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ON GREEN’S FUNCTION OF SECOND DARBOUX PROBLEM
FOR HYPERBOLIC EQUATION

A definition and justify a method for constructing the Green’s function of the second Darboux
problem for a two-dimensional linear hyperbolic equation of the second order in a characteristic
triangle is given. In contrast to the (well-developed) theory of the Green’s function for self-
adjoint elliptic problems, this theory has not yet been developed. And for the case of asymmetric
boundary value problems such studies have not been carried out. It is shown that the Green’s
function for a hyperbolic equation of the general form can be constructed using the Riemann-
Green function for some auxiliary hyperbolic equation. The notion of the Green’s function is
more completely developed for Sturm-Liouville problems for an ordinary differential equation,
for Dirichlet boundary value problems for Poisson equation, for initial boundary value problems
for a heat equation. For many particular cases, the Greens’ function has been constructed
explicitly. However, many more problems require their consideration. In this paper, the problem
of constructing the Green’s function of the second Darboux problem for a hyperbolic equation
was investigated. The Green’s function for the hyperbolic problems differs significantly from the
Green’s function of problems for equations of elliptic and parabolic types.
Key words: Hyperbolic equation, initial-boundary value problem, second Darboux problem,
boundary condition, Green function, a characteristic triangle, Riemann–Green function.
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ГИПЕРБОЛАЛЫҚ ТЕҢДЕУ ҮШIН ЕКIНШI ДАРБУ

ЕСЕБIНIҢ ГРИН ФУНКЦИЯСЫ

Сипаттамалық үшбұрышта қарастырылатын екiншi реттi екi өлшемдi сызықтық гипербо-
лалық теңдеу үшiн Грин функциясын құру әдiстемесi анықталды және негiзделдi. Өз-өзiне
түйiндес эллиптикалық есептер үшiн Грин функциясының (жақсы дамыған) теориясынан
айырмашылығы, сипаттамалық шекаралық есептер үшiн бүл теория әлi жетiк әзiрлен-
бегендiгiнде. Ал симметриялық емес шекаралық есептер жағдайында мұндай зерттеулер
жүргiзiлмеген. Жалпы түрдегi гиперболалық теңдеуге арналған Грин функциясын кейбiр
(арнайы жолмен құрылған) көмекшi гиперболалық теңдеу үшiн Риман-Грин функциясын
қолдана отырып құруға болатындығы көрсетiлдi. Грин функциясының толығырақ тұжы-
рымдамасы қарапайым дифференциалдық теңдеу үшiн Штурм-Лиувиль есептерi үшiн,
Пуассон теңдеуi үшiн Дирихле шеткi есептерi үшiн, жылуөткiзгiштiк теңдеуi үшiн бастапқы
шекаралық есептер үшiн жасалған. Көптеген дербес жағдайларда Грин функциясы айқын
түрде құрылған. Алайда, басқа да көптеген есептер оларды қарастыруды талап етедi. Бұл
мақалада гиперболалық теңдеу үшiн екiншi Дарбу есебiнiң Грин функциясын құру мәселесi
зерттелдi. Гиперболалық есептер үшiн құрылған Грин функциясы эллиптикалық және
параболалық есептер үшiн құрылған Грин функциясынан айтарлықтай ерекшеленедi.

Түйiн сөздер: Гиперболалық теңдеу, бастапқы-шекаралық есеп, екiншi Дарбу есебi, шека-
ралық шарт, Грин функциясы, характеристикалық үшбұрыш, Риман–Грин функциясы.
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О ФУНКЦИИ ГРИНА ВТОРОЙ ЗАДАЧИ ДАРБУ

ДЛЯ ГИПЕРБОЛИЧЕСКОГО УРАВНЕНИЯ

Дано определение и обоснована методика построения функции Грина для второй задачи
Дарбу для двумерного линейного гиперболического уравнения второго порядка, рассматри-
ваемого в характеристическом треугольнике. В отличие от (хорошо разработанной) теории
функции Грина для самосопряженных эллиптических задач, для характеристических
граничных задач эта теория еще не подробно разработана. А для случая несимметрических
граничных задач таких исследований не проводилось. Показано, что функция Грина для
гиперболического уравнения общего вида может быть построена с использованием функции
Римана-Грина для некоторого (специальным образом построенного) вспомогательного
гиперболического уравнения. Наиболее полно понятие функции Грина разработано для
задач Штурма-Лиувилля для обыкновенного дифференциального уравнения, для краевых
задач Дирихле для уравнения Пуассона, для начально-краевых задач для уравнения тепло-
проводности. Для многих частных случаев функция Грина была построена в явном виде.
Однако, еще многие задачи требуют своего рассмотрения. В настоящей статье исследована
задача о построении функции Грина для второй задачи Дарбу для гиперболического
уравнения. Функция Грина для гиперболических задач существенно отличается от функций
Грина задач для уравнений эллиптического и параболического типа.

Ключевые слова: Гиперболическое уравнение, начально-краевая задача, вторая задача
Дарбу, граничное условие, функция Грина, характеристический треугольник, функция Ри-
мана–Грина.

1 Introduction

In S ⊂ R
n let us consider some a linear differential equation

Lu(x) = f(x), x ∈ S, (1)

with homogeneous boundary conditions

Qu(x) = 0, x ∈ S. (2)

If a solution of this problem exists, is unique and can be represented in the integral form

u(x) =

∫
S

GQ(x, y)f(y)dy, (3)

then the kernel of this integral operator (3), that is, the function GQ(x, y), is called the
Green’s function of problem (1), (2).

It is also said that the Green’s function for each fixed y ∈ S satisfies the equation

LGQ(x, y) = δ(x− y), x ∈ S, (4)

and the boundary conditions (2). Here δ(x − y) is the Dirac delta function. Equation (4)
should be understood in the sense of generalized functions.
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It is known that if the operator of problem (1), (2) has eigenfunctions {uk(x)}∞k=1 forming
the Riesz basis in L2(S), then the solution of the problem can be represented as

u(x) =
∞∑
k=1

1

λk

〈f, vk〉L2(S)uk(x), (5)

where 〈·, ·〉L2(S) is a scalar product in L2(S), λk are eigenvalues of the operator, {vk(x)}∞k=1 is
a biorthogonal system to {uk(x)}∞k=1. Formula (5) is called the spectral representation of the
solution or the spectral representation of the inverse operator.

Representing the scalar product as an integral, we obtain the integral representation (3)
of the solution of the problem, where

GQ(x, y) =
∞∑
k=1

1

λk

uk(x)vk(y) (6)

is the Green’s function of problem (1), (2). In the case when problem (1), (2) is self-adjoint,
the system of its eigenfunctions forms an orthogonal basis. Therefore, we can choose vk(x) =
uk(x). In this case, it is easy to see from (6) that the Green’s function is the symmetric
function: GQ(x, y) = GQ(y, x).

For series of characteristic problems for a wave equation and a wave equation with
potential (despite the fact that these problems are solved by the method of separation
of variables) all eigenvalues and eigenfunctions are constructed in the works of T. Sh.
Kal’menov [1], [2] and M. A. Sadybekov [3]- [5]. Therefore, for these problems the Green’s
function can be constructed in the form of series (6). Although the presence of the Green’s
function is guaranteed for any self-adjoint problem, and it can be constructed in the form
of series (6), the use of infinite series for constructing a solution of the problem is not very
convenient. Therefore, the construction of the Green’s function in the form of finite sums is
actual.

We are interested in the integral representation of Green’s function of the second Darboux
problem for a general hyperbolic equation of the second order, since all the properties of
Green’s function of this problem come from the integral representation of Green’s function.

The main difference between this paper and others, that in contrast to the previous works
of other authors ( [6]- [15] and others), we conduct the investigation and construction of the
Green’s function without the assumption of its symmetry. Also, unlike other authors, in this
paper we will give a definition of the Green’s function and a method for constructing it for
the case of general coefficients.

2 Formulation of the problem

Let Ω = {(ξ, η) : 0 ≤ ξ ≤ 1, ξ ≤ η ≤ 1}. The following hyperbolic equation is considered in
Ω:

∂2u

∂ξ∂η
+ a(ξ, η)

∂u

∂ξ
+ b(ξ, η)

∂u

∂η
+ c(ξ, η)u = f(ξ, η), (ξ, η) ∈ Ω, (7)

with the initial condition

(uξ − uη)(ξ, ξ) = ν(ξ), 0 ≤ ξ ≤ 1, (8)
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and the boundary condition

u(0, ξ) = τ(ξ), 0 ≤ ξ ≤ 1. (9)

We will assume that a, b, aξ, bη, c, f ∈ C
(
Ω
)
; ν, τ ∈ C1 ([0, 1]) and

a(ξ, ξ) = b(ξ, ξ), 0 ≤ ξ ≤ 1. (10)

In [16] it was shown that equality (10) we can always get.
Also, we assume

aξ(ξ, ξ) = bη(ξ, ξ), 0 ≤ ξ ≤ 1. (11)

3 Green’s function of the problem (7)-(9)

Definition 1 Green’s function of the problem (1)-(3) let us call the function G(ξ, η; ξ1, η1),
which for every fixed (ξ1, η1) ∈ Ω, satisfies the homogeneous equation

L(ξ,η)G(ξ, η; ξ1, η1) = 0, (ξ, η) ∈ Ω, at ξ �= ξ1, η �= η1, η �= ξ1, ξ �= η1; (12)

and the next boundary conditions

(Gξ −Gη)(ξ, ξ; ξ1, η1) = 0, 0 ≤ ξ ≤ 1, (ξ1, η1) ∈ Ω; (13)

G(0, ξ; ξ1, η1) = 0, 0 ≤ ξ ≤ 1, (ξ1, η1) ∈ Ω; (14)

and on the above characteristic lines, the following conditions must be met: the values of the
derivatives of the Green function in directions parallel to these characteristics must coincide
in adjacent regions; i.e.,

∂G(ξ1 + 0, η; ξ1, η1)

∂η
+ a(ξ1, η)G(ξ1 + 0, η; ξ1, η1)

=
∂G(ξ1 − 0, η; ξ1, η1)

∂η
+ a(ξ1, η)G(ξ1 − 0, η; ξ1, η1), at η �= η1, η �= ξ1; (15)

∂G(η1 + 0, η; ξ1, η1)

∂η
+ a(η1, η)G(η1 + 0, η; ξ1, η1)

=
∂G(η1 − 0, η; ξ1, η1)

∂η
+ a(η1, η)G(ξ1 − 0, η; ξ1, η1), at η �= η1, η �= ξ1; (16)

∂G(ξ, η1 + 0; ξ1, η1)

∂ξ
+ b(ξ, η1)G(ξ, η1 + 0; ξ1, η1)

=
∂G(ξ, η1 − 0; ξ1, η1)

∂ξ
+ b(ξ, η1)G(ξ, η1 − 0; ξ1, η1), at ξ �= ξ1 ξ �= η1; (17)

∂G(ξ, ξ1 + 0; ξ1, η1)

∂ξ
+ b(ξ, ξ1)G(ξ, ξ1 + 0; ξ1, η1)
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=
∂G(ξ, ξ1 − 0; ξ1, η1)

∂ξ
+ b(ξ, ξ1)G(ξ, ξ1 − 0; ξ1, η1) at ξ �= ξ1 ξ �= η1; (18)

and the "corner condition"

G(ξ1 − 0, η1 − 0; ξ1, η1)−G(ξ1 + 0, η1 − 0; ξ1, η1)

+G(ξ1 + 0, η1 + 0; ξ1, η1)−G(ξ1 − 0, η1 + 0; ξ1, η1) = 1. (19)

must be satisfied as the regions meet at (ξ, η) = (ξ1, η1).

4 Existence and uniqueness of the Green’s function of the problem (7)-(9)

Figure 1: Splitting the domain Ω.

Theorem 1 The function G(ξ, η; ξ1, η1) that satisfies the conditions (12)-(19) exists and is
unique.

Proof. To show that a function G(ξ, η; ξ1, η1), which satisfies the conditions (12)-(19)
exists and unique, we divide the domain Ω into several subdomains (see Figure (1)) and
consider the following problems sequentially. Let (ξ1, η1) be an arbitrary point of the domain
Ω.

In the domain Ω1 = {(ξ, η) : 0 < ξ < ξ1, ξ < η < ξ1} we consider the problem
L(ξ,η)G = 0, (ξ, η) ∈ Ω1; (20)

(Gξ −Gη)(ξ, ξ; ξ1, η1) = 0, 0 ≤ ξ ≤ ξ1; (21)

G(0, ξ; ξ1, η1) = 0, 0 ≤ ξ ≤ ξ1, (ξ1, η1) ∈ Ω2. (22)

The problem (20)-(22) is a second Darboux problem and has a unique solution

G(ξ, η; ξ1, η1) ≡ 0, (ξ, η) ∈ Ω1. (23)
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In the domain Ω2 = {(ξ, η) : 0 ≤ ξ ≤ ξ1, ξ1 ≤ η ≤ η} let us consider the problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω2; (24)

G(0, ξ; ξ1, η1) = 0, ξ1 ≤ ξ ≤ η1, (ξ1, η1) ∈ Ω2. (25)

From (23) we have the next equality

∂G(ξ, ξ1 + 0; ξ1, η1)

∂ξ
+ b(ξ, ξ1)G(ξ, ξ1 + 0; ξ1, η1) = 0, 0 ≤ ξ ≤ ξ1. (26)

Integrating (26) by ξ we have

G(ξ, ξ1 + 0; ξ1, η1) = exp

(
−
∫ ξ

0

B(t, ξ1)dt

)
C1(ξ1, η1), 0 ≤ ξ ≤ ξ1. (27)

Substituting ξ = 0 in (27), using condition (14) we have that C1(ξ1, η1) ≡ 0 and

G(ξ, ξ1 + 0; ξ1, η1) = 0, 0 ≤ ξ ≤ ξ1. (28)

The problem (24),(25),(28) is a Goursat problem and has a unique solution

G(ξ, η; ξ1, η1) ≡ 0, (ξ, η) ∈ Ω2. (29)

Therefore from (29) in the domain Ω3 = {(ξ, η) : 0 ≤ ξ ≤ ξ1, η1 ≤ η ≤ 1}, we get the problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω3; (30)

G(0, ξ; ξ1, η1) = 0, η1 ≤ ξ ≤ 1, (ξ1, η1) ∈ Ω3; (31)

∂G(ξ, η1 + 0; ξ1, η1)

∂ξ
+ b(ξ, η1) ·G(ξ, η1 + 0; ξ1, η1) = 0, 0 ≤ ξ ≤ ξ1. (32)

Integrating (32) by ξ we have

G(ξ, η1 + 0; ξ1, η1) = exp

(
−
∫ ξ

0

b(t, η1)dt

)
C2(ξ1, η1), 0 ≤ ξ ≤ ξ1. (33)

Substituting ξ = 0 in (33), using condition (14) we have that C2(ξ1, η1) ≡ 0 and

G(ξ, η1 + 0; ξ1, η1) = 0, 0 ≤ ξ ≤ ξ1. (34)

Therefore, the problem (30),(31),(34) is a Goursat problem and has a unique solution

G(ξ, η; ξ1, η1) ≡ 0, (ξ, η) ∈ Ω3. (35)

In the domain Ω4 = {(ξ, η) : 0 ≤ ξ ≤ ξ1, ξ ≤ η ≤ η1} we get the problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω4; (36)

(Gξ −Gη)(ξ, ξ; ξ1, η1) = 0, ξ1 ≤ ξ ≤ η1. (37)
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From (29) we have

∂G(ξ1 + 0, η; ξ1, η1)

∂η
+ a(ξ1, η)G(ξ1 + 0, η; ξ1, η1) = 0, ξ1 ≤ η ≤ η1. (38)

Integrating (38) by η we get

G(ξ1 + 0, η; ξ1, η1) = exp

(
−
∫ η

ξ1

a(ξ1, t)dt

)
C3(ξ1, η1), ξ1 ≤ η ≤ η1. (39)

Substituting η = ξ1 in (39), using condition (14) we have that C3(ξ1, η1) ≡ 0 and

G(ξ1 + 0, η; ξ1, η1) = 0, ξ1 ≤ η ≤ η1. (40)

This problem (36),(37),(40) is a second Darboux problem and has a unique solution

G(ξ, η; ξ1, η1) ≡ 0, (ξ, η) ∈ Ω4. (41)

Therefore, from (35), (41) in the domain Ω5 = {(ξ, η) : ξ1 ≤ ξ ≤ η1, η1 ≤ η ≤ 1} our
problem is a Goursat problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω5; (42)

∂G(ξ1 + 0, η; ξ1, η1)

∂η
+ a(ξ1, η)G(ξ1 + 0, η; ξ1, η1) = 0, η1 ≤ η ≤ 1; (43)

∂G(ξ, η1 + 0; ξ1, η1)

∂ξ
+ b(ξ, η1)G(ξ, η1 + 0; ξ1, η1) = 0, ξ1 ≤ ξ ≤ η1; (44)

G(ξ1 + 0, η1 + 0; ξ1, η1) = 1. (45)

The problem (41)-(45) has a unique solution, and it is easy to see that its solution coincides
with the Riemann-Green function, that is,

G(ξ, η; ξ1, η1) = R(ξ, η; ξ1, η1), (ξ, η) ∈ Ω5. (46)

Therefore from (46) in the domain Ω6 = {(ξ, η) : η1 ≤ ξ ≤ 1, ξ ≤ η ≤ 1} we get the
problem

L(ξ,η)G = 0, (ξ, η) ∈ Ω6; (47)

(Gξ −Gη)(ξ, ξ; ξ1, η1) = 0, η1 ≤ ξ ≤ 1; (48)

∂G(η1 + 0, η; ξ1, η1)

∂η
+ b(η1, η)G(η1 + 0, η; ξ1, η1)

=
∂R(η1, η; ξ1, η1)

∂η
+ b(η1, η)R(η1, η; ξ1, η1), η1 ≤ η ≤ ξ1. (49)

The problem (47)-(49) is a second Darboux problem and has a unique solution.
Thus, we have shown that for any (ξ1, η1) ∈ Ω and (ξ, η) ∈ Ω the Green’s function that

satisfies the conditions (12)-(19) exists and unique. The theorem is proved.
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5 Construction of the Green’s function of the problem (7)-(9)

As can be seen from the proof of Theorem (1), the Green’s function G(ξ, η; ξ1, η1) = 0 in the
domains Ω1, Ω2, Ω3, Ω4. And in the domain Ω5 it coincides with the Riemann function (46).

