝑇 (earth day) 87.968 224.6950 365.242
6𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0/𝑐𝑐𝑐𝑐2𝑃𝑃𝑃𝑃 43`` 8.63`` 3.84``

8𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺/𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 0.116`` 0.017`` 0.006``
3𝜋𝜋𝜋𝜋𝑄𝑄𝑄𝑄/𝑚𝑚𝑚𝑚0𝑃𝑃𝑃𝑃2 0.03`` 0.003`` 0.001``

Observational data (43.11±0.45)`` (8.4±4.8)`` (5.0±1.2)``

As can be seen from Table 1, the Mercury orbit 
has the largest value of the perihelion shift. This is 
due to several factors. Firstly, Mercury is closer than 
other planets to the Sun and, therefore, is more 
influenced by its gravitational field. Secondly, 
Mercury rotates around the Sun faster (in one 
hundred Earth years, it makes about 415 
revolutions, while Venus makes about 162 
revolutions, only).

As for Mercury, Venus and the Earth, a 
significant contribution to the perihelion shift is 
made by the effect related to the Sun mass. 
Compared to this, the correction due to the Sun 
rotation for all three planets has less of an impact; 
the classical quadrupole moment correction is even 
less than the latter. In this case, the relativistic 
quadrupole moment correction 15𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(1 + 𝑚𝑚𝑚𝑚2)/
2𝑐𝑐𝑐𝑐2𝑃𝑃𝑃𝑃3 is negligible in magnitude, so its contribution 
can be ignored for the Solar system.

The calculated values are in good agreement 
with the observational data. According to 
observations, the measurement error for Mercury is 
0.45``, for Venus is 4.8``, and for the Earth is 1.2``. 

This is due to the fact that the perihelion shift is 
more certain for orbits with a large eccentricity (as 
for Mercury). If the orbit is close to circular in shape 
(as for Venus), it becomes much more difficult to 
observe the displacement of its perihelion.

Conclusion
In this article, we considered the motion of test 

particles in the gravitational field of a slowly 
rotating and slightly deformed object within the 
framework of the adiabatic theory. For this purpose, 
the Hartle-Thorne metric was used, expanded in a 
series in powers of ~ 1/c2, and written in harmonic 
coordinates.

The perihelion shift expression was derived for
the Hartle-Thorne metric. The influence of the 
central body rotation and deformation on the test 
particles trajectory was shown. It was also 
demonstrated that the resulting formula satisfies the 
principle of superposition of relativistic effects due 
to the approximate character of the solution as given 
in terms of the source mass, angular momentum and 
quadrupole moment. In the limiting cases, the 
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perihelion shift formula corresponds to the values 
presented in literature.

As an example, the results of this work were 
applied to the inner planets of the Solar system. As 
expected, the main influence on the planets motion 
is exerted by the curvature of spacetime related to 
the Sun mass. Although taking into account the Sun 
rotation and deformation has a minor role, the 
obtained formula for the perihelion shift can be 
applied to exoplanetary or other relativistic systems, 
where their contribution may be more significant.

It would also be interesting to study the motion 
of test particles in the non-equatorial plane applying 
both perturbation and adiabatic theories. This task 
will be considered in future studies.
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Abstract. The paper presents the results of a study of the effect of thermal annealing on the phase 
transformations and subsequent ordering of the magnetic texture and superfine magnetic parameters in 
Fe3O4/Nd2O3 nanocomposites obtained by chemical deposition and subsequent mechanochemical 
synthesis. X-ray phase analysis and Mössbauer spectroscopy were used to characterize the properties of the 
obtained Fe3O4/Nd2O3 nanocomposites. Thermal annealing was carried out in an oxygen-containing 
medium in the temperature range of 400°C – 1000°C for 5 hours followed by cooling for 24 hours until 
reaching room temperature. The phase transformation dynamics of Fe2O3/NdFeO3 → NdFeO3 >>Fe2O3→ 
NdFeO3 type was established using X-ray phase analysis. According to the data of Mössbauer spectroscopy 
it was established that the domination of the NdFeO3 phase in the nanocomposite structure at annealing 
temperatures above 800°С leads to an ordering of the magnetic texture and an increase in the value of the 
superfine magnetic field to 502.8 kE, approaching the values characteristic of the Fe2O3 structure (513 kE). 