Let us find a representation of the Green’s function in the domain Ω6. To construct the
Green’s functions, we will continue the coefficients of equation (47) in Ω∗

6 = {(ξ, η) : η1 ≤
ξ ≤ 1, η1 ≤ η ≤ ξ} such a way that the following conditions

A(ξ, η) =

{
a(ξ, η), (ξ, η) ∈ Ω6,

b(η, ξ), (ξ, η) ∈ Ω∗
6,

B(ξ, η) =

{
b(ξ, η), (ξ, η) ∈ Ω6,

a(η, ξ), (ξ, η) ∈ Ω∗
6,

C(ξ, η) =

{
c(ξ, η), (ξ, η) ∈ Ω6,

c(η, ξ). (ξ, η) ∈ Ω∗
6

are met. Actually, show that coefficients of (47) have the following symmetry:

A(ξ, η) = B(η, ξ), C(ξ, η) = C(η, ξ), (ξ, η) ∈ Ω6. (50)

From (50) we have

A(η, ξ) =

{
a(η, ξ), (η, ξ) ∈ Ω6,

b(ξ, η), (η, ξ) ∈ Ω∗
6,

=

{
b(ξ, η), (ξ, η) ∈ Ω6,

a(η, ξ), (ξ, η) ∈ Ω∗
6,

= B(ξ, η).

If we have chosen (ξ, η) from Ω6, then (η, ξ) will be from Ω∗
6.

From (4) and (5) we get

A(ξ, ξ) = B(ξ, ξ), Aξ(ξ, ξ) = Bη(ξ, ξ), η1 ≤ ξ ≤ 1.

If the coefficients a, b, aξ, bη, c ∈ C
(
Ω
)

then in virtue of (50) coefficients
A(ξ, η), B(ξ, η), C(ξ, η) in the domain Ω̃6 = Ω6 ∪ Ω∗

6 = {(ξ, η) : η1 ≤ ξ ≤ 1, η1 ≤ η ≤ 1}
have the following smoothness

A,B,Aξ, Bη, C ∈ C
(
Ω̃6

)
. (51)

Let (ξ1, η1) be an arbitrary point of the domain Ω. In order to construct the Green function
in the domain Ω6, consider the problem:

∂2G1

∂ξ∂η
+ A(ξ, η)

∂G1

∂ξ
+B(ξ, η)

∂G1

∂η
+ C(ξ, η)G1 = 0, (ξ, η) ∈ Ω̃6; (52)

∂G1(η1 + 0, η; ξ1, η1)

∂η
+ b(η1, η)G1(η1 + 0, η; ξ1, η1)

=
∂R(η1, η; ξ1, η1)

∂η
+ b(η1, η)R(η1, η; ξ1, η1), η1 ≤ η ≤ ξ1; (53)
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∂G1(ξ, η1 + 0; ξ1, η1)

∂ξ
+ a(ξ, η1)G1(ξ, η1 + 0; ξ1, η1)

=
∂R(ξ, η1; ξ1, η1)

∂ξ
+ a(ξ, η1)R(ξ, η1; ξ1, η1), η1 ≤ ξ ≤ ξ1. (54)

The problem (52)-(54) is a Goursat problem. Its solution exists and unique. We are interested
in the representation of the function G1(ξ, η; ξ1, η1).

Lemma 1 If the function G1(ξ, η; ξ1, η1) is the solution to the problem (52)-(54), then for
any (ξ, η) ∈ Ω̃6 we have G1(ξ, η; ξ1, η1) = G1(η, ξ; ξ1, η1).

To show that the function G1(η, ξ; ξ1, η1) satisfies the equation (52), in (52) replace ξ =
η2, η = ξ2, (η2, ξ2) ∈ Ω∗

6 and after using the symmetry conditions of coefficients, we get that
G1(η, ξ; ξ1, η1) satisfies the equation (52).

Also doing the substitution of ξ = η2 in (53) and using the symmetry conditions of
coefficients, we get the condition (54). Similarly, by replacing η = ξ2 in (54) and using the
symmetry conditions of coefficients, we get the condition (53).

Thus, we have shown that the function G1(η, ξ; ξ1, η1) is also a solution to the problem
(52)-(54). Since the solution to problem (52)-(54) is unique, then

G1(ξ, η; ξ1, η1) = G1(η, ξ; ξ1, η1), (ξ, η) ∈ Ω̃6.

Solution of the problem (52)-(54) we search in the following form

G1(ξ, η; ξ1, η1) = R(ξ, η; ξ1, η1) + g(ξ, η; ξ1, η1), (ξ, η) ∈ Ω̃6.

Then we get the following problem

∂2g

∂ξ∂η
+ A(ξ, η)

∂g

∂ξ
+B(ξ, η)

∂g

∂η
+ C(ξ, η)g = 0, (ξ, η) ∈ Ω̃6; (55)

∂g(η1, η; ξ1, η1)

∂η
+ b(η1, η)g(η1, η; ξ1, η1) = 0, η1 ≤ η ≤ ξ1; (56)

∂g(ξ, η1; ξ1, η1)

∂ξ
+ a(ξ, η1)g(ξ, η1; ξ1, η1) = 0, η1 ≤ ξ ≤ ξ1. (57)

It is easy to see that the solution to the problem (55)-(57) has the form

g(ξ, η; ξ1, η1) = R(η, ξ; ξ1, η1), (ξ, η) ∈ Ω̃6.

Lemma 2 Let (ξ, η) be an arbitrary point of the domain Ω. By internal variables (ξ1, η1) the
Green’s function of the problem (7)-(9) has the following properties:

L∗
(ξ1,η1)

G(ξ, η; ξ1, η1) = 0, (ξ1, η1) ∈ Ω, at ξ1 �= ξ, ξ1 �= η, η1 �= ξ; (58)

(Gξ1 −Gη1)(ξ, η; ξ1, ξ1) + (a− b)(ξ1, ξ1)G(ξ, η; ξ1, ξ1) = 0, 0 ≤ ξ1 ≤ 1; (59)

G(ξ, η; 0, η1) = 0, 0 ≤ η1 ≤ 1; (60)
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∂G(ξ, η; ξ − 0, η1)

∂η1
− a(ξ, η1)G(ξ, η; ξ − 0, η1) = 0, at η1 �= η, η1 �= ξ; (61)

∂G(ξ, η; ξ1, η − 0)

∂ξ1
− b(ξ1, η)G(ξ, η; ξ1, η − 0) = 0, at ξ1 �= ξ; (62)

∂G(ξ, η; ξ1, ξ − 0)

∂ξ1
− b(ξ1, ξ) G(ξ, η; ξ1, ξ − 0)

=
∂G(ξ, η; ξ1, ξ + 0)

∂ξ1
− b(ξ1, ξ)G(ξ, η; ξ1, ξ + 0); (63)

G(ξ, η; ξ − 0, η − 0)−G(ξ, η; ξ + 0, η − 0)

+G(ξ, η; ξ + 0, η + 0)−G(ξ, η; ξ − 0, η + 0) = 1; (64)

G(ξ, η; ξ, ξ − 0)−G(ξ, η; ξ, ξ + 0)−G(ξ, η; ξ − 0, ξ) = 0. (65)

Properties (58)-(65) are easy to get out of the construction of the Green’s function of
problem (7)-(9). Under these conditions (58)-(65) it is possible to uniquely restore the Green’s
function of problem (7)-(9).

Using properties (58)-(65) we can use it to write the integral representation of the solution
to problem (7)-(9). To do this, we consider the following integral∫∫

Ω(ξη)

G(ξ, η; ξ1, η1)f(ξ1, η1)dξ1dη1

=

∫∫
Ω(ξη)

G(ξ, η; ξ1, η1)

(
∂2u

∂ξ1∂η1
+ a

∂u

∂ξ1
+ b

∂u

∂η1
+ cu

)
dξ1dη1. (66)

Applying Green’s theorem in a plane [17] and using the conditions (8), (9) properties of
Green’s function (58)-(65), from (66) we get the following representation of the solution to
problem (7)-(9) in the domain Ω(ξη) = Ω5 ∪ Ω6:

u(ξ, η) =
1

2
(G(ξ, η; 0, ξ + 0)−G(ξ, η; 0, ξ − 0)) τ(ξ) +

1

2
G(ξ, η; 0, η − 0)τ(η)

+
1

2

∫ ξ

0

G(ξ, η; ξ1, η1)ν(ξ1)dξ1 +

∫∫
Ω(ξη)

G(ξ, η; ξ1, η1)f(ξ1, η1)dξ1dη1.

6 Conclusion

In this paper, an integral representation of the Green function for a general second-order
hyperbolic equation for the second Darboux problem is constructed, since all the properties
of the Green function of this problem follow from the integral representation of the Green
function. It is shown that the main difference between this work and other previous works
by other authors, we conduct research and build a function Green’s solution of this problem
without using the symmetry conditions of the lower coefficients. In addition, unlike other
authors, it is in the article that we will give a definition of the Green function and a method
for constructing it for cases of general coefficients.
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BLOW UP OF SOLUTION FOR A NONLINEAR VISCOELASTIC
PROBLEM WITH INTERNAL DAMPING AND LOGARITHMIC SOURCE

TERM

This paper is concerned with blow up of weak solutions of the following nonlinear viscoelastic
problem with internal damping and logarithmic source term

|ut|ρutt +M(‖u‖2)(−Δu)−Δutt +

∫ t

0

g(t− s)Δu(s)ds+ ut = u|u|p−2
R ln |u|kR

with Dirichlet boundary initial conditions in a bounded domain Ω ⊂ Rn. In the physical point
of view, this is a type of problems that usually arises in viscoelasticity. It has been considered
with power source term first by Dafermos [3], in 1970, where the general decay was discussed. We
establish conditions of p, ρ and the relaxation function g, for that the solutions blow up in finite
time for positive and nonpositive initial energy. We extend the result in [15] where is considered
M = 1 and external force type |u|p−2u in it. Further we estate and sketch the proof of a result
of local existence of weak solution that is used in the proof of the theorem on blow up. The idea
underlying the proof of local existence of solution is based on Faedo-Galerkin method combined
with the Banach fixed point method.
Key words: Nonlinear Viscoelastic Equation, Logarithmic Source, Blow Up, Local existence.
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Iшкi демпферлiк және логарифмдiк көздi сызықты емес тұтқыр серпiмдi есеп шешiмiнiң
қирауы

Бұл жұмыс Ω ⊂ Rn шектелген облыста бастапқы және Дирихле шартымен қойылған тұтқыр-
серпiмдi iшкi демпфiрлiк және логарифмдiк сызықты емес мүшелерi бар

|ut|ρutt +M(‖u‖2)(−Δu)−Δutt +

∫ t

0

g(ts)Δu(s)ds+ ut = u|u|p−2
R ln |u|kR

c© 2022 Al-Farabi Kazakh National University
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есебiнiң әлсiз шешiмдерiнiң қирауын зерттеуге арналған. Физикалық тұрғыдан алғанда, бұл
әдетте тұтқыр серпiмдiлiкте пайда болатын мәселелердiң бiр түрi. Оны қуат көзi терминiмен
алғаш рет 1970 жылы Дафермос [3] қарастырды, онда жалпы ыдырау талқыланған. Мұн-
да оң және терiс бастапқы энергия үшiн шешiмдердiң ақырлы уақытта қирауы туралы p, ρ
және g релаксация функциясына шарттар алынды . Нәтиженi [15] үшiн де кеңейттiк, мұнда
M = 1 алынды және оған сыртқы күштiң түрi |u|p−2u. Бiз қирау теоремасын дәлелдеуiнде
қолданылатын әлсiз локалдiк шешiмнiң шешiмдiлiгiн дәлелiн келтiремiз. Локалдiк шешiм-
нiң болуын дәлелдейтiн идея Фаедо-Галеркин әдiсiне негiзделген және Банахтың бекiтiлген
нүкте әдiсiмен бiрiктiрiлген.
Түйiн сөздер: Тұтқырсерпiмдi сызықты емес теңдеу, логарифмдiк көз, шешiмнiң қирауы,
локалдiк бар болу.
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Разрушение решения нелинейной вязкоупругой задачи с внутренним затуханием и
логарифмическим источником

Эта статья посвящена разрушению слабых решений следующих нелинейных вязкоупругая
задача с внутренним демпфированием и логарифмическим исходным членом

|ut|ρutt +M(‖u‖2)(−Δu)−Δutt +

∫ t

0

g(ts)Δu(s)ds+ ut = u|u|p−2
R ln |u|kR

с граничными начальными условиями Дирихле в ограниченной области Ω ⊂ Rn. С физиче-
ской точки зрения это тип проблем, которые обычно возникают в вязкоупругости. Впервые
он был рассмотрен с термином источника энергии Дафермосом [3] в 1970 году, где обсуж-
дался общий распад энергии. Устанавливаются условия p, ρ и функции релаксации g, при
которых решения разрушаются за конечное время при положительной и неположительной
начальной энергии. Мы распространяем результат на [15], где рассматривается M = 1 и в
нем внешняя сила типа |u|p−2u. Далее мы сформулируем и набросаем доказательство резуль-
тата локального существования слабого решения, используемого в доказательстве теоремы
о разрушении. Идея, лежащая в основе доказательства локального существования решения,
основана на сочетании метода Фаэдо-Галеркина с методом неподвижной точки банаха.
Ключевые слова: Нелинейное уравнение вязкоупругости, логарифмический источник, раз-
рушение, локальное существование.

1 Introduction

In elasticity the existing theory accounts for materials which have a capacity to store
mechanical energy with no dissipation (of the energy). On the other hand, a Newtonian
viscous fluid in a nonhydrostatic stress state has a capacity for dissipating energy without
storing it. Materials which are outside the scope of these two theories would be those for which
some, but not all, of the work done to deform them, can be recovered. Such materials possess
a capacity of storage and dissipation of mechanical energy. This is the case of viscoelastic
materials.

Viscoelastic materials are those for which the behavior combines liquid-like and solid-like
characteristics. Viscoelasticity is important in areas such as biomechanics; power industry
or heavy construction; Synthetic polymers; Wood; Human tissue, cartilage; Metals at high
temperature; Concrete.
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Polymers, for instance, are viscoelastic materials since they exhibit an intermediate
position between viscous liquids and elastic solids. The formulation of Boltzmann’s
superposition principle leads to a memory term involving a relaxation function of exponential
type. But, it has been observed that relaxation functions of some viscoelastic materials are
not necessarily of this type. See [13, 14]. In this work, we are concerned with the following
initial boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

|ut|ρRutt +M(‖u‖2)(−Δu)−Δutt +
∫ t
0
g(t− s)Δu(s)ds+ ut

= u|u|p−2
R

ln |u|k
R

in Ω× (0,∞)

u = 0 on ∂Ω× [0,∞)

u(x, 0) = u0(x) in Ω

ut(x, 0) = u1(x) in Ω.

(1)

where Ω ⊂ R
n (n ≥ 1) is a bounded domain with a smooth boundary ∂Ω, p > 2, ρ > 0 and

k > 0 are constants and g : R+ → R
+ and M : [0,∞) → R are C1 functions, respectively,

left to be defined later.
As mentioned in [9], the logarithmic nonlinearity appears in several branches of physics

such as inflationary cosmology, nuclear physics, optics, and geophysics. With all this specific
underlying meaning in physics, the global-in-time well-posedness of solution to the problem of
evolution equation with such logarithmic-type nonlinearity captures lots of attention. See [9]
for the references related to each branch listed above.

The dispersive term Δutt arises in the study of extensional vibrations of thin rods, see
Love [7], via the model

utt −Δu−Δutt = f

and was studied by one of the authors in [11]. The function M(λ) in (1) has its motivation
in the mathematical description of vibration of an elastic stretched string, modeled by the
equation

utt −M
(∫

Ω

|∇u|2dx
)
Δu = 0,

which for M(λ) ≥ m0 > 0 was studied in [2, 4, 5, 10,12].
Concerning blow-up results, Messaoudi [8] considered the equation

utt −Δu+

∫ t

0

g(t− s)Δu(s)ds+ aut|ut|m−2 = b|u|r−2u

and proved that any weak solution with negative initial energy blows up in finite time if
r < m and

∫∞
0

g(s)ds ≤ r−2
r−2+ 1

r

. Also, Liu [6] studied the equation

utt −Δu+

∫ t

0

g(t− s)Δu(s)ds− ωΔut + μut = |u|r−2u

where he proved that the solution with nonpositive initial energy as well as positive initial
energy blows up in finite time.
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Our blow up result is motivated by the viscoelastic wave equation with delay considered
by [15]

|ut|ρuttΔu−Δutt +

∫ t

0

g(t− s)Δu(s)ds+ μ1ut(x, t) + μ2ut(x, t− τ) = b|u|p−2u.

We implemented the technique employed in it, in order to extend his/her problem to the case
of logarithmic source term and M variable.

This work is divided as follows. The section 2 presents the notation and results underlying
the methods used in this paper. In section 3 is stated and proved a result of blow up for locally
defined solutions.

2 Preliminaries and assumptions

For simplicity of notations hereafter we denote by | · | the Lebesgue Space L2(Ω)-norm,
‖ · ‖ :=

∫
Ω
|∇(·)|2

Rndx the Sobolev space H1
0 (Ω)-norm, ‖ · ‖r := ‖ · ‖Lr(Ω) and | · |R and | · |Rn

for absolute value of a real number and the norm of a vetor in R
n, respectively.

Lemma 1 There exists C > 0 such that

‖u‖sr ≤ C
(
‖u‖2 + ‖u‖rr

)
for any u ∈ H1

0 (Ω) and 2 ≤ s ≤ r.

We start setting some hypotheses for the problem (1). Firstly, we shall assume that

0 < ρ ≤ 2

n− 2
if n ≥ 3, or ρ > 0 if n = 1, 2, (2)

2 < p ≤ 2(n− 1)

n− 2
if n ≥ 3, or p > 2 if n = 1, 2. (3)

Secondly, we assume:
(H.1) M ∈ C1([0,∞),R) is such that M(λ) ≥ m0, ∀λ ∈ [0,∞), where m0 > 0.
(H.2) g : R+ → R

+ is a Lebesgue integrable and absolutely continuous function such that

1−
∫ ∞

0

g(s)ds =: l > 0.

(H.3) There exist positive constants ξ1 and ξ2 verifying

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t) for almost all t ≥ 0.

We will need the very useful relation∫ t

0

g(t− τ)(∇u(τ),∇ut(t))dτ =
1

2
(g′ � ∇u)(t)− 1

2
(g � ∇u)′(t)

+
d

dt

{
1

2

(∫ t

0

g(s)ds

)
|∇u(t)|2

}
− 1

2
g(t)|∇u(t)|2 (4)
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that can be checked directly, where

(g � y)(t) =
∫ t

0

g(t− s)|y(t)− y(s)|2ds

Let us denote M̂(s) =
∫ s

0
M(τ)dτ . If u(t), ut(t) ∈ H1

0 (Ω), then we define the total energy
functional of equation (1):

E(t) := 1

ρ+ 2
‖ut(t)‖ρ+2

ρ+2 +
1

2

(
M̂(‖u‖2)−

∫ t

0

g(s)ds‖u‖2
)
+

1

2
‖ut‖2

+
k

p2

∫
Ω

|u|pdx+
1

2
(g � ∇u)(t)− 1

p

∫
Ω

|u|p
R
ln |u|k

R
dx. (5)

From (4) and (H.3) one deduce that

E ′(t) = −|ut(t)|2 + 1

2
(g′ � ∇u)(t) =

1

2
g(t)|∇u(t)|2 ≤ 0. (6)

Using (H.1), (H.2), we infer

E(t) ≥ m0 + l − 1

2
‖u‖2 + 1

2
(g � ∇u)(t)− cp+1

s

p
‖u‖p+1

≥ F (
√
(m0 + l − 1)‖u‖2 − (g � ∇u)(t))

where cs is the constant obtained from Sobolev embedding H1
0 (Ω) ↪→ Lp+1(Ω), and F (x) =

1
2
x2 − 1

p
Bp+1

1 xp+1, with B1 =
cs

(m0+l−1)1/2
.

Remark 1 As noticed in [15], F is increasing in (0, λ1), decreasing in (λ1,∞), and F has

a maximum at λ1 = B
− p+1

p−1

1 with the maximum value E1 = F (λ1) =
p−1

2(p+1)
λ2
1.

Lemma 2 ( [15]) Supposing (2), (3), (H.1) and (H.2), and that (m0+ l−1)‖u0‖2 > λ2
1 and

E(0) < E1, then there exists λ2 > λ1 such that, for all t ∈ [0, T ),

(m0 + l − 1)‖u‖2 + (g � ∇u)(t) ≥ λ2
2 (7)

and

‖u‖p+1
p+1 ≥

Bp
1

p
λp+1
2 . (8)

3 Blow up

Theorem 1 Assume that (2), (3), (H.1) and (H.2), and that m0 + l − 1 > 0. Let f ∈
L2(0, T ;H−1(Ω)) and u0, u1 ∈ H1

0 (Ω). Then there exists a unique weak solution u for the
problem{

M(‖u‖2)(−Δu)−Δutt +
∫ t
0
g(t− s)Δu(s)ds+ ut = f

u(0) = u0, ut(0) = u1.
(9)

Further, utt belongs to the class L∞(0, T ;H1
0 (Ω)).
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Proof. Employ the Faedo-Galerkin method and Aubin-Lions Lemmas as in reference [1]. �
For our purposes hereafter, let us define

W :=
{
w : w,wt ∈ C(0, T ;H1

0 (Ω)), wtt ∈ L∞(0, T ;H1
0 (Ω))

}
equipped with the norm

‖w‖2W := α‖w‖2L∞(0,T ;H1
0 (Ω)) + δ‖wt‖2L∞(0,T ;H1

0 (Ω)) + γ‖wtt‖2L2(0,T ;H1
0 (Ω)),

where α := m0+l−1
2

, δ := 1√
T
and γ := 1

4√T
. �

It is easy to check that W is a Banach space with the norm ‖ · ‖W.

Theorem 2 Let u0, u1 ∈ H1
0 (Ω) and assume that (H.1)-(H.3) and (2) and (3) are valid.

Then the problem (1) has a local weak solution u in W for T small enough.

Sketch of the proof. Let M > 0 and T > 0 and denote Z(M,T ) the class of functions
w belonging to W, satisfying w(0) = u0, wt(0) = u1 and ‖w‖W ≤ M . Let us consider the
application A : Z(M,T ) → W defined in the following way. For each v ∈ Z(M,T ), take
u := A[v] as the unique solution of the problem (9) with f = v|v|p−2

R
ln |v|k

R
− |vt|ρRvtt. One

can prove that with the hypotheses for p and ρ, A is a contraction from Z(M,T ) to itself if
M is large and T small enough. Apply next the Banach fixed point Theorem. �

In order to establish our result, an extra assumption on g is required:
(H.4) ∫ ∞

0

g(s)ds <
m0ζ

1 + ζ
,

with ζ :=
(
(p− 2)− β(p− 1)

)(
p− β(p− 1)

)
, where 0 < β < p−2

p−1
is a fixed number.

Theorem 3 Assume that (2), (3), (H.1) and (H.2), and that (m0 + l − 1)‖u0‖2 > λ2
1 and

E(0) < βE1 and ρ < p− 2. Also assume that M̂(τ) ≤ M(τ)τ . Suppose that u0, u1 ∈ H1
0 (Ω).

Then the solution u of (1) blows up in finite time.

Proof. By contradiction we suppose there exists K1 > 0 such that

‖u(t)‖2 ≤ K1 , ∀t ≥ 0.

Set
H(t) = E2 − E(t),

where E2 ∈ (E(0), βE1). By Lemma 6, we obtain H(t) > 0 and H ′(t) ≥ 0, ∀t ≥ 0. Also, since
E1 =

p−1
2(p+1)

λ2
1, then

H(t) ≤ βE1 − 1

2

(
(m0 + l − 1)‖u‖2 + (g � ∇u)(t)

)
+

1

p

∫
Ω

|u|p
R
ln |u|k

R
dx

≤ E1 − 1

2
λ2
1 +

1

p

∫
Ω

|u|p
R
ln |u|k

R
dx ≤ 1

p

∫
Ω

|u|p
R
ln |u|k

R
dx. (10)
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Define

L(t) = H1−σ(t) +
ε

ρ+ 1

∫
Ω

|ut|ρRutudx+ ε

∫
Ω

∇ut∇udx+
ε

2

∫
Ω

u2dx, (11)

where ε is chosen small enough for that L(0) > 0. Taking derivative of (11) and using (5),
we get

L′(t) = (1 + σ)L−σL′ + ε
{
−M(‖u‖2)‖u‖2 +

∫ t

0

g(t− s)(∇u(s),∇u(t))ds

+

∫
Ω

|u|p
R
ln |u|k

R
dx
}
+

ε

ρ+ 1

∫
Ω

|ut|ρ+2
R

dx+ ε

∫
Ω

|∇ut|2Rndx. (12)

It is easy to check the following inequality

ε

∫ t

0

g(t− s)(∇u(s),∇u(t))ds ≥
(
1− 1

4η

)∫ t

0

g(s)‖u‖2 − η(g � ∇u)(t) (13)

holds for all η ≥ 0.
Employing the inequalities (13) into (12) we obtain

L′(t) ≥ (1− σ)H−σH ′ + ε
1

ρ+ 1
‖ut‖ρ+2

ρ+2 − εη(g � ∇u)(t)

+ ε
[
−M(‖u‖)‖u‖2 +

(
1− 1

4η

)∫ t

0

g(s)ds
]
‖u‖2

+ ε

∫
Ω

|u|p
R
ln |u|k

R
dx+ ε

∫
Ω

|∇ut|2Rndx. (14)

Adding εp(H(t)−E2 +E(t)) into (14), and regarding the equation of the total energy in
(5) and that M̂(τ) ≥ M(τ)τ , ∀t ≥ 0, it follows

L′(t) ≥ (1− σ)H−σH ′ + ε

(
1

ρ+ 1
+

p

ρ+ 2

)
‖ut‖ρ+2

ρ+2 + ε
(p
2
− η
)
(g � ∇u)(t)

+ ε
[
−M(‖u‖2)‖u‖2 + p

2
M̂(‖u‖2)−

(
p− 2

2
+

1

4η

)∫ t

0

g(s)ds‖u‖2
]

+
εk

p

∫
Ω

|u|p
R
dx+ ε

(
1 +

1

2

)∫
Ω

|∇ut|2Rndx+ εpH(t)− εpE2

≥ (1− σ)H−σH ′ + ε

(
1

ρ+ 1
+

p

ρ+ 2

)
‖ut‖ρ+2

ρ+2 + ε
(p
2
− η
)
(g � ∇u)(t)

+ ε
[(p− 2)m0

2
‖u‖2 −

(
p− 2

2
+

1

4η

)∫ t

0

g(s)ds‖u‖2
]

+
εk

p

∫
Ω

|u|p
R
dx+ ε

(
1 +

1

2

)∫
Ω

|∇ut|2Rndx+ εpH(t)− ε(p+ 1)E2 (15)

Taking now η to satisfy
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1− l

2
[
(p− 2)− β(p− 1)

]
(m0 + l − 1)

< η <
p(1− β)

2
+ β, (16)

which is possible by (H.4). Noticing that M̂(τ) ≤ M(τ)τ and that (m0 + l − 1)‖u‖2 + (g �
∇u)(t) ≥ λ2

2 (Lemma 2), we get

(p− 2)m0

2
‖u‖2 −

(
p− 2

2
+

1

4η

)∫ t

0

g(s)ds‖u‖2 +
(p
2
− η
)
(g � ∇u)(t)− (p+ 1)E2

≥ β(p− 1)

2

(
(m0 + l − 1)‖u‖2 + (g � ∇u)(t)

)
− (p+ 1)E2

=
β(p− 1)

2

λ2
1 − λ2

λ2
2

(
(m0 + l − 1)‖u‖2 + (g � ∇u)(t)

)
+

β(p− 1)

2

λ2
1

λ2
2

(
(m0 + l − 1)‖u‖2 + (g � ∇u)(t)

)
− (p+ 1)E2

≥ c1

(
(m0 + l − 1)‖u‖2 + (g � ∇u)(t)

)
+ c2

where c1 = β(p−1)
2

λ2
1−λ2

λ2
2

and c2 =
β(p−1)

2
λ2
1 − (p+1)E2. From E2 < βE1 and E1 =

p−1
2(p+1)

λ2
1, we

have

c2 =
β(p− 1)

2
λ2
1 − (p+ 1)E2 > β

((p− 1)λ2
1

2
− (p+ 1)E1

)
= 0.

By the above estimates we deduce there exists K > 0 such that

L′(t) ≥ K
(
H(t) + ‖ut‖ρ+2

ρ+2 + ‖u‖pp + ‖u‖2 + ‖ut‖2
)
. (17)

Next steps are aimed to estimate L(t)
1

1−σ . Let

0 < σ <
1

ρ+ 2
− 1

p
. (18)

From Hölder inequality and Young’s inequality we obtain:

(∣∣∣ ∫
Ω

|ut|ρRutudx
∣∣∣) 1

1−σ ≤ ‖ut‖
σ+1
1−σ

ρ+2‖u‖
1

1−σ

ρ+2 ≤ C3‖ut‖
σ+1
1−σ

ρ+2‖u‖
1

1−σ
p (19)

≤ c4

(
‖ut‖

σ+1
1−σ

μ

ρ+2 + ‖u‖
1

1−σ
θ

p

)
, (20)

where 1
μ
+ 1

θ
= 1. Choosing μ = (1−σ)(ρ+2)

ρ+1
> 1, it follows from (18) that θ

1−σ
=

ρ+2
(1−σ)(ρ+2)−(ρ+1)

< p. Thus, Lemma 1 implies(∣∣∣ ∫
Ω

|ut|ρRutudx
∣∣∣
R

) 1
1−σ ≤ c5

(‖ut‖ρ+2
ρ+2 + ‖u‖2 + ‖u‖pp

)
. (21)
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Similarly as derived in (20), we also obtain

(∫
Ω

|∇ut∇u|Rdx
) 1

1−σ

≤ c6

(
‖ut‖2(1−σ) + ‖u‖ 2(1−σ)

1−2σ

) 1
1−σ

≤ c7

(
‖ut‖2 + ‖u‖ 2

1−2σ

) 1
1−σ

. (22)

Notice that

‖u‖ 2
1−2σ ≤ K

2
1−2σ

1 ≤ K
2

1−2σ

1

H(t)

H(0)
= c8H(t). (23)

Therefore, from (21), (22) and (23) we infer that

L(t)
1

1−σ ≤ c9

(
H(t) + ‖ut‖ρ+2

ρ+2 + ‖u‖pp + ‖u‖2 + ‖ut‖2
)
. (24)

Combining 24 with (17) it yelds

L′(t) ≥ c10L(t)
1

1−σ . (25)

Integrating (25) from 0 to t, we have

L(t) ≥
(
L(0)

−σ
1−σ − c11

1− σ
t
)− 1−σ

σ
. (26)

This is a contradiction with the supposition that ‖u‖ is globally bounded in t. Hence, the
proof is complete. �

4 Conclusion

This work deals with a nonlinear viscoelastic problem with internal damping and logarithmic
source term, which is an improvement of the problem considered in [15] in the case of absence
of the term involving delay. By admitting the initial energy to be even positive, the problem
becomes slightly difficult, what makes necessary a study of the growth of the terms of the
total energy separately (Lemma 2). This work also states and sketches the proof of local
existence of solution assumed to exist in the Theorem 3.
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GENERALIZED FORMULA FOR ESTIMATING THE OSCILLATION
FREQUENCY RESPONSE OF A CANTILEVER BAR WITH POINT

MASSES

This paper presents a study of natural oscillations of a cantilever bar with five point masses with
variable geometric and stiffness parameters (distances between locations of the masses, coefficients
of variability of the bending stiffness of the bar sections). Using the exact method of forces based
on the Mohr formula, there have been obtained expressions in general form for calculating the main
unit coefficients of the secular equation, which makes it possible to perform calculations and to
determine the oscillation frequency response of natural oscillations with a wide range of changes in
the initial parameters of the physical and geometric state of cantilever bars. A numerical example
has been given to illustrate the proposed theoretical approaches. The results have been compared
with the results based on calculating a similar cantilever bar with one (reduced by masses) degree of
freedom. A graphical dependence of the oscillation frequency response value on changing the value
of the bending stiffness along the length of the cantilever bar gas been obtained. The theoretical
provisions and applied results presented in the work will be widely used both in the practical
design of bar systems and in scientific research in the field of mechanics of a deformable solid body.

Key words: cantilever bar, point masses, variable bending stiffness, main unit coefficients,
oscillations frequency response for natural oscillations, graphical dependence of the oscillation
frequency response, reduced mass, calculation reliability, calculation nomogram.
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НҮКТЕЛIК МАССАЛАРЫ БАР КОНСОЛЬДI ӨЗЕКТIҢ НЕГIЗГI ЖАҒДАЙЫН

БАҒАЛАУҒА АРНАЛҒАН ЖАЛПЫЛАНҒАН ФОРМУЛА

Бұл мақалада айнымалы геометриялық және қатаңдық параметрлерi мен бес нүктелi масса-
лары бар консоль өзегiнiң өзiндiк тербелiстерiне зерттеу жүргiзiлдi (массалардың орналасуы
арасындағы қашықтық, өзектер бөлiмдерiнiң иiлу қатаңдығының өзгеру коэффициенттерi).
Мора формуласына негiзделген күштердiң нақты әдiсi ғасырлық теңдеудiң негiзгi бiрлiк ко-
эффициенттерiн есептеу үшiн өрнектiң жалпы түрiнде алынады, бұл консольдiк өзектердiң
физика-геометриялық күйiнiң бастапқы параметрлерiнiң өзгеруiнiң кең диапазонында табиғи
тербелiстердiң негiзгi жағдайын анықтауға есептеулер жүргiзуге мүмкiндiк бередi.
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Үсынылған теориялық тәсiлдердi суреттеу үшiн сандық мысал келтiрiлген. Есептеу нәтиже-
лерiн салыстыру үшiн еркiндiк дәрежесi бiрге тең үқсас консольдi өзектi (масса бойынша
берiлген) есептеу негiзiнде жүргiзiлдi. Консольдi өзектiң иiлу қатаңдығы мен өзек бойының
үзындығының өзгеруiне байланысты графикалық тәуелдiлiк алынды. Жұмыста келтiрiлген
теориялық ережелер мен қолданбалы нәтижелердi өзектiк жүйелердi практикалық жобалау
кезiнде және деформацияланатын қатты дене механикасы саласындағы ғылыми зерттеулер-
де де кеңiнен қолданылады.
Алынған теориялық және практикалық нәтижелер ғимараттар мен әртүрлi инженерлiк
құрылыстардағы тұтас арқалықтар құрылымын жобалау кезiнде қолданыла алады.