Key words: magnetic nanocomposites, thermal annealing, structural ordering, Mössbauer 
spectroscopy, phase transformaitons.

Introduction

One of the important conditions for the practical 
application of magnetic nanocomposites or 
nanoparticles as the basis for magnetic sensors, 
catalysts for the decomposition of organic dyes, or 
purification of aqueous media from heavy metals is 
knowledge of the ultrafine magnetic parameters and 
their correlation between the degree of structural
ordering, phase composition, and magnetic 
characteristics [1-5]. In most cases, the magnetic 
properties of nanocomposites are strongly dependent 
on the phase composition, as well as on the presence 
of disordered regions in the structure related to the 
processes of particle formation during synthesis. As 
a rule, the formation of nanostructures proceeds due 
to non-equilibrium processes and is accompanied by 
the formation of metastable states, leading to 
distortion and deformation of the crystal lattice [4-7]. 
As a result, these deformations lead to the formation 
of vacancy defects, or voids, in the structure, which 
negatively affect the domain structure and superfine 
parameters. Dopants, which are used to modify and 
enhance the performance of the investigated

composites, also play an important role in the 
magnetic properties of nanocomposites, especially of 
complex compositions. The introduction of dopant 
into the structure may be accompanied by partial 
substitution of atoms in the lattice nodes, thereby 
deforming not only the crystal structure, but also 
changing the magnetic properties and the nearest 
environment of the atoms [8,9]. As a rule, doping or 
substitution of atoms occurs during the formation of 
nanocomposites, including the initiation of phase 
transformations processes as a result of external 
influence, one of which is thermal annealing at 
increased temperatures [10-12].

During thermal annealing, the main effect of 
changing the properties of materials is associated 
with a change in the value of thermal vibrations of 
atoms, which leads to an increase in their mobility 
and the possibility of filling the voids formed during 
synthesis with free atoms, which in turn leads to both 
ordering and the formation of new phases. Moreover, 
thermal annealing has a great influence on the change 
in the stoichiometric ratio of the elements at high 
temperatures, which is associated with a partial 
displacement of oxygen from the structure, which 
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mailto:kozlovskiy.a@inp.kz


92 Effect of thermal annealing on phase transformations and ordering of the magnetic texture ...

Int. j. math. phys. (Online)                                   International Journal of Mathematics and Physics 13, №1, 91 (2022)

leads to an increase in the contributions of metals to 
the stoichiometry of nanocomposites. Therefore, in 
spite of the large number of scientific works and 
previous studies in this direction, there are still many 
unresolved questions in this direction related to the 
study of the effect of structural features and phase 
composition [13-20] changing as a result of thermal 
annealing in the Fe3O4/Nd2O3-based 
nanocomposites, the interest in which is due to their 
great potential for application as photocatalysts, 
absorbents for water purification and biomedical 
applications, including hyperthermia [15-20].

The aim of this work is to establish the correlation 
between the degree of structural ordering and phase 
transformations in Fe3O4/Nd2O3 nanocomposites 
with the parameters of the superfine magnetic 
structure as well as the value of the superfine 
magnetic field.

Experimental part

The synthesis of Fe3O4/Nd2O3 nanocomposites 
was conducted in two stages. The first stage included 
chemical precipitation of Fe3O4 nanoparticles from 
iron chloride solutions followed by reduction in the 
form of chemical precipitate, purification from 
impurities by washing and drying. The second stage 
consists of mechanochemical mixing of Fe3O4

nanoparticles obtained by chemical precipitation 
with Nd2O3 nanoparticles. The mechanochemical 
synthesis was carried out using a PULVERISETTE 6 
planetary mill (Fritsch, Germany), with a grinding 
speed of 400 rpm and grinding time of 1 hour. For 
mixing, Fe3O4 and Nd2O3 were used in a 1:1 ratio. 
The resulting mixture was removed from the stirring 
cup made of tungsten carbide and placed in sealed 
flasks to avoid oxidation processes.

Thermal annealing was chosen to initiate the 
processes of phase transformations in the synthesized 
structures, since according to the X-ray phase 
analysis in the initial state the obtained mixture is an 
amorphous-like structures without a pronounced 
crystalline phase. Thermal isochronous annealing 
was carried out in a SNOL muffle furnace (SNOL, 
Russia) in the temperature range of 400-1000°C for 5 
hours followed by cooling the samples together with 
the furnace for 24 hours until reaching room 
temperature. The choice of the temperature range is 
due to the processes of phase transformations 
initiated in this range, which makes it possible to 
study them in more detail.