Түйiн сөздер: : Консольдi өзек, нүктелiк масса, айнымалы иiлу қатаңдығы, негiзгi бiрлiк
коэффициенттер, өзiндiк тербелiстiң негiзгi жағдайы, негiзгi жағдайдың графикалық тәуел-
дiлiгi, келтiрiлген масса, есептеудiң сенiмдiлiгi, есептеу номограммасы.
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ОБОБЩЕННАЯ ФОРМУЛА ДЛЯ ОЦЕНКИ ОСНОВНОГО ТОНА КОНСОЛЬНОГО

СТЕРЖНЯ С ТОЧЕЧНЫМИ МАССАМИ

В данной работе выполнено исследование собственных колебаний консольного стержня с
пятью точечными массами с переменными геометрическими и жесткостными параметрами
(расстояния между местами расположения масс, коэффициентами переменности изгибных
жесткостей участков стержней). Точным методом сил на основе формулы Мора получены
в общем виде выражения для вычисления главных единичных коэффициентов векового
уравнения, что позволяет производить расчеты на определение основного тона собственных
колебаний при широком диапазоне изменения исходных параметров физико-геометрического
состояния консольных стержней. Приведен численный пример для иллюстрации предлагае-
мых теоретических подходов. Выполнено сравнение результатов расчета на основе расчета
аналогичного консольного стержня с одной (приведенной по массам) степенью свободы.
Получена графическая зависимость величины основного тона от изменения значения
изгибной жесткости по длине консольного стержня. Приведенные в работе теоретические
положения и прикладные результаты найдут широкое применение как в практическом
проектировании стержневых систем, так и в научных исследованиях в области механики
деформируемого твердого тела.

Ключевые слова: Консольный стержень, точечные массы, переменная изгибная жесткость,
главные единичные коэффициенты, основной тон собственных колебаний, графическая за-
висимость основного тона, приведенная масса, достоверность расчета, номограмма расчета.

1 Introduction

In the process of designing high-rise buildings (multi-storey structures) and tower-type
structures (various support structures), in order to calculate them for pulsation from the
dynamic effect of wind load, it is necessary to know the magnitude of the oscillation frequency
response of free (natural) oscillations.

For this, various exact and approximate analytical and numerical methods are used.
In this paper, an approximate analytical method is proposed for calculating the oscillation

frequency response of cantilever bars with step-variable bending stiffness along its length with
point masses, which makes it possible to estimate the magnitude of the oscillation frequency
response with sufficient engineering accuracy.
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A certain number of works were dealing with the topic proposed by the authors of this
article: for example, in work [1] the oscillatory processes of a statically determinate bar
system with one degree of freedom are considered by the Runge-Kutta method in the MatCad
program; there was compared the effect of the inelastic resistance of the material coefficient
on the displacement of the concentrated mass.

Calculation for harmonic oscillations is also described in the works by Aizenberg Ya.N.,
Gvozdev A.A., Birbraer A.P., Shulman S.G., Rabinovich I.M., Barshtein M.F., Korenev B.G.,
Timoshenko S.P. and many others [2-8].

Study [9] considers special properties of the bending shapes of bars of constant bending
stiffness to determine the value of the fundamental tone.

In work [10], nonlinear free oscillations of coating structures are considered based on
studying the characteristic quadratic equation obtained by the matrix method.

In paper [11], a mixed form of the finite element method was used to calculate bar systems
for free oscillations.

Papers [12, 13] consider the numerical implementation of the finite element method in
calculations for free and forced oscillations; the matrices of stiffness, masses, examples of
calculating beam systems of the Bernoulli-Euler and Timoshenko type are given, a new
concept of "dynamic matrix"is introduced.

The purpose and objective of this work is to study the stress-strain state of cantilever
bars with several point masses for natural oscillations with determining the oscillation
frequency response in a wide range of changes of geometric and physical and mechanical
parameters of the system under study.

In this case, the problem of obtaining an analytical expression for calculating the main
unit coefficients of the secular equation in general form has been solved, which makes it
possible to operate mathematically with geometric dimensions and bending stiffness when
calculating various cantilever bars.

One of the objectives of the study is to illustrate the generalized formula obtained by the
authors using the example of calculating the oscillation frequency response of a cantilever
bar.

A graphic dependence (nomogram) of the oscillation frequency response of natural
oscillations has also been obtained with changing the bending stiffness along the length
of the bar.

2 Theoretical provisions and calculation methods

Coefficients k1, k2, k3, k4,determining the variability of the step-variable bending stiffness
along the height of the bar at five levels (floors) of the structure;

Coefficients a1, a2, a3, a4 determining the differences in the size of sections (floors) along
the height of the cantilever rod;

Coefficients b1, b2, b3, b4 determining the differences in the values of concentrated masses.
By changing the values of the above coefficients over a wide range, it is possible to study

free oscillations, that is, to determine the value of the oscillation frequency response of the
five-step-variable bending stiffness of the cantilever bar with different lengths, and the bending
stiffness of its five steps (floors) with different values of five concentrated point masses located
at the joints of steps (floors) along the height of the structure.
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Let us calculate the values of the main coefficients δii(i = 1, 2, 3, 4, 5)according to the
Vereshchagin rule, multiplying the corresponding single diagrams of the moments (Figure 1,
b, c, d, e, f). Then, in generalized form, we obtain:

Figure 1: Towards the calculation of the cantilever bar for free oscillations: a) – the calculated
scheme; b) – diagramM5 ; c) – diagramM4 ; d) – diagramM3 ; e) – diagramM2 ; f) – diagram
M1

δii =
1

EiJi
(M i) · (M i) =

l30
l0i0

[
1

ki−1

(
0.33a3i−1

)]
+

+ 1
ki−2

[0.5ai−1ai−2(2ai−1 + ai−2) + 0.1667(ai−2)
2(3ai−1 + 2ai−2)] +

+ 1
ki−3

[0.5(ai−2 + ai−1)ai−3(2ai−2 + ai−1) + ai−3 + 0.1667(ai−3)
23 [(ai−2 + ai−1) + 2ai−3]] +

+ 1
ki−4

[0.5(ai−2 + ai−1 + ai−3) [2(ai−2 + ai−1 + ai−3) + ai−4] +

+0.1667(ai−4)
23 [(ai−2 + ai−1 + ai−3) + 2ai−4]] +

+ [0.5(ai−2 + ai−1 + ai−3 + ai−4) [2(ai−2 + ai−1 + ai−3 + ai−4) + 1]+
+0.1667 [3(ai−2 + ai−1 + ai−3 + ai−4) + 2]] .

(1)

According to generalized formula (1) let’s calculate the main coefficients:
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а) δ55(i = 5)

δ55 =
l20
i0

[
1
k4
(0.3333a34)

]
+ 1

k3
[0.5a3a4(2a4 + a3) + 0.1667(a3)

2(3a4 + 2a3)] +

+ 1
k2
[0.5(a3 + a4)a2 [2(a3 + a4 + a2] + 0.1667(a2)

23 [(a3 + a4) + 2a2]] +

+ 1
k1
[0.5(a3 + a4 + a2) [2(a3 + a4 + a2) + a1] + 0.1667(a1)

23 [(a3 + a4 + a2) + 2a1]] +

+ [0.5(a3 + a4 + a2 + a1) + [2(a3 + a4 + a2 + a1) + 1] + 0.1667 [3(a3 + a4 + a2 + a1) + 2]]

b) δ44(i = 4)

δ44 =
l20
i0

[
1
k3
(0.3333a33)

]
+ 1

k2
[0.5a3a2(2a3 + a2) + 0.1667(a2)

2(3a3 + 2a2)] +

+ 1
k1
[0.5(a3 + a2) [2(a3 + a2) + a1] + 0.1667(a1)

2 [3(a3 + a2) + 2a2]] +

+ [0.5(a1 + a2 + a3) [2(a1 + a2 + a3) + 1] + 0.1667 [3(a1 + a2 + a3) + 2]]

c) δ33(i = 3)

δ33 =
l20
i0

[
1
k2
(0.3333a32)

]
+ 1

k1
[0.5a2a1(2a2 + a1) + 0.1667(a1)

2(3a2 + 2a1)] +

+ [0.5(a3 + a2) [3(a1 + a2) + 2] + 0.1667 [3(a1 + a2) + 2]]
. (2)

d) δ22(i = 2)

δ22 =
l20
i0

[
1

k1

(
0.3333a31

)]
+
[
0.5(a1)

2(2a1 + 1) + 0.1667 [3(a1 + 2)]
]
;

e) δ11(i = 1)

δ11 =
l20
i0
(0.3333) .

Let’s calculate the point masses values (Figure 1, а).

m1 = m0; m2 = b1m0; m3 = b2m0; m4 = b3m0; m5 = b4m0;

According to the formula presented in [1], let’s calculate the approximate value of the
oscillation frequency response for free oscillations of the cantilever bar:

1

ω2
1

= m1δ11 +m2δ22 +m3δ33 +m4δ44 +m5δ55 (3)

Let’s substitute the values calculated in (1, 2) into expression (3).
Based on the proposed generalized formulas for the cantilever bar (Figure 1, a), let’s

calculate a numerical example with the following initial data (Figure 2, a):

a1 = a2 = a3 = a4 = 1; m0 = 43.3 kg · s2/cm;

l0 = 3.5 m; b1 = 1.0254; b2 = 0.9931; b3 = 0.8799; b4 = 0.836;

i∗0 = 8.06 · 108kg/cm; iAB = 3i∗0 = 24.18 · 108 = i0;

k1 = 0.8; k2 = 0.6; k3 = 0.4; k4 = 0.2
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Figure 2: Towards the calculation of the cantilever bar (example): a) – the preset scheme; b)
- diagram M5 ; c) - diagram M4 ; d) – diagram M3; e) – diagram M2; f) – diagram M1

3 Results

Based on the above theoretical calculations, we obtain the following results for which we
calculate the values of the main coefficients δii(i = 1, 2, 3, 4, 5) using formulas (2)

δ55 =
1

li0
(23.82 + 83.56 + 150.8676 + 220.371 + 290.57) =

768.992 · 104
li0

= 27.26 · 10−4;

δ44 =
1

li0
(768.992− 290.57) =

478.422 · 104
li0

= 16.96 · 10−4;

δ33 =
1

li0
(478.4221− 220.371) =

258.051 · 104
li0

= 9.1475 · 10−4; (4)

δ22 =
1

li0
(258..05− 150.87) =

107.18 · 104
li0

= 3.8 · 10−4;

δ11 =
1

li0
(107.18− 83.363) =

23.818 · 104
li0

= 0.844 · 10−4.

Let’s calculate the point masses values (Figure 2, а):
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m1 =
P1

g
=

43.3 · 103
981

= 44.14 kg · s2/cm; m2 =
P2

g
= 44.954 kgs2

/
cm;

m3 =
P3

g
= 43.83 kgs2

/
cm; m4 =

P4

g
= 38.84 kgs2

/
cm; m5 =

P5

g
= 39.9 kgs2

/
cm

Let’s calculate the approximate value of the oscillation frequency response for free
oscillations of the cantilever bar (Figure 2, а) according to formula (3).

1

ω2
1

= m1δ11 +m2δ22 +m3δ33 +m4δ44 +m5δ55 =

= 10−4 (37.25 + 170.83 + 400.93 + 658.73 + 1005.89) = 2273.63 · 10−4

ω1 = 102 · 0.020973 = 2.0973 s−1 is the oscillation frequency response of the cantilever
bar (Figure 1,а).

To estimate reliability of the result obtained, let’s calculate the (ω1) value through the
reduced mass (M) (Figure 3) the coefficient of reduction of the distributed mass to the end
of the cantilever bar [14].

M = β
(
∑

mi)H

H
= β
∑

miH = 0.23 (m1 +m2 +m3 +m4 +m5) = 47.99

According to formula 7.70 [1]:

ω2
1 =

1

δ55
=

1

47.99 · 27.26 · 10−4
= 102 · 0.000764; ω∗

1 = 2.764 s−1

Figure 3: The bar reduced mass

The ω1 and ω∗
1 values calculated by different methods (approaches) are sufficiently close

which proves reliability of the proposed theory of calculating the cantilever bar of step-variable
bending stiffness with point masses located along its length (height).
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Let’s study the effect of changing the scaling relative stiffness i0 = 8.06 · 108 kgcm on the
oscillation frequency response (ω1) of the cantilever bar (Figure 2, а) according to formulas
(4):

δ55 =
768.992 · 104

3.5i0
=

219.71 · 104
i0

; δ44 =
136.692 · 104

i0
;

δ33 =
73.73 · 104

i0
; δ22 =

30.62 · 104
i0

; δ11 =
60.81 · 104

i0
.

(5)

According to formula (3) let’s calculate taking into account expression (5) with i0 =
(1, 3, 5, 7, 9, 11) · 8.06 · 108 kgcm (Table 1).
Table 1 – Values of the oscillation frequency response for free oscillations of the cantilever
bar

10−8 i0 1.0 3.0 5.0 7.0 9.0 11.0
δ11 6.81х10-4 2.27х10-4 1.36х10-4 0.97х10-4 0.76х10-4 0.62х10-4
δ22 30.62х10-

4
10.21х10-
4

6.12х10-4 4.37х10-4 3.4х10-4 2.78х10-4

δ33 73.73х10-
4

24.5х10-4 14.75х10-
4

10.53х10-
4

8.19х10-4 6.70х10-4

δ44 136,69х10-
4

45.5х10-4 23.34х10-
4

19.52х10-
4

45.19х10-
4

12.42х10-
4

δ55 219.71х10-
4

73.24х10-
4

43.94х10-
4

31.39х10-
4

24.41х10-
4

19.97х10-
4

ω1, c
−1 5.954 3.44 2.652 2.242 1.977 1.789

According to Table 1, let’s build the graphs of the ω1,i = f(i0,i) (i = 1, 3, 5, 7, 9, 11)
dependence. This graph is presented in Figure 4.

Figure 4: The oscillation frequency response dependence on the relative stiffness value of the
cantilever bar



O. Khabidolda et al. 33

4 Conclusions

Based on the analytical operations, generalized formula (1) has been obtained for an
approximate estimation of the oscillation frequency response with varying parameters of
the section lengths, point mass values, and relative stiffness values of sections of a five-stage
cantilever bar (Figure 1, a).

A numerical example (Figure 2, a) shows reliability of the proposed theoretical provisions;
this is shown by the proximity of the oscillation frequency response values obtained by two
independent methods of calculating ω1 ≈ ω∗

1.
The dependence of the oscillation frequency response value the cantilever bar (Figure 2,

a) on changing the value of relative stiffness i0 in the range from 1 · 108kgcm to 11 · 108 kgcm
has been studied, which is reflected graphically (Figure 4).

The dependence ω1,0 = f(i0,i) shown in Figure 4 can be used as a nomogram to determine
the oscillation frequency response of various cantilever bars (Figure 1, a) at arbitrary values
of the main relative stiffness of the lower section of the cantilever bar with step-variable
bending stiffness.
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EVOLUTION EQUATIONS OF MULTI-PLANET SYSTEMS WITH
VARIABLE MASSES

In celestial mechanics and astrodynamics, the study of the dynamical evolution of exoplanetary
systems is the relevant topics. For today more than 3,000 exoplanetary systems are known. In
this paper, we study the dynamic evolution of extrasolar systems, when the leading factor of
evolution is the variability of the masses of gravitating bodies. The problem of n + 1 spherically
symmetric bodies with variable masses is considered in a relative coordinate system, this bodies
inter-gravitating according to Newton’s law. The quasi-elliptical motions of planets whose orbits
do not intersect during evolution are investigated. It is believed that the mass of bodies under
consideration varies isotropically by various known laws with different velocities. The mass of the
parent star is considered to be the most massive than its planets and the origin of the relative
coordinate system is in the center of the parent star. Due to the variability of the masses, the
differential equations of motion become non-autonomous and the task is difficult. The problem
is investigated by methods of perturbation theory. The canonical perturbation theory based on a
periodic motion over a quasi-canonical section is used. Canonical equations of motion are obtained
in analogues of the second Poincare system, which are effective in the case when the analogues of
eccentricities and the analogues of the inclination of the orbital plane of planets are sufficiently
small. The secular perturbations of the planets, which determine the behavior of the orbital
parameters over long time intervals, are studied.
The evolutionary equations of many planetary systems with isotropically varying masses in
analogues of the second system of Poincare variables are derived in an analytical form which
are obtained using the Wolfram Mathematica computer algebra system. This takes into account
the effects of the decreasing mass of the parent star and the growth of the masses of the planets due
to the accretion of matter from the remnants of the protoplanetary disk. For the three-planetary
problem of four bodies with variable masses, the evolutionary equations in dimensionless variables
are obtained explicitly. In the future, these results will be used to study the dynamics of the three-
planet system K2-3 in the non-stationary stage of its evolution.
Key words: variable mass, perturbation theory, evolutionary equations, exoplanetary systems,
Poincare elements.
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Массалары өзгермелi көп планеталы жүйелердiң эволюциялық теңдеулерi

Аспан механикасында және астродинамикада экзопланеталы жүйенiң динамикалық эволю-
циясын зерттеу өзектi тақырып. Қазiргi таңда 3000-нан артық экзопланеталы жүйе белгiлi.
Бұл жұмыста гравитация арқылы әсерлесетiн денелердiң массаларының айнымалылығы эво-
люцияның жетекшi факторы ретiнде қарастырылған кезде күн жуйесi сыртындағы басқа
да жүйелердiң динамикалық эволюциясы зерттеледi. Салыстырмалы координаталар жүй-
есiнде ньютон заңы бойынша өзара әсерлесетiн айнымалы массалы сфералық симметриялы
денелер мәселесi қарастырылады. Эволюция кезiнде планеталардың орбиталары бiр-бiрiмен
қиылыспайтын квазиэллиптикалық қозғалыс зерттеледi. Қарастырылатын денелердiң мас-
салары әртүрлi жылдамдықпен белгiлi әртүрлi заңдылықтар бойынша изотропты түрде өз-
гередi деп саналады. Орталық жұлдыздың массасы оның планеталарының массаларынан
әлде-қайда үлкен деп алынады, және салыстырмалы координаталар жүйесiнiң бас нүктесi
орталық жұлдыздың центрiнде орналасады. Массалардың айнымалылыға есебiнде диффе-
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ренциалды қозғалыс теңдеулерi автономды емес түрге енедi және есеп қиындайды. Мәселе
ұйытқу теориясы әдiстерiмен зерттеледi. Квазиконустық қима бойынша апериодты қозғалыс
негiзiнде канондық ұйытқу теориясы қолданылады. Экцентриситет аналогтары мен плане-
та орбитасының көлбеулiк бұрышының аналогтары жеткiлiктi деңгейде кiшi шама болған
кезде тиiмдi болып табылатын Пуанкаренiң екiншi жүйесiнiң аналогтары арқылы канондық
қозғалыс теңдеуi алынды. Уақыттың үлкен интервалында орбита параметрлерiнiң өзгерiсiн
анықтауға мүмкiндiк беретiн планетаның ғасырлық ұйытқуы зерттелiнедi.
"Wolfram Mathematica" компьютерлiк алгебра көмегiмен массалары изотропты өзгеретiн көп
планеталы жүйенiң эволюциялық теңдеулерi Пуанкаре айнымалыларының екiншi жүйесi
аналогтары арқылы аналитикалық түрде келтiрiлген. Сонымен қатар, протопланеталы диск
қалдықтары бөлшектерiнiң аккрециясы есебiмен планета массасының өсуi және орталық
жұлдыздың массасының азаю әсерлерi есепке алынады. Айнымалы массалы төрт дененiң
үш планеталы мәселесi үшiн өлшемсiз шама арқылы эволюциялық теңдеулер анық түрде
алынды. Ендiгi кезекте алынған нәтижелер К2-3 үш планеталы жүйесiнiң стационар емес
эволюция кезеңiнде динамикалық эволюциясын зерттеу үшiн қолданылады.
Түйiн сөздер: айнымалы масса, ұйытқу теориясы, эволюциялық теңдеулер, экзопланеталы
жүйелер, Пуанкаре элементтерi.
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Эволюционные уравнения много планетных систем с переменными массами

В небесной механике и в астродинамике изучение динамическую эволюцию экзопланетных
систем актуальная тема. На сегодняшний день известно более 3000 экзопланетные системы.
В настоящей работе исследуется динамическая эволюция внесолнечных систем, когда веду-
щим фактором эволюции является переменность масс гравитирующих тел. Рассматривается
в относительной системе координат задача сферический симметрических тел с переменными
массами, взаимогравитирующие по закону ньютона. Исследуется квазиэллиптические
движения планет орбиты которых в ходе эволюции не пересекаются. Считается, что масса
рассматриваемых тел изменяется изотропно по различным известным законам с различными
скоростями. Масса родительской звезды считается наиболее массивным чем её планеты и
начало относительной системы координат находится в центре родительской звезды. Из-за
переменности масс дифференциальные уравнения движения становится неавтономными и
задача усложняется. Проблема исследуется методами теории возмущения. Используется
каноническая теория возмущения на базе апериодического движения по квазиконическому
сечению. Канонические уравнения движения получены в аналогах второй системы Пуанкаре,
которые эффективны в случае, когда аналоги эксцентриситетов и аналоги наклонности
орбитальной плоскости планет достаточно малы. Исследуются вековые возмущения планет,
которые определяют поведение орбитальных параметров на больших интервалах времени.
В аналитическом виде приведены эволюционные уравнения много планетных систем с
изотропно изменяющимися массами в аналогах второй системы переменных Пуанкаре, ко-
торые получены с использованием системы компьютерной алгебры "Wolfram Mathematica".
При этом учитываются эффекты убывания массы родительской звезды и роста масс
планет из-за аккреции вещества из остатков протопланетного диска. Для трех планетной
задачи четырех тел с переменными массами, в явном виде, получены эволюционные
уравнения в безразмерных переменных. В дальнейшем эти результаты будет использова-
ны для изучения динамику трех планетной системы K2-3 в нестацонарной этапе ее эволюции.

Ключевые слова: переменная масса, теория возмущения, эволюционные уравнения, экзо-
планетные системы, элементы Пуанкаре.
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1 Introduction

Multi-body problem is one of the center problem in celestial mechanics. Let us short review of
more interesting work about this problem that are close to our topic. In paper [1] three body
problem was researched and algorithm of solving equation in osculating elements was given,
here perturbing acceleration smaller than main acceleration caused by the induced of the
central body gravity. In article [2] integrability of the N body problem was described. In [3] the
problem of deriving theory of motion of four planet around center star was considered. Here
Hamiltonian was given in the Poisson series in the osculating elements of the second Poincare
systems. The expansion in series was constructed up to third power of a small parameter.
A relevant problem is the problem of formation planetary systems. In work [4] the orbital
evolution of two planetary system of three bodies Sun-Jupiter-Saturn was investigated. The
Hamiltonian written in osculating elements is represented in Poisson series expansion over
all elements.

In [5] orbital evolution of asteroids Phaethon clusters was studied, taking into account
perturbations from eight major planets, the dwarf planet Pluto, the influence of the Yarkovsky
effect, the flattened Sun and relativistic effects. In article [6] dynamical evolution of orbits
due to pressure of solar radiation was investigated. In [7] the authors analyzed dynamical
evolution of young pairs of asteroids in close orbits. In work [8] evolution of planetary systems
was studied. The averaged equations of motion was derived analytically up to third power of
a small parameter for the case of a four planetary system. Here the system of Sun-Jupiter-
Saturn-Neptune is considered.

In [9] and [10] the authors described a methodology for detection the initial orbits of
exoplanet using the curve radial velocity of parent star and obtained an algorithm for solving
the equations of two body problem in the form of series and proved that the serieses converges
to solving the equations for small values of eccentricity.

In work [11] the orbital evolution of the three-planet exosystem as HD 39194 and the four-
planet exosystems as HD 141399 and HD 160691 (μ Ara) are studied. In result the authors
have derived an averaged semi-analytical theory of second-order motion by the masses of
exoplanets. Here multi-planetary problem is considered. The equations of motion are given
in the Jacobi coordinates and written in the elements of the second Poincare system.

In celestial mechanics and astrodynamics one of the relevant topics is the study dynamical
evolution of non-stationary gravitational exoplanetary systems. For today 3677 exo-systems
and 4903 confirmed exoplanets are known [12].

In this paper, in difference to the above-mentioned works, the dynamical evolution of
multi-planetary systems is researched, when the leading factor of evolution is the variability
of the masses of the celestial bodies themselves.

The particular case – two planetary problem of three bodies with variable masses was
considered in work [13].

The motions are studied in a relative coordinate system, with the origin in the center of
the parent star. The canonical perturbation theory is used, which elaborated on the base a
periodic motion over quasi-canonical section [14]. Dimensionless evolutionary equations are
obtained in analogues of the second Poincare system.
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2 Materials and methods

2.1 The problem statement and differential equations of motion

We will consider the motion of n + 1 (n ≥ 3) bodies, which inter-gravitating according to
Newton’s law, in a relative coordinate system with the origin in the center of the parent
star, whose axes are parallel to the corresponding axes of the absolute coordinate system.
The bodies will be considered spherical with isotropically varying masses. We introduce the
following notation: S – the parent star of planetary system – the center body, Pi, (i =
1, 2, . . . , n) – planets. The positions of the planets are such that Pi – the inner planet relative
to the Pi+1 planets, but the outer, relative to Pi−1. We will assume that such positions of the
planets are preserved during of the evolution and their orbits don’t intersect.

The law of varying of mass is considered to be known and different:

m0 = m0(t), m1 = m1(t), . . . ,mn = mn(t) (1)

where, m0 = m0(t) – mass of parent star S, mi = mi(t), – mass of planet Pi.
The motion equations of n planets in the relative coordinate system are written as the

following [14-15]:

�̈ri = −f
(m0 +mi)

r3i
�ri + f

n∑
j=1

′mj

(
�rj − �ri
r3ij

− �rj
r3j

)
, (i, j = 1, 2, . . . , n) (2)

where, f – the gravitational constant, �ri(xi, yi, zi) – the radius-vector of planet Pi, in summing
the sign "stroke" means that i �= j, rij – the mutual distances of the center of spherical bodies:

rij =
√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2 = rji (3)

We will use the methods of the canonical perturbation theory, elaborated on the basis of
the aperiodic motion over a quasi-canonical section [14]. Canonical equations are convenient
for studying non-stationary gravitating systems.

Based on differential equations of planetary motion written in the relative coordinate
system (2), it is possible to write the canonical equations of motion in the osculating analogues
of the second system of canonical Poincare variables [16-17]:

Λi, λi, ξi, ηi, pi, qi (4)

The system of canonical equations has the form

λ̇i =
∂R∗

i

∂Λi

=
μ2
i0

γ2
i Λ

3
i

− ∂Wi

∂Λi

, Λ̇i =
∂R∗

i

∂λi

=
∂Wi

∂λi

,

η̇i =
∂R∗

i

∂ξi
= −∂Wi

∂ξi
, ξ̇i =

∂R∗
i

∂ηi
=

∂Wi

∂ηi
,

q̇i =
∂R∗

i

∂pi
= −∂Wi

∂pi
, ṗi =

∂R∗
i

∂qi
=

∂Wi

∂qi
.

(5)
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where, the Hamilton function has the form

R∗
i = − μ2

i0

2Λ2
i

· 1

γ2
i (t)

−Wi (t,Λi, ξi, pi, λi, ηi, qi) , γi =
m0(t0) +mi(t0)

m0(t) +mi(t)
= γi(t) (6)

here, μi0 = f(m0(t0) +mi(t0)) = const – gravitational parameter of unperturbed motion at
the initial moment of time t0, Wi(t,Λi, ξi, pi, λi, ηi, qi) – perturbing function.

In work [16] a scheme for expressing perturbing functions via osculating elements was
presented (4). In the article [18] obviously expansion of the perturbing function in analogues
of the second system of canonical Poincare variables were obtained up to the second power
of small parameters including, for n – planetary systems with variable masses. The equations
of secular perturbations in the general case are also obtained

λ̇i =
μ2
i0

γ2
i Λ

3
i

− ∂W
(sec)
i

∂Λi

, Λ̇i = 0,

η̇i = −∂W
(sec)
i

∂ξi
, ξ̇i =

∂W
(sec)
i

∂ηi
,

q̇i = −∂W
(sec)
i

∂pi
, ṗi =

∂W
(sec)
i

∂qi
.

(7)

The obviously form of the obtained evolutionary equations of the problem of multi bodies
with variable masses (7) is as following

ξ̇i = f
i−1∑
s=1

ms

(
Πis

ii

Λi

ηi +
Πis

is√
ΛiΛs

ηs

)
+ f

n∑
k=i+1

mk

(
Πik

kk

Λi

ηi +
Πik

ik√
ΛiΛk

ηk

)
− 3γ̈iΛ

3
i

2γiμ2
i0

ηi,

η̇i = −f
i−1∑
s=1

ms

(
Πis

ii

Λi

ξi +
Πis

is√
ΛiΛs

ξs

)
− f

n∑
k=i+1

mk

(
Πik

kk

Λi

ξi +
Πik

ik√
ΛiΛk

ξk

)
+

3γ̈iΛ
3
i

2γiμ2
i0

ξi

ṗi = −f
i−1∑
s=1

msB
is
1

(
qi
4Λi

− qs

4
√
ΛiΛs

)
− f

n∑
k=i+1

mkB
ik
1

(
qi
4Λi

− qk

4
√
ΛiΛk

)
(8)

q̇i = f
i−1∑
s=1

msB
is
1

(
pi
4Λi

− ps

4
√
ΛiΛs

)
+ f

n∑
k=i+1

mkB
ik
1

(
pi
4Λi

− pk

4
√
ΛiΛk

)

λ̇i =
μ2
i0

γ2
i Λ

3
i

− ∂W
(sec)
i

∂Λi

, Λ̇i = 0 (9)

here, index s – denotes the inner planet relative to the investigated planet, and the index k
– the outer one.

For n planetary problem of multi-bodies with variable masses the system of canonical
equations (8) represent 4n-linear non-autonomous equations with complex coefficients. The
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explicit form of non-autonomous coefficients of equations (8) – (9) are cumbersome, for
internal and external perturbing planets they are written separately. They are described
in detail and given in the work [18]. These coefficients, in turn, depend on the Laplace
coefficients. The Laplace coefficients can be calculated exactly and expressed throughout
elliptic integrals of the first and second kind [19].

The resulting system of canonical equations (8) is divided into two separate subsystems
[18]. The first subsystem defines the equations of secular perturbations for eccentric elements
(ξi, ηi), and the second one for oblique elements (pi, qi). The linearity of the system of non-
autonomous differential equations (8) significantly ease the study of the canonical system of
differential equations in the formulation under consideration.

From the last equation (9) follows

Λi = const or ai = const (10)

Note that λi is calculated after integrating equations (8).
Remark that when the analogues of eccentricities and the analogues of the inclination of

the orbital planes of planets are small enough, the equations of secular perturbations (8) –
(9) are convenient for describing the dynamic evolution of planetary systems with variable
masses.

2.2 Dimensionless differential equations of motion

For the calculation we use the following dimensionless quantities:

t∗ = τ = ω1t,

(
d

dτ

)
= ( )

′
, a∗i =

ai
a1

, m∗
i =

mi

m00

, (11)

where, t∗ – dimensionless time, a∗i – dimensionless distance, m∗
i – dimensionless mass, m00 =

m0(t0) = const – the mass of the parent star at the initial moment of time, a1 = a1(t0) = const
– the semi major axis of the planet P1 at the initial moment of time, the value of ω1 is defined
as follows:

ω1 =

√
fm00

a
3/2
1

= const. (12)

Accordingly, we write down the period of the planet P1 at the initial moment of time in
Earth years

T1 =
2π

ω1

=
2π√
fm00

a
3/2
1 = const = k1. (13)

Then, taking into account the relations [14], [16]

Λi =
√
μi0

√
ai, λi = li + πi

ξi=
√
2
√
μi0

√
ai(1−

√
1−e2i ) cos πi, ηi= −

√
2
√
μi0

√
ai(1−

√
1−e2i ) sin πi,

pi=
√
2
√
μi0

√
ai
√
1−e2i (1− cos ii) cosΩi, qi= −

√
2
√
μi0

√
ai
√
1−e2i (1− cos ii) sinΩi,

li = Mi = ni[φi(t)− φi(τi)], πi = Ωi + ωi,

(14)
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where

ai, ei, ii, ωi, Ωi, φi(τi) (15)

the osculating elements of the aperiodic motion over the quasi conic section, we can write

ξi = ξ∗i (fm00a1)
1/4, ηi = η∗i (fm00a1)

1/4, pi = p∗i (fm00a1)
1/4, qi = q∗i (fm00a1)

1/4 (16)

Λi =
√
fm00

√
a1Λ

∗
i ,

3γ̈iΛ
3
i

2γiμ2
i0

= ω1
3γ′′

i

2γi

Λ∗3
i

μ∗2
i0

. (17)

At the same time, dimensionless eccentric and oblique elements have the form

ξ∗i =
√
2
√
μ∗
i0

√
a∗i (1−

√
1− e2i ) cosπi,

η∗i = −
√
2
√
μ∗
i0

√
a∗i (1−

√
1− e2i ) sin πi,

(18)

p∗i =
√
2
√

μ∗
i0

√
a∗i
√

1− e2i (1− cos ii) cosΩi,

q∗i = −
√
2
√
μ∗
i0

√
a∗i
√
1− e2i (1− cos ii) sinΩi,

(19)

Λ∗
i =
√
μ∗
i0

√
a∗i , μ∗

i0 = 1 +
mi0

m00

= const. (20)

Using the introduced notation (11) – (17) and the relations (18) – (20), we proceed to
dimensionless variables.

In equations (8), by reducing the left and right sides of the equation by a common
multiplier ω1(fm00a1)

1/4 = const, we obtain the evolution equations in dimensionless
quantities.

For the convenience of writing, omitting the symbol (∗), we rewrite the equations (8) in
dimensionless variables in the following form

ξ′i =
i−1∑
s=1

ms
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,

q′i =
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is
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(
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4Λi
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(21)

At the same time, the expressions Πis
ii , Π

is
is, Π

ik
kk, Π

ik
ik in equations (21) and the Laplace

coefficients retain their form. But, they are already dimensionless quantities.
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3 Results

3.1 Dimensionless evolutionary equations of the three-planetary problem of four bodies
for numerical calculations

Now we will explicitly write dimensionless evolutionary equations for the special case when
n = 3. The planet P1 is affected only by the outer planets (s = 0, k = 2, 3), and for planet P2

we take into account the influence of one inner planet (s = 1) and one outer planet (k = 3).
For planet P3, there is only the influence of the outer planets (s = 1, 2, k = 0).

The system of equations of eccentric elements consists of six equations

ξ′1 = (D1,2
2 +D1,3

2 +D1
3) · η1 +D1,2

1 · η2 +D1,3
1 · η3,

η′1 = −(D1,2
2 +D1,3

2 +D1
3) · ξ1 −D1,2

1 · ξ2 −D1,3
1 · ξ3,

ξ′2 = D2,1
1 · η1 + (D2,1

2 +D2,3
2 +D2

3) · η2 +D2,3
1 · η3,

η′2 = −D2,1
1 · ξ1 − (D2,1

2 +D2,3
2 +D2

3) · ξ2 −D2,3
1 · ξ3,

ξ′3 = D3,1
1 · η1 +D3,2

1 · η2 + (D3,1
2 +D3,2

2 +D3
3) · η3,

η′3 = −D3,1
1 · ξ1 −D3,2

1 · ξ2 − (D3,1
2 +D3,2

2 +D3
3) · ξ3,

(22)

Similarly, we obtain a system of equations for oblique elements

p′1 = −(H1,2
2 +H1,3

2 ) · q1 +H1,2
1 · q2 +H1,3

1 · q3,
q′1 = (H1,2

2 +H1,3
2 ) · p1 −H1,2

1 · p2 −H1,3
1 · p3,

p′2 = H2,1
1 · q1 − (H2,1

2 +H2,3
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1 · q3,
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1 · p1 + (H2,1
2 +H2,3
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1 · p3,

p′3 = H3,1
1 · q1 +H3,2
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2 +H3,2

2 ) · q3,
q′3 = −H3,1

1 · p1 −H3,2
1 · p2 + (H3,1

2 +H3,2
2 ) · p3,

(23)

The following notation is introduced in equations (22) and (23)

Dik
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(26)
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where the following conditions are met for the outer planets (i < k)

αik =
γiai
γkak

= αik(t) < 1. (28)

For the inner planets , the designations are as follows
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In formulas (29) – (32), the following conditions are met for the inner planets (s < i)

αis =
γsas
γiai

= αis(t) < 1 (33)
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4 Discussion

The resulting system of canonical equations (19) is divided into two separate subsystems.
The first subsystem (22) defines the equations of secular perturbations for eccentric

elements. The second subsystem (23) contains equations for oblique elements. The linearity
of the obtained non-autonomous canonical systems of differential equations (22) – (23)
significantly ease the study of the problem in the formulation under consideration.