The phase composition of the investigated 
Fe3O4/Nd2O3 nanocomposites was studied by X-ray 
phase analysis realized on an X-ray diffractometer 
D8 Advance Eco (Bruker, Germany). Diffractograms 
were taken in Bragg-Brentano geometry, in the 
angular range of 2θ=25-75°. The diffractograms were 
interpreted using the Diffrac EVA v.4.2 software 
code.

The superfine magnetic field parameters of 
synthesized Fe3O4/Nd2O3 nanocomposites were 
studied by Mössbauer spectroscopy. The 
measurements were carried out on a MS1104Em 
spectrometer (Rostov-on-Don, Russia). A 57Co 
source in the Rh matrix was used as a gamma ray 
source. Mössbauer spectra were taken at room 
temperature. Decoding was performed using the 
SpectrRelax software code.

Results and discussion

For the dynamics of phase transformations in 
Fe3O4/Nd2O3 nanocomposites as a function of 
thermal annealing temperature, the X-ray phase 
analysis method was applied to determine the phase 
composition of the investigated structures. The 
change in phase composition reflects the processes of 
phase transformations as well as the mechanisms 
accompanying the change in the properties of the 
materials depending on the conditions of external 
influences. The results are presented as a series of 
diffractograms of the studied Fe3O4/Nd2O3

nanocomposites in Figure 1. The general view of the 
obtained diffractograms reflects not only the change 
in the phase composition of the studied structures, but 
also the processes associated with the deformation 
and ordering of the crystal structure depending on the 
annealing temperature. At an annealing temperature 
of 400°С two phases were observed in the structure 
of nanocomposites: Fe2O3 with a rhombohedral 
lattice type and NdFeO3 with an orthorhombic lattice 
type. The ratio of these phases in the structure is close 
to the ratio of 1:1. However, the analysis of the shape 
of the lines indicates a strong disorder of the crystal 
structure, as well as its unformed and the presence of 
a large number of amorphous inclusions in the 
structure. The presence of the Fe2O3 phase in the 
nanocomposite structure is characteristic for phase 
transformations of the Fe3O4 → Fe2O3 type occurring 
at sintering temperatures above 300°C. At the same 
time in the temperature range of 300-500°С this 
phase is strongly disordered due to the 
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incompleteness of the phase formation processes.
The presence of the NdFeO3 phase in the structure of 
nanocomposites is due to the processes of 
mechanochemical synthesis and subsequent thermal 
annealing, leading to a partial replacement of iron 
ions by neodymium ions in the nodes of the crystal 
lattice, due to the presence of Nd2O3 in the structure.

Increasing the annealing temperature to 600°С 
leads to an increase in the contribution of the NdFeO3
phase in the structure, which indicates the processes 
of substitution and partial displacement of the Fe2O3

phase. In this case, the Fe2O3/NdFeO3 phase ratio 
according to the X-ray phase analysis is 35/65 with 
NdFeO3 dominance. It can also be noted that thermal 
annealing leads to an increase in the contribution of 
structural ordering expressed in a change in the shape 
of diffraction lines and a decrease in their asymmetry, 
which indicates ordering and a decrease in strain 
stresses. This ordering is due to the processes of 
thermal annealing of point defects and filling of 

vacancies, as well as a change in the ratio of phases 
in the composite under study, which indicates an 
ordering of the structure.

At a temperature of 800°С the process of phase 
transformations of the type NdFeO3 >>Fe2O3→ 
NdFeO3 ends with the complete dominance of the 
NdFeO3 phase and the displacement of the Fe2O3

phase. Meanwhile, changes in the shape of the 
diffraction lines, indicating ordering of the structure, 
are also observed. This process is due to the fact that 
for magnetic nanoparticles based on iron oxide, at 
temperatures above 600°C the processes of phase 
transformations stop, and further change in annealing 
temperature leads only to structural ordering 
accompanied by enlargement of particle size and 
change in their geometry. In this connection, the 
presented results of X-ray diffraction of the studied 
samples at 1000°С indicate ordering processes, and 
are expressed in clear symmetric diffraction reflexes, 
characteristic of highly ordered crystal structures.

Figure 1 – Dynamics of X-ray diffractograms of the studied Fe3O4/Nd2O3 nanocomposites.