Note that equations (9) determining the mean longitude λi of the planets is calculated
after integrating equations (22) and (23).

The obtained systems of differential equations (22) – (23) in dimensionless variables will
be further used to analyze the effects of mass variability on the dynamic evolution of specific
planetary systems by numerical methods.

5 Conclusion

In the work using the symbolic computing system "Wolfram Mathematica" [20-21],
evolutionary equations are obtained in explicit analytical form, in dimensionless variables
for the three-planetary problem of four bodies system with isotropically varying masses.
Differential equations are described in analogues of the second system of canonical Poincare
elements.

The obtained evolutionary equations will be used to study the dynamic evolution of
extrasolar planetary systems. This will take into account the effects of the decrease in the
mass of the parent star and the increase in the mass of the planets due to the accretion of
matter from the remnants of the protoplanetary disk.
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SYNTHESIS OF THE TRANSFORMING MECHANISM OF THE ROCKING
MACHINE

This article discusses the synthesis of a six-link transforming mechanism of a rocking machine.
First, the problem of synthesizing a four-link articulated-lever mechanism for reproducing a vertical
line was solved. For this purpose, the problem of synthesizing a rectilinear-guiding mechanism of
the Evans type, which is a hinged-lever four-link mechanism with a straight vertical line drawing
point, is considered. The task of synthesis is to implement the constraint equation. The geometric
meaning of the constraint equation is to determine the hinge, the positions of which in the absolute
coordinate system are equidistant from the origin of the OXY coordinate system.
The problem of synthesis is formulated as a problem of quadratic approximation. According to the
found dimensions of the articulated four-link, performing the position analysis, the true positions
of the suspension point of the rod column were determined. After that, the found parameters
were refined using the output criterion directly, that is, the deviation from the given rectilinear
trajectory.
After the synthesis of a straight-line guiding mechanism, a drive kinematic chain was synthesized,
which consists of a crank and a connecting rod.
Thus, a rocking machine drive mechanism was obtained, containing a base, a crank pair connected
to the main hinged four-link mechanism. The technical result is achieved by the fact that a two-link
group is attached to the main four-link mechanism, forming a class III mechanism. The attached
two-drive group is the leading crank connected to the rack and connecting rod.
Based on the obtained dimensions of the six-link converting mechanism, an experimental model
was developed, which fully confirmed the efficiency of the transforming mechanism.
Key words: Synthesis, rocking machine, drive, connecting rod, four-link articulated-lever
mechanism, converting mechanism.
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Сорғыш қондырғының түрлендiрушi механизмiнiң синтезi

Бұл мақалада сорғыш қондырғының алты буынды түрлендiрушi механизмiнiң синтезi
талқыланады. Бiрiншiден, тiк сызықты жаңғыртуға арналған төртбуынды топсалы-
иiнтiректi механизмнiң синтез мәселесi қарастырылады. Осы мақсатта түзу тiк сызықты
сызу нүктесi бар топсалы иiнтiректi төрт буынды механизм болып табылатын Эванс типтi
түзу сызықты бағыттаушы механизмдi синтездеу мәселесi қарастырылған. Синтездiң мiндетi
- шектеу теңдеуiн жүзеге асыру. Шектеу теңдеуiнiң геометриялық мағынасы абсолюттi
координаталар жүйесiндегi орындары OXY координаталар жүйесiнiң басынан бiрдей
қашықтықта орналасқан топсаны анықтау болып табылады.
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Синтез мәселесi квадраттық жуықтау есебi ретiнде тұжырымдалған. Топсалы төрт буын-
ның табылған өлшемдерiне сәйкес позициялық талдауды орындау арқылы өзек бағанының
iлу нүктесiнiң шынайы позициялары анықталды. Осыдан кейiн табылған параметрлер тiке-
лей шығыс критерийiн, яғни берiлген түзу сызықты траекториядан ауытқуды пайдаланып
нақтыланды.
Түзу сызықты бағыттаушы механизм синтезделгеннен кейiн иiндi және шатуннан тұратын
жетектi кинематикалық тiзбек синтезделдi.
Осылайша, негiзгi топсалы төрт буынды механизмге айналшақ-бұлғақты жұбы негiзi қосы-
лған, бар сорғыш қондырғының жетек механизмi алынды. Техникалық нәтижеге екi буынды
топ негiзгi төртбуынды механизмге бекiтiлiп, III класты механизмдi құрайды. Бекiтiлген екi
жетектi топ тiрекке және шатунға қосылған жетекшi айналшақ.
Алты буынды түрлендiру механизмiнiң алынған өлшемдерi негiзiнде түрлендiру механиз-
мiнiң тиiмдiлiгiн толық растайтын тәжiрибелiк үлгi әзiрлендi.
Түйiн сөздер: Синтез, тербелгiш машина, жетек, шатун, төртбуынды топсалы-иiнтiректi
механизм, түрлендiрушi механизм.
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Синтез преобразующего механизма станка качалки

В данной статье рассматривается синтез шестизвенного преобразующего механизма стан-
ка качалки. Сначало решена задача синтеза четырехзвенного шарнирно-рычажного ме-
ханизма для воспроизведения вертикальной прямой. Для чего рассмотрена задача син-
теза прямолинейно-направляющего механизма типа Эванса, который представляет собой
шарнирно-рычажный четырехзвенный механизм с чертящей точкой прямую вертикальную
линию. Задача синтеза заключается в реализации уравнения связей. Геометрический смысл
уравнения связей заключается в определении шарнира, положения которых в абсолютной
системе координат является равноудалеными от начала системы координат OXY.
Сформулирована задача синтеза в виде задачи квадратического приближения. По найден-
ным размерам шарнирного четырехзвенника, выполняя анализ положений определен истин-
ные положения точки подвеса колонны штанг. После этого произведен уточнение найденных
параметров используя непосредственно выходной критерий, то есть отклонение от заданной
прямолинейной траектории.
После синтеза прямолинейно - направляющего механизма, синтезирован приводная кинема-
тическая цепь, которая состоит из кривошипа и шатуна.
Тем самым получен механизм привода станка качалки, содержащий основание, кривошипно-
шатунную пару соединенный к основному шарнирно четырехзвенному механизму. Техниче-
ский результат достигается тем, что на основной четырехзвенный механизм присоединяется
двухповодковая группа, образуя механизм III класса. Присоединенная двухповодковая груп-
па является ведущим кривошипом, связанное с стойкой и шатуном.
На основе полученных размеров шестизвенного преобразующего механизма разработан экс-
периментальный образец, который полностью подтвердил работоспособность преобразующе-
го механизма.
Ключевые слова: Синтез, станок качалка, привод, шатун, четырехзвенный шарнирно-
рычажный механизм, преобразующий механизм.

1 Introduction

Of the existing mechanized methods of oil production, the most common is the sucker-rod
deep-pumping method with balancing individual drives of mechanical action.
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As a converting mechanism connecting the gearbox with the balancer, a four-link crank
mechanism is used, which converts the uniform rotation of the crank into the reciprocating
movement of the plunger. At the same time, according to the location of the balancing
load, the designs of pumping units with crank, rocker (balance) and combined balancing are
distinguished. The most commonly used and well-studied are converting mechanisms with
a two-arm load balancer and crank balancing, less common are designs with a single-arm
load balancer with heavy loads on the balancer and traverse. An important advantage of
such installations is the ability to control the pumping mode by changing the stroke of the
plunger, for which the crank pin connecting the lower head of the connecting rod with the
crank is put on different holes on the crank.

Meanwhile, the use of lever mechanisms, whose connecting rod point describes a straight
path with high accuracy, could eliminate the arc head, and the rod string can be hung directly
from the drawing point. Such a design could also solve another problem - reducing the metal
consumption of the installation due to the possibility of reducing the height of the support
frame. The fact is that a significant drawback of the existing design is the high location
of the so-called "upper rack" , on which the hinge of the balancer is located - the most
loaded link. The large height of the balancer attachment point, which is affected by large
support reactions, creates a significant swinging force on the rack, which makes it necessary
to manufacture a massive foundation from high-quality concrete. This factor is largely due to
the high metal consumption of the structure. This drawback can be overcome by synthesizing
a lever system with a reduced mounting height of the rack hinges.

2 Analysis of literature data and problem statement

Displacement analysis for four-link linkages has been extensively covered in the technical
literature [1, 2].

In terms of optimization, bioinspired techniques have expanded significantly over the past
two decades. One of the earliest work on an evolutionary algorithm applied to the optimal
synthesis of a four-link linkages generator [4]. The authors developed a genetic algorithm
to solve three research cases with and without given time and considering different target
points. In [5], a procedure for synthesizing the path to the generator connections using a neural
network is proposed, it consists of a training stage, at which a large number of kinematic
simulations with random dimensions are generated, and at the second stage, the neural
network is used to approximate the synthesis of the solution to the problem. The article [6]
describes the process of optimal synthesis of a four-link by the method of controlled deviations
of variables using the differential evolution algorithm. In [7], the authors consider the Pareto
optimal synthesis of four-link mechanisms for generating a path, taking into account the
tracking error and the transmission angle error, it is solved using a multicriteria hybrid genetic
algorithm. A hybrid evolutionary algorithm for synthesizing a four-link link path is presented
in the study [8], where a hybridization between the genetic algorithm and the differential
evolution algorithm is proposed. The authors state that the main advantages of this algorithm
are the simplicity and ease of implementation and solving of complex optimization problems
without the need for deep knowledge of the search space. In the article [9], the authors
present a new approach to the multicriteria synthesis of the optimal four-link path and
its application to the traditional problem with one, two, and three objective functions. A
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new algorithm called "Mechanism synthesis algorithm of the University of Malaga" for the
synthesis of mechanism paths has been successfully applied to six cases of synthesis of paths
and functions of four-bar and six-bar mechanisms [10].

Similar topics can be found in the titles of articles [11, 12, 13]. In the literature,
the kinematic and optimization formulation of the four-rod generator is very similar. The
kinematic setting in these papers is based on the traditional closed loop condition, and the
objective function is the sum of squared Euclidean distances, where the main difficulty is the
need for a penalty when the kinematics has no solution in two-dimensional real space.

For this reason, the formulation proposed here is based on the use of natural coordinates
and the Hermitian Conjugate of an Operator to construct an objective function whose output
is always a positive real number. It should also be noted that the statement proposed here
can be extended to any problem of the synthesis of planar mechanisms with a closed solution.

3 Solution of the problem

Consider, for the synthesis of a four-link hinged-lever mechanism for reproducing a vertical
straight line, the problem of synthesizing a straight-line-guiding mechanism of the Evans type,
which is a four-link hinged-lever mechanism ABCO with a drawing point D. We consider
given N finitely distant positions of the point D along a vertical straight line in a section of
length S (S is the stroke of the rod string, for example S = 2500 mm), given by the absolute
coordinates X∗

i , Y
∗
i :

X∗
i = Xk (1)

Y ∗
i = Yk + S ∗ i− 1

N − 1
, i = 1, . . . ., N (2)

We also assume that the parameters of the dyad ABD given by the values XA, YA, a,
b are also given. Where XA, YA are the absolute coordinates of the hinge A relative to the
fixed coordinate system OXY (Figure 1).

Behind each given position D∗
i of the point D along the straight line from the analysis of

the dyad ABD with given dimensions, we determine the absolute coordinates XBi, YBi of the
hinge Bi. (Figure 2).

By solving a system of two equations (3) and (4) using the Maple program.{
(X∗

i −X)2 + (Y ∗
i − Y )2 − b2 = 0

(XA −X)2 + (YA − Y )2 − a2 = 0
(3)

X = XBi, Y = YBi

αi = arctan(Y ∗
i − Y Bi

, X∗
i −XBi

)

{
XCi = XBi + xloc

C cosαi − ylocC sinαi

YCi = YBi + xloc
C sinαi + ylocC sinαi

(4)
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Figure 1: Geometric interpretation of the equation of connection of the synthesis problem.

Figure 2: Geometric interpretation of the equation of connection of the problem of synthesis
of a four-link mechanism.

According to the given absolute coordinates of the hinges Bi and D∗
i , it is possible to

determine the angular positions αi of the links BD. The Bxy coordinate system is rigidly
connected with the BD link, while the Bx axis is directed along the vector

−−−→
BiD

∗
i . Then

the absolute coordinates of the hinge C with local coordinates xloc
C , loc

C are determined from
formula (4).

The task of synthesis is to implement the constraint equation of the form (5).

(XCi −X0)
2 + (YCi − YO)

2 − l2OC = 0, i = 1, . . . , N. (5)

The geometric meaning of this equation is to determine the hinge , the positions of which
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in the absolute coordinate system Ci, i = 1, . . . , N are equidistant from the origin of the
OXY coordinate system. Thus, the positions of the hinge C must approximately realize a
circle centered at the point O and with a radius lOC .

Substituting from (6) the absolute coordinates XCi, YCi into (5), we obtain the equation
of relations in the following form

[(XBi −XO) cosαi + (YBi − YO) sinαi] x
loc
C + [−(XBi −XO) sinαi + (YBi − YO) cosαi] y

loc
C +

+x
(loc)2

C + y
(loc)2

C − 1

2
l2OC +

1

2
(XBi −XO)

2 +
1

2
(YBi − YO)

2 = 0, i = 1, . . . , N

(6)

Introduce the notation

ai = (XBi −XO) cosαi + (YBi − YO) sinαi,

bi = −(XBi −XO) sinαi + (YBi − YO) cosαi

ci = 1

di =
1

2
(XBi −XO)

2 +
1

2
(YBi − YO)

2

Then in new variables x1 = xloc
C , x2 = ylocC , x3 = x

(loc)2

C +y
(loc)2

C − 1

2
l2OC constraint equations

in the form

Δi ≡ aix1 + bix2 + cix3 + di = 0, i = 1, . . . , N (7)

Here Δi is called a deviation from the implementation of the given equation of relations,
then the synthesis problem will consist of approximate implementations of equation (7) for
all, i = 1, . . . , N given positions of points.

In the general case, when N > 3, that is, when more than 3 positions of the points D∗
i are

given, the exact implementation of equation (7) is not possible, and for their approximate
implementations it is necessary to find the minimum of the function

S(x1, x2, x3) =
N∑
i=1

Δ2
i → min

x1, x2, x3

(8)

Thus, the synthesis problem is formulated as a quadratic approximation problem.
Equating the partial derivatives with respect to xi to zero,

∂S

∂xi

= 0

obtain a system of 3 linear equations for determining the variables x1, x2, x3.

A
−→
X =

−→
b (9)
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where

A =

⎡⎢⎢⎢⎢⎣
1

N

∑
a2i

1

N

∑
aibi

1

N

∑
aici

1

N

∑
aibi

1

N

∑
b2i

1

N

∑
cibi

1

N

∑
aici

1

N

∑
bici

1

N

∑
c2i

⎤⎥⎥⎥⎥⎦ , −→
X =

⎡⎣ x1

x2

x3

⎤⎦ , −→
b =

⎡⎢⎢⎢⎢⎣
− 1

N

∑
aidi

− 1

N

∑
bidi

− 1

N

∑
cidi

⎤⎥⎥⎥⎥⎦
The solution of this equation for detA �= 0 is written as
−→
X = A−1−→b (10)

It can be proved that the case detA = 0 corresponds to the case of degeneracy of the
system of linear equations (9). The geometric meaning of which is to replace the rotational
kinematic pair with a translational one. In view of obtaining an infinite value of the radius of
the circle. Based on the found values x1, x2, x3, we determine the variables xloc

C , loc
C , and also

lOC =

√
(xloc

C )
2
+ (ylocC )

2 − 2x3 (11)

Based on the found dimensions of the ABCO articulated four-link, performing the analysis
of the positions, we determine the true positions of the point D of the suspension of the column
of rods. After that, it is possible to refine the found parameters using the output criterion
directly, that is, the deviation from the given rectilinear trajectory.

Let us introduce the local coordinate system 55 by directing the abscissa axis 5 along the
link , the angular positions of the 5 axis relative to the absolute coordinate system will be
denoted by αCD (Figure 3). Absolute coordinates of the new suspension point of the rod
column D1, YD1 according to the formula (12, 13).

After defining variables

Figure 3: Local coordinate system 55.

XD1 = XC + x
(loc)
D1

cosαCD − y
(loc)
D1

sinαCD (12)

YD1 = YC + x
(loc)
D1

sinαCD + y
(loc)
D1

cosαCD (13)
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Synthesis: Refinement
Then the constraint equation is written as

XDi1
= XO, i = 1, . . . , N (14)

which means the requirement for the constancy of the X coordinate of the points D1i

(Figure 4).

Figure 4: Approximation error – deviation of the true from the given vertical line.

Substituting the value of the absolute coordinates D1 from formula (12) we obtain the
relation equation in the form

−X0 + x
(loc)
D1

cosαCDi − y
(loc)
D1

sinαCDi = −XCi
(15)

Then introducing the notation

x1 = X0, x2 = x
(loc)
D1

, x3 = y
(loc)
D1

ai = −1, bi = cosαCDi, ci = − sinαCDi, di = XCi

(16)

We obtain the synthesis equation in the form

Δi = aix1 + bix2 + cix3 + di = 0 (17)

Here Δi is the approximation error. The task of synthesis in the general case for N > 3
will be in the approximate implementation of these synthesis equations. To do this, it is
necessary to solve the problem of quadratic approximation, which consists in minimizing the
function S, of the form: problem (8).

The solution of this problem can be obtained by analogy with the solution of the previous
problem of quadratic approximation in the form (9). This solution is the only solution to the
system of linear equations (11), with detA �= 0.



54 Synthesis of the transforming mechanism . . .

4 Synthesis of a drive kinematic chain

After the synthesis of a straight-line guide mechanism, it is necessary to synthesize the drive
kinematic chain GFE, which consists of a crank GF and a connecting rod FE connected to
the connecting rod BC (Figure 5).

Figure 5: Synthesis of the crank group GFE.

Let us introduce the local coordinate system Bxy rigidly connected with the connecting
rod BC by directing the Bx axis along the link BC. Let us introduce a hinge E on the
connecting rod BC with local coordinates xloc

E , loc
E . Then, when the OC link moves from the

lowest position OC1 to the extreme upper position OCN , the hinge occupies the positions
E1, . . . , EN . It is believed that a kinematic analysis of the four-link ABCO has been performed
and the angular positions of the connecting rod BC determined by the angle of rotation αBC

are known.
Then the absolute coordinates of the hinge E is determined through the absolute

coordinates of the hinge B and the rotation angles αBC according to the formulas

XEi
= XBi

+ x
(loc)
E cosαBCi

− y
(loc)
E sinαBCi

YEi
= YBi

+ x
(loc)
E sinαBCi

+ y
(loc)
E cosαBCi

(18)

Let’s set the position of the hinge G relative to the fixed coordinate system OXY through
the coordinates XG, YG. Denote by ρi the distance between the hinges Gi and Ei and
determine the minimum and maximum values of ρ:

ρ = |GEi|
ρmin = mini=1,...,N ρi
ρmax = maxi=1,...,N ρi

(19)

Then the required lengths l1, l2 of the crank GF and connecting rod FE are determined
from the ratio{

l1 + l2 = ρmax

l2 − l1 = ρmin
(20)
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From here we determine l1, l2 by the following formulas

l1 = (ρmax − ρmin)/2
l2 = (ρmin + ρmax)/2

(21)

Points F1, G, FN define two angles ϕв and ϕн and ϕв > ϕн, ϕв + ϕн = 2π, where ϕв
corresponds to the angle of rotation of the crank when the rod string goes up, ϕn corresponds
to the lowering of the plunger down.

The drive mechanism of the rocking machine, containing a base, a crank pair connected to
the main articulated four-link mechanism, a balancer support, a two-arm balancer with a front
arm and a rear arm, characterized in that it has a connecting rod consisting of two triangular
contours, which is pivotally connected to the rear arm a double-arm balancer and with a
rocker, and the front triangular contour, which serves as the front shoulder of the connecting
rod, is connected to the suspension point of the column rods, and the counterweight is fixed
on the front shoulder of the two-arm rocker.

The technical result is achieved by the fact that a two-link group is attached to the main
four-link mechanism, forming a III class mechanism. The attached two-drive group is the
leading crank connected to the rack and connecting rod.

Figure 6: Scheme of the drive mechanism of sucker-rod pumping units in the upper position.

The sucker-rod pumping drive mechanism contains a crank 1 (Figure 6), a connecting
rod 2 hinged on one side to the crank 1, and on the other side to the connecting rod, which
consists of two triangular contours 3 and 4. The balancer 6 on the rear arm 5 is connected to
the connecting rod 3, the middle hinge 7 is connected to the support 8, and the counterweight
9 is fixed on the front arm of the balancer-6. The connecting rod 3 is connected to the rocker
arm 11, and the head 10 is fixed on the front arm 4 of the connecting rod 3. The rocker arm
11 and the crank 1 are pivotally connected to the rack 12.

Dimensions: LAB = 1115 mm, LBD = 2360.35 mm, LBD = 1019.205 mm, LBC =
868.28 mm, LCD = 1494.10 mm, LBC = 868.28 mm, LOC = 548.95 mm, LCE = 533.729 mm,
LEF = 1163.4655 mm, LFG = 454.879 mm.
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5 Discussion of experimental results

The analysis showed the possibility of using this mechanism as a converting mechanism for
driving sucker-rod pumping units. Based on the obtained dimensions of the six-link converting
mechanism, an experimental model was developed, which fully confirmed the efficiency of the
transforming mechanism. For the manufacture of an experimental model of the design of a
six-link rectilinearly guiding converting mechanism for the drive of sucker-rod pumping units,
a geometric model of all structural components of the mechanism was designed in Kompas
3D as part of the work.

An experimental model of the converting mechanism for the drive of sucker-rod pumping
units is shown in Figure 7.

Figure 7: Experimental model of a six-link rectilinearly guiding converting drive mechanism.

In addition to a significant gain in dimensions, the use of the mechanism leads to a
significant simplification of the design, since the arc head is removed, the connecting rod
point is directly connected to the stuffing box without the use of an intermediate flexible
link. Reducing the hinges of the mechanism to the foundation leads to a significant reduction
in the metal consumption of the foundation, since the rocking forces on the frame of the
mechanism are reduced.

6 Conclusion

The problem of synthesis of a straight-line guiding mechanism has been solved, a drive
kinematic chain has been synthesized, which consists of a crank and a connecting rod. The
dimensions of the articulated four-bar linkage are found, by performing the position analysis,
the true positions of the suspension point of the rod column are determined. The found
parameters were refined using the output criterion directly, that is, the deviation from the
given straight-line trajectory.
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A rocking machine drive mechanism has been obtained, containing a base, a crank pair
connected to the main hinged four-link mechanism. A four-link mechanism is joined by a
two-link group, forming a class III mechanism. The attached two-drive group is the leading
crank connected to the rack and connecting rod.

Based on the obtained dimensions of the six-link converting mechanism, an experimental
model was developed, which fully confirmed the efficiency of the transforming mechanism.
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DEVELOPMENT OF A COMPUTER VISION MODULE FOR
AUTONOMOUS VEHICLES

The favorable geopolitical position and very large transit potential of the Republic of Kazakhstan
in the field of land freight traffic between China and Europe makes the transport logistics industry
one of the most promising areas for the development of the country’s economy. In this context,
deployment of unmanned cargo vehicles to minimize the costs of fuel consumption and use of
human labor in labor-intensive and routine operations of logistic processes both inside warehouses
and during freight transportation on public roads seems natural and efficient as ever.
This paper describes the results of a research work on development of a computer vision module for
an autonomous truck prototype. The performed project stages include installation of the necessary
equipment, training of computer vision models and development of a mapping between cameras
and LIDAR sensor for object classification and localization purposes.
Key words: Computer vision, autonomous vehicle, vehicle trajectory planning, real-time
trajectory planning, unmanned solution.
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Автономды көлiктер үшiн компьютерлiк көру модулiн әзiрлеу

Қазақстанның оңтайлы геосаяси жағдайы мен Қытай мен Еуропа арасындағы жүк тасыма-
лы саласында Қазақстан Республикасының үлкен транзиттiк әлеуетi көлiктiк-логистикалық
саланы ел экономикасын дамыту үшiн перспективалы бағыттардың бiрi болып табылады.
Осы тұрғыда отын тұтыну шығындарын азайту және адам еңбегiн пайдаланудың логисти-
калық үдерiстердiң iшiнде, сондай-ақ қоғамдық көлiктердегi жүктердi тасымалдау кезiнде
пайдаланбайтын жүктердiң технологиясын пайдалану табиғи және тиiмдi болып көрiнедi.
Бұл мақалада автономды жүк көлiгiнiң прототипi үшiн компьютерлiк көру модулiн әзiрлеу
бойынша зерттеу жұмысының нәтижелерi сипатталған. Орындалған жоба кезеңдерi қажеттi
жабдықты орнатуды, компьютерлiк көру үлгiлерiн дайындау және объектiлердi жiктеу
және локализациялау мақсатында камералар мен LIDAR сенсоры арасындағы картаны
әзiрлеудi қамтиды.

Түйiн сөздер: Компьютерлiк көру, автономды көлiк, көлiк траекториясын жоспарлау,
нақты уақыттағы траекторияны жоспарлау, адамсыз шешiм.
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Разработка модуля компьютерного зрения для автономных транспортных средств

Выгодное геополитическое положение и огромный транзитный потенциал Республики
Казахстан в сфере наземных грузоперевозок между Китаем и Европой делает отрасль
транспортной логистики одним из самых перспективных направлений развития экономики
страны. В этом контексте, применения технологий беспилотного грузового транспорта для
минимизации издержек от расходования топлива и использования человеческого труда
в трудоёмких и рутинных операциях логистических процессов как внутри складских
помещений, так и при грузоперевозках по дорогам общего пользования, видится как никогда
естественным и эффективным.
В данной статье описаны результаты научно-исследовательской работы по разработке моду-
ля компьютерного зрения для прототипа автономного грузового автомобиля. Выполненные
этапы проекта включают в себя установку необходимого оборудования, обучение моделей
компьютерного зрения и разработку сопоставления между камерами и датчиком LIDAR
для целей классификации и локализации объектов.

Ключевые слова: Компьютерное зрение, автономное транспортное средство, планирование
траектории транспортного средства, планирование траектории в реальном времени, беспи-
лотное решение.

1 Introduction

The global transport market is estimated at about 3 trillion USD, which is almost 7% of
the global GDP. For example, in Germany this figure reaches 13%, and in Ireland it reaches
14.2%, in Singapore - 13.9%, Hong Kong - 13.7%. This indicates that countries pay special
attention to the development of this sector as one of the sources of national income [1].
Favorable geopolitical position and very large transit potential of the Republic of Kazakhstan
in the field of land transportation between China and Europe makes the transport logistics
industry one of the most promising areas for the development of the country’s economy. To
this end, Kazakhstan sets the task to increase transit traffic through the country by 10 times
by 2050 [2].

To achieve this goal, Kazakhstan is actively putting into operation large transport and
logistics centers (TLC) in key regions of the country. The development of the transport
corridor “Western Europe - Western China” will allow it to become a new Silk Road, which
may become a competitor to the maritime route of cargo transportation from the countries of
Southeast Asia to Europe. Thus, cargo transportation along the sea route takes an average
of 35-40 days, while along the transport corridor “Western Europe - Western China” the
time of delivery of goods by road can be reduced by 2-3 times [3]. Such indicators, along
with an increase in the volume of transit traffic, can be achieved through the digitalization
and automation of the processes of cargo transportation and logistics operations. Part of the
measures to develop the infrastructure of transport corridors is planned for implementation
within the framework of the state program “Digital Kazakhstan” [4]. Further development of
the industry involves the introduction of robotic systems to minimize or completely eliminate
the use of human labor and ensure long-term or round-the-clock operation in the TLC by
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logistics robots, as well as autonomous cargo transportation by autonomous vehicles along
transit highways [5].

Currently, mobile robots and autonomous vehicles are increasingly being used in various
sectors of the economy in developed countries. The world’s leading automakers such as Tesla,
Nissan, Volvo and others are already testing and offering autonomous systems to customers
in serial models of cars and trucks [6–8]. The world’s leading innovative companies Waymo,
Yandex, Uber and others are also developing and testing technologies for autonomous vehicles.

On the other hand, unmanned technologies for the autonomy of trucks are widely used
in the mining industry. Volvo was one of the first companies to implement an autonomous
transport project in a mine in Norway, where six unmanned trucks operated on a 5 km long
route, of which 4.7 km were tunnels. This solution made it possible to increase safety in
tunnels and organize round-the-clock work [8]. Since 2015, the British mining company Rio
Tinto has been using a fleet of unmanned cargo vehicles in its quarries and mines in Australia,
and thereby increased productivity and reduced the cost of the extraction of natural resources
[9]. In Russia, ZyfraGroup is actively engaged in the development and implementation of
autonomous mining dump trucks in commercial operation [10].

The active promotion of unmanned solutions in the mining industry is associated with
the relative ease of ensuring safety measures during the operation of autonomous vehicles by
minimizing the presence of a person in the area of operation, the cyclicity and repeatability
of operations, etc. At the same time, a much higher level of safety of autopilot systems
for trucks is required for facilitating movement of autonomous vehicles on transit roads
and TLC territories, along with conventional human-controlled passenger cars and trucks,
with pedestrian presence in the traffic area. This area of research is currently under active
development in various countries with varying degrees of readiness for testing in real
conditions. One of the fewexamples is the successfully launched North American startup
Embark Trucks, which is realizing a project for cargo transportation along the highway from
El Paso (Texas) to Palm Springs (California) [11] along a 650 miles (about 1000 km) long
route.

In view of the prospects for the introduction of autonomous vehicles technologies in
Kazakhstan, Nazarbayev University (NU), together with the Russian company Zyfra (VIST)
Group [10], with the support of KAMAZ PJSC, has recently completed a a industrial project
on development of an autonomous truck on the basis of a modern KAMAZ NEO platform [12].

As part of the project, partners from Zyfra (VIST) Group have equipped a test KAMAZ
NEO truck with their own autopilot system for autonomous vehicle movement along a
predetermined trajectory or to a specified target position with the possibility of remote
control by a person from the control panel (Fig. 1). These technologies have been tested
on KAMAZ and BELAZ trucks and will be adapted for a new model of the KAMAZ NEO
5490 truck (Fig. 1) with an automatic transmission. The task of the NU project group was
to develop software and hardware modules for computer vision, vehicle trajectory planning
with the ability to replan the trajectory in real-time to avoid obstacles and respond to the
infrastructure of the traffic system (traffic signs, traffic lights, etc.). The results of the project
work on vehicle trajectory planning were reported in [13].

For experimental testing of the developed software and hardware solutions on an
experimental KAMAZ vehicle, a test site was created at NU on the basis of an open car
parking area on the NU campus.
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Figure 1: Autonomous truck based on KAMAZ Neo 5490 platform (left) and Remote control
cabin designed by VIST Group (right)

The test site was equipped with road signs, dummy people and cars.

2 Hardware Setup

The hardware part of the computer vision module is a set of interconnected hardware, which
is a single system designed to collect, store, process and transmit data from video cameras.
The main components are:

1. Video cameras Logitech C922;

2. Wi-Fi/4G router;

3. Laptop;

4. Remote computing server.

Next, we describe the process of integrating these equipment within the truck’s cabin.
The bracket and fasteners for the Logitech C922 cameras of the autopilot system inside

the cabin of the Kamaz truck were assembled as shown in Fig. 2. The parts were designed
in SolidWorks and made on a 3D printer from aluminum profile 40 × 40 mm. The cameras
were attached to the frame, which, in turn, was attached to the regular power fasteners of
the Kamaz cabin ceiling sheething. The stock ceiling mount is a power mount that will not
deform due to the added weight of the camera mount assembly and the cameras themselves
and the gravitational forces acting on them.

3 Data synchronization between cameras and the LIDAR

The task of localizing objects using RGB cameras, installed inside the test truck cabin,and
the LIDAR sensor, mounted in front of the vehicle, involves the transformation from one
coordinate system to another. For this, the cameras and LIDAR were calibrated. For
automatic calibration, the algorithm needs to find a specific image template. A chamotte
board is usually used as the image, since the computer vision algorithm is able to easily find
corners.
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Figure 2: Finished assembly of fasteners for the cameras

Using the found coordinates of the corners, the matrix of internal parameters K was
calculated (Equation 1). The matrix K for a hole camera consists of 5 parameters: (u0, υ0) -
optical center (principal point) in pixels; (αx, αy) - focal length in pixels with αx = F/px and
αy = F/py, where F is the focal length in real units, usually expressed in millimeters (px, py)
is the pixel size in real units; γ is the skew factor, which is non-zero, if the image axes not
perpendicular (Fig. 3).

K =

⎡⎣αx γ u0 0
0 αy υ0 0
0 0 1 0

⎤⎦ (1)

Figure 3: Point camera model

Using internal camera parameters, you can convert points from the real-space coordinate
system R3 (x, y, z) to the camera coordinate system R2 (w, h).

Zc

⎡⎣uv
1

⎤⎦ = K[R T ]

⎡⎢⎢⎣
xw

yw
zw
1

⎤⎥⎥⎦ (2)
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The Equation 2 shows the formula for converting points in the real space coordinate
system to the camera coordinate system, where [xw yw zw 1] is a point in the world coordinate
system, [u v 1] is a point in the camera coordinate system, K are the internal parameters of
the camera, zc is arbitrary scale parameter. [R T ] - are external parameters that denote the
transformation of the coordinate system from the coordinates of the three-dimensional world
to the coordinates of the three-dimensional camera. Equivalently, the extrinsic parameters
define the position of the camera’s center and the direction of the camera in world coordinates.
T is the position of the center of the world coordinate system, expressed in the coordinates
of the camera-centered coordinate system.

The Zhang’s model was used for calibration [14], which is a camera calibration method
that uses traditional calibration methods (known calibration points) and self-calibration
methods (correspondence between calibration points when they are in different positions). To
perform a full Zhang calibration, it requires at least three different images of the calibration
object, either by moving the object or the camera itself. If some of the intrinsic parameters
are given (image orthogonality or optical center coordinates), the number of required images
can be reduced to two.

At the first stage, the approximation of the estimated projection matrix H between
the calibration target and the image plane is determined using the DLT (Direct linear
transformation) method [15]. Subsequently, self-calibration methods are applied to obtain
an image of an absolute conical matrix.

Several 4 × 8 chessboards were printed on A1 sheets. These chessboards were placed in
the field of view of the both RGB cameras, mounted in the truck cabin, to calculate the
corresponding internal parameters. Figure 4 shows 4 calibration boards.

Figure 4: Example of the installed calibration chessboards

At the first stage of calibration the cvlib toolbox was used [16]. This toolbox defines the
internal parameters of the cameras and determines the position and rotation between two
cameras. To work, several boards were placed ce for the entire size of the frame in different
orientations. The figure shows the result of finding the corners of cells in chessboards. Different
colors represent different boards found. Figure 5 shows the result of matching the left and
right cameras. Thus, the external parameters of both cameraswere computed

In order to achieve accurate results of object recognition, the algorithms for overlaying 2D
segments on 3D data from the LIDAR system were developed. To transform the coordinate
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Figure 5: The result of matching two frames of the left and right cameras

system, it was necessary to calibrate the cameras and the LIDAR in order to build the
transformation matrix.