Figure 2 shows the results of measuring 
Mössbauer spectra of the studied Fe3O4/Nd2O3

nanocomposites obtained by mechanochemical 
synthesis by grinding the initial components in the 
ratio 1:1 and subsequent thermal isochronous 
annealing in the temperature range of 400-1000°C for 

5 hours. According to the general concepts, the 
obtained spectra can be characterized by the presence 
of a quadrupole doublet, characteristic of the 
disordered structure, and a Zeeman sextet, 
characterizing the magnetically ordered component 
of nanocomposites.
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а)

b)

c)

d)

Figure 2 – Mössbauer spectroscopy results of the samples annealed at different temperatures: 
(a) 400°C; (b) 600°C; (c) 800°C; (d) 1000°C.
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The general appearance of the obtained spectra 
depending on the annealing temperature is 
characterized by two types of changes. The first type 
is characterized by changes in the intensities of the 
partial spectra lines characteristic of the doublet and 
sextet, which indicates changes in the intensities of 
the contributions characteristic of the ordered and 
disordered magnetic structure in nanocomposites. 
This behavior is caused by a change in the 
concentration of point defects in the structure due to 
their partial annealing and subsequent annihilation, 
which leads to an ordering of the structure. Figure 3 
shows the results of changes in the contribution 
intensities for the doublet and sextet as a function of 
the annealing temperature of the nanocomposites.

As can be seen from the presented data, an 
increase in the annealing temperature of 
nanocomposites leads to an increase in the 
contribution of the zeeman sextet characteristic of an 

ordered magnetic structure, while at temperatures 
above 800°C a complete displacement of the 
quadrupole doublet is observed, which indicates 
structure ordering, and the absence of disordered 
areas related to amorphization or destruction of 
samples. The second type of changes is associated 
with changes in the shape and width of spectral lines, 
indicating ordering of the superfine magnetic 
parameters with increasing structural ordering of the 
synthesized composites. The decrease in the 
contribution from the quadrupole doublet 
characteristic of the disordered regions confirms the 
results of the X-ray phase analysis of the investigated 
samples.

Figure 4 shows the results of the relationship 
between the magnitude of structural ordering
according to X-ray diffraction data and the ratio of 
intensities (1-Idoublet/Isextet), which characterizes the 
degree of magnetic ordering in the structure.
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Figure 3 – Change of the ratio of Zeeman sextet and quadrupole doublet intensities.
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Figure 4 – Results of changes in the values of structural and magnetic ordering.

As can be seen from the presented data, an increase 
in the annealing temperature leads to structural and 
magnetic ordering by a similar mechanism, consisting 
in the fact that a decrease in the defect fraction in the 
structure due to substitution processes and subsequent 
formation of the NdFeO3 phase leads to an increase in 
the degree of crystallinity and a decrease in amorphous 
inclusions in the structure. In turn, the reduction of the
contribution in the Mössbauer spectra of the quadrupole 

doublet, which is characteristic of the paramagnetic 
state of the substance, indicates an ordering of the 
magnetic texture, as well as a change in the value 
characteristic of the superfine magnetic field. Figure 5 
shows the results of the relationship between the change 
in the value of the structural ordering of the crystal 
lattice of the phases under study and the value of the 
superfine magnetic field characteristic of the Zeeman 
sextet.
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Figure 5 – Results of crystal lattice deformation and superfine magnetic field values.

From the data presented in Figure 5 it can be seen 
that the decrease in the lattice deformation is more 
pronounced in the temperature range 400-800°C, 
which is characteristic of the phase ordering and 
displacement of the Fe2O3 phase and the subsequent 

dominance of the NdFeO3 phase. Meanwhile, in the 
temperature range of 800-1000°С the deformation 
contribution reduction is insignificant, which 
indicates the reduction of the deformation 
contribution in the structure, as well as the 
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completion of the phase transformations and 
subsequent transformations. At the same time, the 
change in the phase composition of nanocomposites 
leads to an increase in the value of the superfine 
magnetic field, which also indicates the ordering of 
the magnetic textures of samples.

Conclusion

This article is devoted to the study of the 
correlation between structural and magnetic ordering 
as a result of phase transformations in Fe3O4/Nd2O3

nanocomposites initiated by thermal annealing in the 
temperature range 400-1000°С. With the method of 
X-ray phase analysis the dynamics of phase 
transformations of the type Fe2O3/NdFeO3 → 
NdFeO3 >>Fe2O3→ NdFeO3 was established. The 
kinetics of the contributions change for the Zeeman 
sextet, which is typical of the structurally ordered 
magnetic phase, and the quadrupole doublet 
corresponding to the disordered regions and 
amorphous inclusions in the structure of 
Fe3O4/Nd2O3 nanocomposites have been established 
as a result of the investigations. It was determined 
that the quadrupole doublet contribution is 
completely displaced at annealing temperatures 
above 800°C, which corresponds to the ordering of 
the crystal structure and superfine magnetic 
parameters.

Further research will be aimed at studying the 
corrosion resistance of the synthesized 
nanostructures in order to determine their resistance 
to external influences.

Acknowledgments

This study was funded by the Ministry of 
Education and Science of the Republic of Kazakhstan 
(Grant No. AP09259184).

References

1. Liu, Xudong, et al. "Synthesis of covalently 
bonded reduced graphene oxide-Fe3O4 nanocompo-
sites for efficient electromagnetic wave absorp-
tion." Journal of Materials Science & Technology 72
(2021): 93-103.

2. Du, Guan-Hua, et al. "Characterization and 
application of Fe3O4/SiO2 nanocomposi-
tes." Journal of Sol-Gel Science and Technolo-
gy 39.3 (2006): 285-291.

3. Tuo, Ya, et al. "Microbial synthesis of 
Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocom-
posites for catalytic reduction of nitroaromatic 
compounds." Scientific reports 5.1 (2015): 1-12.

4. Su, Jing, et al. "Fe3O4–graphene 
nanocomposites with improved lithium storage and 
magnetism properties." The Journal of Physical 
Chemistry C 115.30 (2011): 14469-14477.

5. Khandanlou, Roshanak, et al. "Synthesis and 
characterization of rice straw/Fe3O4 nanocomposites 
by a quick precipitation method." Molecules 18.6 
(2013): 6597-6607.

6. Mahmoodabadi, A. Nayamadi, Ahmad 
Kompany, and Mansour Mashreghi. 
"Characterization, antibacterial and cytotoxicity 
studies of graphene-Fe3O4 nanocomposites and 
Fe3O4 nanoparticles synthesized by a facile 
solvothermal method." Materials Chemistry and 
Physics 213 (2018): 285-294.

7. Unal, B., et al. "Synthesis, structural and 
conductivity characterization of alginic acid–Fe3O4 
nanocomposite." Journal of nanoparticle 
research 12.8 (2010): 3039-3048.

8. Kiziltaş, Hakan, Taner Tekin, and Derya 
Tekin. "Preparation and characterization of 
recyclable Fe3O4@ SiO2@ TiO2 composite 
photocatalyst, and investigation of the photocatalytic 
activity." Chemical Engineering 
Communications 208.7 (2021): 1041-1053.

9. Zhu, Kai, et al. "Chemical synthesis and 
coercivity enhancement of Nd2Fe14B nanostructures 
mediated by non-magnetic layer." Nano 
Research 13.4 (2020): 1141-1148.

10. Kozlovskiy, A. L., et al. "Study of structural 
features and phase transformations in 
nanocomposites of Fe2O3@ NdFeO3 type." Journal 
of Materials Science: Materials in Electronics 32.16 
(2021): 21237-21247.

11. Khammarnia, Somaye, et al. "Enhanced 
catalytic activity of Pt-NdFeO3 nanoparticles sup-
ported on polyaniline-chitosan composite towards 
methanol electro-oxidation reaction." Journal of 
Nanostructures 10.2 (2020): 239-257.

12. Yavari, Zahra, Meissam Noroozifar, and 
Mozhgan Khorasani-Motlagh. "Presentation of 
anodic electrocatalyst for polymeric fuel cell: Pt 
nanoparticles immobilized on NdFeO3 nanocrystals 
and carbon nanotubes." Indian Journal of Chemical 
Technology (IJCT) 26.1 (2019): 9-22.

13. Anajafi, Z., et al. "NdFeO3 as a new 
electrocatalytic material for the electrochemical 



98 Effect of thermal annealing on phase transformations and ordering of the magnetic texture ...

Int. j. math. phys. (Online)                                   International Journal of Mathematics and Physics 13, №1, 91 (2022)

monitoring of dopamine." Analytical and 
bioanalytical chemistry 411.29 (2019): 7681-7688.

14. Atta, Nada F., H. Ekram, and Ahmed Galal. 
"Evidence of core-shell formation between NdFeO3 
nano-perovskite and ionic liquid crystal and its 
application in electrochemical sensing of 
metoclopramide." Journal of The Electrochemical 
Society 163.7 (2016): B325.

15. Aparnadevi, N., et al. "Room temperature 
dual ferroic behaviour of ball mill synthesized 
NdFeO3 orthoferrite." Journal of Applied 
Physics 120.3 (2016): 034101.

16. Atta, Nada F., et al. "Electrochemical sensing 
platform based on nano-perovskite/glycine/carbon 
composite for amlodipine and ascorbic acid 
drugs." Electroanalysis 31.3 (2019): 448-460.

17. Somvanshi, Anand, et al. "Structural modify-
cations and enhanced ferroelectric nature of 
NdFeO3–PbTiO3 composites." Applied Physics 
A 127.6 (2021): 1-18.

18. Nguyen, Tien Anh, et al. "Co-doped NdFeO3 
nanoparticles: synthesis, optical and magnetic 
properties study." Nanomaterials 11.4 (2021): 937.

19. Yousefi, Mostafa, S. Zeid, and M. Khorasa-
ni-Motlagh. "Synthesis and characterization of nano-
structured perovskite type neodymium orthoferrite 
NdFeO3." Current Chemistry Letters 6.1 (2017): 23-
30.

20. Mathur, Sanjay, et al. "Nanocrystalline or-
thoferrite GdFeO3 from a novel heterobimetallic pre-
cursor." Advanced Materials 14.19 (2002): 1405-
1409.

© This is an open access article under the (CC)BY-NC license (https://creativecommons.org/licenses/by-
nc/4.0/). Funded by Al-Farabi KazNU.



© 2022 al-Farabi Kazakh National University                                                                               Int. j. math. phys. (Online)

International Journal of Mathematics and Physics 13, №1 (2022)

IRSTI 29.05.45, 29.17.19, 41.29.00, 41.29.17, 41.29.21          https://doi.org/10.26577/ijmph.2022.v13.i1.011

Y. Myrzakulov1,2 , A. Sharlez1 , D. Kenzhalin1 ,  

S. Myrzakul1,2,* , G. Yergaliyeva1

1L.N.Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
2«Ratbay Myrzakulov Eurasian International Centre for Theoretical Physics» LLP, Nur-Sultan, Kazakhstan

*e-mail: srmyrzakul@gmail.com 
(Received 11 March 2022; received in revised form 18 May 2022; accepted 30 May 2022)

Starobinsky model with a viscous fluid

IRSTI 29.05.45, 29.17.19, 41.29.00, 41.29.17, 41.29.21
https://doi.org/10.26577/ijmph.2022.v13.i1.011

Y. Myrzakulov1,2 , A. Sharlez1 , D. Kenzhalin1 , S. Myrzakul1,2,* ,

G. Yergaliyeva1

1L.N.Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
2«Ratbay Myrzakulov Eurasian International Centre for Theoretical Physics» LLP, Nur-Sultan, 

Kazakhstan
*e-mail: srmyrzakul@gmail.com

(Received 11 March 2022; received in revised form 18 May 2022; accepted 30 May 2022)

Starobinsky model with a viscous fluid

Abstract. The article considers some cosmological solutions of the Starobinsky model for a flat 
inhomogeneous viscous Universe. The first section contains a brief of the )(RF theory of gravity. One 
of the most common examples of )(RF gravity with a high degree of curvature is the Starobinsky 

model. For the Starobinsky 2=)( RRRF βα + model, the cosmological model of a flat and 
homogeneous Universe is considered. For the Friedmann-Robertson-Walker metric, the Lagrange 
function is defined, and the corresponding equations are determined by the Euler-Lagrange equations and 
the Hamilton energy condition. Using the equation of state for inhomogeneous viscous fluid, we 
considered two cases of the viscosity parameter when the state parameter is constant. Next, using the 
results obtained, we determined the dynamics of the Hubble parameter H . At constant viscosity, 

0ξξ = has a negative value of the Hubble parameter and decreases with time along a hyperbola, while 
H3=ξ has a positive value decreases along a hyperbola.

If we compare it with the well-known de Sitter solution describing the accelerated expansion of the 
Universe and take into account that time in physics should only be positive, then the change in the Hubble 
parameter for the viscosity H3=ξ occurs later. An analysis of this solution shows that at a certain
point in time the acceleration of the Universe turns into a process of instantaneous compression. 
However, at the end, the result is similar to the de Sitter solution tends to zero, i.e. the Universe stops 
accelerating. Based on the results obtained, a graph was constructed with respect to the de Sitter solution. 
The analysis was carried out according to the graph. These results are useful for describing the 
accelerated expansion of the modern Universe and do not contradict modern astronomical observations.

Key words: viscous fluid, cosmology, Starobinsky model, FRW metric, )(RF gravity.

Introduction

The general theory of relativity is the basic 
theory describing gravitational phenomena in 
nature. The correctness of this theory is confirmed 
by various experiments and observations. However, 
the general theory of relativity does not fully 
describe some aspects of the evolution of the 
Universe, for example, the current accelerated 
expansion of the Universe [1, 2]. The best theory to 
explain this expansion of the Universe is dark 
energy [3-5], but the nature of dark energy is still 
unknown.

The latest cosmological data limit the state 
parameter ω of dark energy to ω = -0.972 + 0.061 
-0.060 so that various forms of dark fluid (phantom, 
quintessence, inhomogeneous fluids, etc.) can 
satisfy the corresponding equation of state. The 
study of non-ideal fluids in the 
Friedman-Robertson-Walker (FRW) universe can be 
justified by various arguments. First of all, even 
though many macroscopic physical systems, such as 
the large-scale structure of baryonic matter and 
radiation in the Universe, can be approximated as 
ideal fluids (with the equation of state p = ωρ, ω is 
constant), the description of dark energy does not 
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exclude a more complex equation of state, since its 
nature is still unknown.

Moreover, interest in modified theories of 
gravity has increased in recent years. Such theories 
suggest changing not only the nature of dark energy, 
but also a different approach to Einstein's spacetime 
or gravity by replacing the curvature of spacetime in 
the classical Hilbert-Einstein formula with more 
generalized variants (Riemann tensor, Weyl tensor, 
Ricci tensor, etc.). One of the most common 
examples of modified gravity is the model 
Starobinsky. Various applications of Starobinsky 
models in cosmology are presented in the literature 
[17].

In this paper, we study the dynamics of a 
viscous fluid [18-20] in the Starobin gravitational 
field. The corresponding equations of motion are 
determined and the evolution of the Hubble 
parameter for two types of viscous fluids is 
obtained. Moreover, the results obtained are 
compared with de Sitter's solution and allow us to 
describe the late evolution of the universe.

It should be noted that we fully adopt the natural 
system of units by taking 8πG=c=h=1. Indices i,j,l 
run from 1 to 4 throughout this paper. 

Action and equations of motion

In this section, we consider the Starobinsky 
model for FRW metric. In the general case, the 
action )(RF gravity can be written as follows

,)(
2
1= 4 






 +−∫ mLRF

k
gxdS       (1)

where 4

8=
c

Gk π
, g is the determinant of the 

metric tensor µνg , )(RF is some function of the 

Ricci scalar R , mL is the Lagrangian matter. The 
dependence of the function )(RF on the Ricci 
scalar is given in this paper similarly to the 
Starobinsky model 2=)( RRRF βα + , where 
α , const=β .

Then consider the FRW metric with action (1)

( ),)(= 222222 dzdydxtadtds +++− (2)

where )(ta is a scale factor that depends only on 
time t . For this metric, we obtain the following 
equations

3= ag− , ,6= 2

2



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


+
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a

a
aR



where the dot denotes the differentiation in time t .
Therefore, for metric (2) action (1) can be 

rewritten as follows

.66= 2
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λβα (3)

If we take a variation of this action with respect 
to R , we can determine the Lagrange multiplier λ

.2
d

)(d= R
R
RF βαλ +=

Thus, we can write the point-like Lagrangian as 
follows

( ) .2612= 2232 aaRRaaaRL 



 βαββ +++ (4)

Using the Euler-Lagrange equation, we find the 
pressure for the considered model as follows

.
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+

++−
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

 (5)

Using the energy condition, we define our 
energy density as follows
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2

R
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     (6)

where 
a
aH


= is the Hubble parameter.

If we equate equations (5) and (6), we obtain the 
following equation
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1 2 =++− HHRR
H

R
β
α
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101Y. Myrzakulov et al.

International Journal of Mathematics and Physics 13, №1, 99 (2022)                                   Int. j. math. phys. (Online)

Model of inhomogeneous viscous fluid

The pressure p introduced into the Friedmann 
equations and the energy density ρ must satisfy 
the following conservation law

( ) .03 =++ pH ρρ          (8)

For our model, we study the general form of the 
equation of state for an inhomogeneous viscous 
fluid [17-20]

( ) ( )( ),,...,, HHtaBp −= ρρω       (9)

where ( )ρω parameter of the equation of state can 
depend on the energy density, and the mass 
viscosity ( )( ),...,, HHtaB  is a function of its 
arguments. Consider ( )( ) )(,...,, HHHtaB ξ= for 
a viscous fluid

( ) ( ),3 HHp ξρω −=          (10)

thus, )(Hξ – is the bulk viscosity.
Thus, if we substitute the pressure in equation 

(5) to the law of conservation of energy (6), we will 
obtain an additional equation of motion describing a 
viscous fluid. As a result, we obtain a system of 
equations of motion

( )( ) ),(313 НHH ξρωρρ =++      (11)
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Now consider two cases related to these given 
equations of motion. Let's transform these received 
formulas.

Cosmological solution

For thermodynamic reasons )(Hξ is usually 
chosen to be positive. Therefore, various forms of 
viscosity can be used to numerically or accurately 
solve the Hubble parameter. Next, consider two 
types of viscosity parameter )(Hξ .

First case: const=ω , constH =)(ξ
In this case, for constH == 0)( ξξ , we obtain 

the following equation using equations (11)-(14)

( ) ,31
2
3

0
2 HHH ξω ++−=       (15)

as a result, we get the following solution

.
1

2
)(3

0
00 tte

H −−−+
= ξω

ξ         (16)

If we consider 1−=ω and the early Universe 
for vacuum, then the time 00 ≅t , i.e.

,
2

03
0

te
H ζ

ξ
−−=           (17)

Having determined the dependence of the scalar 
curvature on time, substituting this solution (13) and 
solving equation (7) 1=α , 1,1 0 == ξβ , we 
determine the Hubble parameter for the Starobinsky 
model

( )( )
t

tttt

H 3

3333

e120
e120e55e6e18

10= −

−−−

+−
−+−

− . (18)

Second case: const=ω , H3=ξ
Consider the case where the equation of state 

parameter for vacuum is 1−=ω and the bulk vis-
cosity depends only on the Hubble parameter, then

( )( ) .23
2

0tt
H

−−
=

ω
          (19)

After some actions, analogous to the previous 
case, we define the Hubble parameter for the 
Starobinsky model
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              (20)

a. b.
               

Figure 1 – Hubble parameter dynamics for cases: а. , b.

Figure 2 – Dynamics of the Hubble parameter for different solutions
for indicated by a blue line, for red line.
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Conclusion

Thus, in this work, we have considered some 
cosmological solutions of the Starobinsky model for 
the flat and homogeneous Universe. In the first 
section we give a brief introduction to the theory of 
gravitation. For the FRW metric, the Lagrange 
function is defined, and the corresponding equations 
of motion are determined using the Euler-Lagrange 
equations and the Hamilton energy condition. As 
you can see, these equations are non-linear 
differential equations of high order, the solution of 
which is a difficult task. Next, using this result, we 
determined the Hubble parameter H and the 
equation of motion R .

Finally, as you can see in Fig. 2, the Hubble 
parameter is negative for the 0ξξ = condition 
and decreases with time along the hyperbola, while 
in the H3=ξ state it decreases to a positive value 
along the hyperbola. If we compare with the 
well-known de Sitter solution describing accelerated 
expansion that time is only positive according to the 
law of physics, then in the case of H3=ξ the 
Hubble change occurs later than the de Sitter 
solution, and the viscosity is 0ξξ ≠ variable. If we 
analyze the solution for a viscosity proportional to 
the Hubble parameter, then at a certain moment in 
time the acceleration of the Universe passes into the 
process of instantaneous compression. But as a 
result, the de Sitter solution seems to be infinitely 
close to zero, that is, the Universe stops 
accelerating.
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