Transformation matrices allow arbitrary linear transformations to be displayed in a
consistent format suitable for computation. It also makes it easy to combine transformations
(by multiplying their matrices).

Linear transformations are not the only ones that can be represented by matrices.
Some transformations that are non-linear in the n-dimensional Euclidean space Rn can be
represented as linear transformations in the (n + 1)-dimensional space Rn+1. These include
both affine transformations (such as translation) and projective transformations. For this
reason, 4× 4 transformation matrices are widely used in 3D computer graphics. These n+1-
dimensional transformation matrices are called affine transformation matrices, projective
transformation matrices, or, more generally, non-linear transformation matrices. As for an
n-dimensional matrix, an n+1-dimensional matrix can be described as an augmented matrix.

In the physical sciences, an active transformation is one that actually changes the physical
position of the system and makes sense even in the absence of a coordinate system, while a
passive transformation is a change in the description of the coordinates of the physical system
(change of base). The distinction between active and passive transformations is important.
By default, by transformation the mathematicians usually mean active transformations, while
physicists can mean both.

Calibration was done using the Aruco calibration toolbox [17] which provides a graphical
interface for interacting with 2D and 3D images. Calibration takes place in 2 stages. The first
stage is to select points in the 2D image and their corresponding points in the 3D LIDAR
image. This step must be repeated several times to increase the accuracy of the results.

At the second stage, the algorithm calculates the transformation matrix from the LIDAR
coordinate system to the camera coordinate system. This matrix is also known as the external
parameters of the camera. An example of a calibration process we made is shown in Fig. 6.

The complete calibration scene is shown in Fig. 7. In the center, data from the LIDAR
system is presented in Point Cloud format, where the intensity of each reflected beam is
shown in color. The lower left picture shows data from the left camera fixed inside the truck
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Figure 6: Aruco calibration toolbox example

cabin. The lower right picture shows data from the right camera fixed inside the truck cabin.
Points with the LIDAR are filtered based on the visibility area, which are set as

parameters. We consider only points in front of the test truck Then, they are transferred
to the camera coordinate system using the matrix obtained earlier. Based on the segments
obtained during object detection, the points are filtered again. The resulting points are the
basis for the final clustering.

Figure 7: Full calibration scene

4 Datasets

One of the most important parts of machine learning using artificial neural networks is
the collection and processing of large amounts of data. To train the object detection and
localization model, it was decided to use COCO dataset [18]. The COCO (Common Objects in
COntext) dataset is a dataset for training models based on different tasks: object recognition,
localized objects, keypoint identification, segmentation, etc. It contains 80 classes, 80,000
training images, and 40,000 images to test the accuracy of the model (Fig. 8).
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The dataset consists of several parts. The first part is the images themselves containing
the objects. The second part depends on which problem the dataset is applied to. In our case,
we use annotations to localize objects. Each object instance contains an annotation with a
number of fields, which include a class identifier and a designation of the object’s boundaries
in the format of x, y coordinates, width and height.

The processing process is divided into several steps. At first, the image must be scaled
using an interpolation algorithm. Secondly, it is necessary to use algorithms for data
augmentation. We used a random image cropping algorithm to obtain different regions. Also,
some images were mirrored horizontally. To annotate the data that was collected manually,
the YoloMark tool is used [19].

Figure 8: Examples of images in the COCO Dataset database

For a full-fledged computer vision system that will be able to move along the roads of
Kazakhstan in real time, it is necessary to collect additional data on road signs. By training
the traffic sign recognition model, the computer vision module can detect traffic signs and
send the position of the sign relative to the vehicle to the trajectory planning module. Next,
the planner must take certain actions that were prescribed for a particular sign.

After searching and analyzing existing databases, it was decided to use the RTSD road
sign database [20]. The database has similar road signs as in Kazakhstan. There are 156
traffic sign classes and 104358 sign images in this dataset.

As you can see in Figure 9, the RTSD dataset has very diverse seasons and also different
times of day, which of course helps retrain the model on the same type of data and increases
the accuracy of sign detection.

5 Development of an object detection model

During the development of the object detection model, two models were used: YOLOv3 [21]
and CenterNet [22]. Both models were trained on COCO public data.
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Figure 9: Examples of images in the RTSD database

Figure 10 shows the result of the YOLOv3 recognition algorithm on data collected with
an analog camera. It was revealed that the both models were able to constantly find objects
in the image for classification (detection stage). A distinctive feature of these methods is that
they perform detection and classification at the same time, thereby eliminating the need for
re-classification. This allows the models to be suitable for real-time tasks.

Figure 10: The result of the classification algorithm

The models were trained on the COCO dataset using data augmentation algorithmsfor
recognition of people, cars, fire hydrants and US-style road signs. The “training” of the
machine learning models were carried out on the DGX-1 deep learning cluster from NVIDIA,
which consists of 8 video cards with a total video memory of 64 GB. Both models were able
to recognize all the necessary objects that are found on the roads, namely cars, trucks, buses,
people, signs, traffic lights, etc.
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Table 1: Results of comparing the YOLOv3 and CenterNet models

Model Size of input frame Time to process Average accuracy on
dataset MS COCO (AP)

YOLOv3 416x416 40ms 31.0
CenterNet 511x511 60ms 37.4

During the experiments the main characteristics of the two above-mentioned algorithms
were identified. The comparison result is presented in Table 1. CenterNet showed a more
accurate classification. YOLOv3, in turn, is the faster model of the two presented.

6 Model training

To recognize objects with an RGB camera, it was decided to use a convolutional neural
network with the CenterNet architecture (Fig. 11). CenterNet uses a system similar to YOLO.
This network is a state-of-the-art architecture capable of classifying and localizing objects
in 2D RGB images. CenterNet accepts a fixed-size 2D image as input, and an interpolation
algorithm is used to resize the images coming from the camera. As output, CenterNet provides
a 2D bounding box of objects found in the image. Unlike YOLO, CenterNet is based on a
central point. The implementation of CenterNet for PyTorch was used.

CenterNet consists of several parts. The first part is preprocessing, in which the images
are converted to the required format that the neural network accepts. At this stage, the image
is interpolated to the dimensions 511× 511. Each of the three RGB channels of the image is
normalized according to the parameters of the dataset on which the network was trained.

In the second step, the algorithm uses an autoencoder/decoder-based neural network
architecture to perform semantic segmentation. The hourglass architecture with 54
convolutional layers is used as a basis.

At the third stage, the corners of the bounding box are found in parallel using the cascade
pooling algorithm and the centers are found. After that, a heatmap is built for the found
centers and angles. Heatmap contains information about the probability of each pixel to
contain the corners and centers of objects. The data from both heatmaps are combined to
get the final bounding box.

The network was trained and tested on MS COCO datasets with 50 classes of everyday
objects and KITTI dataset [23] with three classes: cars, pedestrians, bicycles, collected using
a car with 2 RGB cameras and equipped with a LIDAR system and designed for training
and testing machine algorithms with self-government.

7 Development of methods and algorithms for localization of detected objects

After converting the points from 2D to 3D and segmenting them, it was necessary to select
clusters that correspond only to the objects that need to be defined. The first step in achieving
this was the segmentation of the plane that corresponds to the ground. For this, parameters
were found to describe the plane. All points that lie below a certain distance are filtered.
This distance can be set as a separate parameter. The remaining points are passed on. To
determine the parameters of the plane, the formula was used:
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Figure 11: Stages of object detection in the CenterNet architecture

fit = (AT ∗ A)−1 ∗ AT ∗ b (3)

where A - x and y coordinates are a set of points belonging to the plane, b - z coordinates
are a set of points belonging to the plane, fit - parameters of the plane in the format:

ax+ by + cz + d = 0 (4)

The remaining points can be grouped together to form separate objects. We use the
Euclidean Clustering Extraction algorithm to separate points into clusters based on their
proximity to each other. The algorithm uses the Euclidean distance to determine if the
points belong to the same cluster. Points are considered to be in the same cluster if they are
within radius r from each other. The radius r is set as a parameter. By changing it, we can
control the size of the clusters. It should be noted that in our case, r must be larger than
the voxel size used in the VoxelGrid downsampling step. Brute force search of points within
a radius is very expensive, so the point cloud library uses the Kd tree structure to optimize
the algorithm. The modified version creates a kdtree from all input points. The tree is used
to find the closest points and check their relative distance. This eliminates the need to
check all points in the set. At the end, the algorithm extracts a set of clusters that contain
points for each feature. The clustering method divides the disorganized point cloud model
P into smaller parts, so that the overall processing time for P is greatly reduced. A simple
approach to data clustering in the Euclidean sense can be implemented by using a 3D grid
subdivision of space using fixed-width blocks or, more generally, an octree data structure.
Such a particular representation is very quick to construct and is useful in situations where
either a three-dimensional representation of the occupied space is needed, or the data in
each resulting 3D block (or octree leaf) can be approximated with a different structure.
More generally, however, we can use nearest neighbors and implement a clustering method
that is essentially similar to the flooding algorithm. Let’s assume we’ve given a point cloud
with a table and objects on top of it. We want to find and segment individual point clusters
of an object that lie on a plane. Assuming we are using a Kd tree structure to find nearest
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neighbors, the algorithmic steps for this would be:

1. Create a tree view Kd for the input point cloud dataset P ;

2. Initialize an empty list of clusters C and a queue of points Q to be checked;

3. Then for each point pi ∈ P , do the following;

(a) add pi in the current queue Q;

(b) for each point pi ∈ Q perform:

i. find a set P k
i of point neuighbors pi in the sphere of radius r < dth;

ii. for each neighbor pk
i ∈ P k

i , check if the point has already been
processed and if not add it to Q;

(c) when the list of all points in Q has been processed, add Q to the list of
clusters C and reset Q to an empty list;

4. The algorithm terminates when all points pi ∈ P have been processed and are
now part of the list of point clusters C.

For each segment, the algorithm finds several clusters. By choosing the largest cluster,
i.e. the cluster with the most points is the desired object. Using these points, you can
find the position of the object relative to LIDAR The position is found using the cluster
centroid. The centroid is the average value of all the coordinates of a given cluster. To test
the algorithm, data was collected from the test KAMAZ truck: images from the two installed
RGB cameras and Point Cloud data from the LIDAR sensor The data was written using
the rosbag utility that comes with the Robot Operating System (ROS) robotics software
development framework. To visualize the work of the algorithm for converting data from a
3D LIDAR coordinate system to a 2D coordinate system, an algorithm was written that,
using the calibration parameters, overlays the LIDAR data and the image from the camera.
An example is shown in Fig. 12.

Fig. 15 shows the visualization result of object detection and classification. In this
example, the pedestrian classes have been filtered out. Fig. 16 shows the visualization of the
result of the object localization algorithm. The objects are localized based on the segments
shown in Fig. 13. The dots of different colors show the centers of the segmented objects.

8 Conclusion

In this paper we developed a computer vision module for an autonomous vehicle prototype
based on a KAMAZ NEO chassis which was provided by our industry partners. The module
is aimed at object detection and localization using an integrated system with two video
cameras and a LIDAR sensor. The first task was to design and install the necessary hardware
equipment. Thus, the cameras and the fasteners were installed inside the cabin whereas the
LIDAR sensor with its brackets was installed on the front bumper outside the cabin. Next,
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Figure 12: Visualization of the overlay algorithm

Figure 13: Visualization of the detection (left) and localization (right) algorithms

we performed the tasks of calibration and synchronization of two independent data streams,
namely, 2D images from the cameras and 3D point clouds from the LIDAR sensor. Once
the data streams were fully calibrated and synchronized, we developed the algorithms and
trained the models for object detection in the 2D images and localized them in 3D space
using information coming from LIDAR.

All the tasks were successfully completed. Currently, our computer vision module is able to
detect and classify people, cars, road signs and traffic lights as well as to identify the distance
to the detected object. It should be noted that the developed algorithms are suitable for any
type of vehicle or mobile robotic systems that employ RGB cameras and a LIDAR sensor as
their primary sources of visialinformation.

As a future work, we plan to develop the algorithms for obstacle avoidance, i.e., we need
to replan the trajectory or stop the truck based on the situation on the road. This work was
partially done but still needs to be improved.
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FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF THE
INITIAL AND BOUNDARY VALUE PROBLEM FOR BOLTZMANN’S

SIXMOMENT SYSTEM OF EQUATIONS

Boltzmann’s one-dimensional non-linear non-stationary moment system of equations in the third
approximation is presented, in which the first, third and fourth equations corresponds to the
laws of conservation of mass, momentum and energy, respectively. This system contains six
equations and represents a nonlinear system of hyperbolic type equations. For the Boltzmann’s six-
moment system of equations an initial and boundary value problem is formulated. The macroscopic
boundary condition contains the moments of the incident particles distribution function on the
boundary and moments of the reflected particles distribution function from the boundary. The
boundary condition depends on the temperature of the wall (boundary).
In this work, using the finite-difference method, an approximate solution of the mixed problem for
the Boltzmann system of moment equations is constructed in the third approximation under the
boundary conditions obtained by approximating the Maxwell boundary condition. For given values
of the coefficients included in the moments of the nonlinear collision integral and the parameter
depending on the wall temperature, as well as for fixed values of the initial conditions, a numerical
experiment was carried out. As a result, the approximate values of the particle distribution function
incident on the boundary and reflected from the boundary, as well as the density, temperature and
average velocity of gas particles, as moments of the particle distribution function, are obtained.
Key words: Boltzmann’s moment system of equations, microscopic Maxwell boundary condition,
macroscopic Maxwell-Auzhan boundary conditions.
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Бөлшектердiң шекарадан айна және диффузия шағылысу жағдайында Больцманның
алты моменттiк теңдеулер жүйесi

Больцманның бiр өлшемдi сызықсыз стационар емес моменттiк теңдеулер жүйесiнiң үшiншi
жуықтауы келтiрiлген, онда бiрiншi, үшiншi және төртiншi теңдеулер тиiсiнше массаның,
импульстiң және энергияның сақталу заңдарына сәйкес келедi. Бұл жүйе алты теңдеуден
тұрады және гиперболалық типтi теңдеулердiң сызықсыз жүйесiн құрайды. Больцманның
алты моменттiк теңдеулер жүйесi үшiн алғашқы-шекаралық есеп құрастырылды. Макроско-
пиялық шекаралық шарт шекараға түскен бөлшектердiң таралу функциясының моменттерiн
және шекарадан шағылысқан бөлшектердiң таралу функциясының моменттерiн қамтиды.
Шекаралық шарт қабырғаның (шекараның) температурасынан тәуелдi.

c© 2022 Al-Farabi Kazakh National University
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Жұмыста ақырлы-айырым әдiсiмен Максвелдiң шекаралық шартын аппроксимациялау
арқылы алынған шекаралық шартты қанағаттандыратын Больцманның теңдеулер жүйесiнiң
үшiншi жуықтауы үшiн қойылған аралас есептiң жуық сан шешуi алынған. Сызықсыз соқты-
ғысу интегралының моменттерiндегi коэффициенттер мен шекараның температурасынан
тәуелдi параметрдiң берiлген мәндерiне сай және алғашқы шарттың нақты мәндерi үшiн
сан эксперимент жүргiзiлдi. Нәтижесiнде, шекараға түскен (құлаған) және шекарадан шағы-
лысқан молекулалардың үлестiру функциясының,сонымен бiрге, газ молекулалар тығызды-
ғының, температурасының және орта жылдамдығының жуық мәндерi анықталды.
Түйiн сөздер: Больцманның моменттiк теңдеулер жүйесi, Максвелдiң микроскопиялық ше-
каралық шарты, Максвел-Аужанның макроскопиялық шекаралық шарты.

Ш. Акимжанова1∗, Г. Есботаева2, А. Сакабеков1
1Satbayev University, г. Алматы, Казахстан
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Метод конечных разностей для численного решения начально-краевой задачи для
шестимоментной системы уравнений Больцмана

Приведена одномерная нелинейная нестационарная система моментных уравнений Больцма-
на в третьем приближении, в которой первое, третье и четвертое уравнения соответствуют
законам сохранения массы, импульса и энергии соответственно. Эта система содержит
шесть уравнений и представляет нелинейную систему уравнений гиперболического типа.
Для шестимоментной системы уравнений Больцмана сформулирована начально-краевая
задача. Макроскопическое граничное условие содержит моменты функции распределения
падающих на границу частиц и функции распределения отраженных от границы частиц.
Граничное условие зависит от температуры стенки (границы).
В работе с помощью конечно-разностного метода построено приближенное решение сме-
шанной задачи для системы моментных уравнений Больцмана в третьем приближении
при граничных условиях, полученных аппроксимацией граничного условия Максвелла.
При заданных значениях коэффициентов, входящих в моменты нелинейного интеграла
столкновений и параметра, зависящего от температуры стенки, а также при фиксированных
значениях начальных условий проведен численный эксперимент. В результате, приближен-
ные значения падающих на границу и отраженных от границы функции распределения
частиц, а также плотность, температура и средняя скорость частиц газа, как моменты
функции распределения частиц, получены.

Ключевые слова: Система моментных уравнений Больцмана, микроскопические гранич-
ные условия Максвелла, макроскопические граничные условия Максвелла-Аужана.

1 Introduction

The physical state of a system consisting of monatomic molecules can be described with
varying degrees of accuracy. The state of the system has a variable meaning depending on
what information about the system is useful for the purposes in question. The state of the
system is usually determined by the values of some variables – state parameters. Depending
on how these options are chosen, information about the system can be quite detailed. In other
words, the description of a physical system is possible with varying degrees of accuracy. In
order for the description of a non-equilibrium state to be satisfactory with a sufficient level
of precision, equations must be known that allow one to determine their changes in time
from the given initial the state parameters’ values. The particle distribution function can be
used to describe the state of the system, which satisfies the nonlinear Boltzmann equation.
Boltzmann equation satisfies the rules of mass, momentum, and energy conservation. These
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conservation laws correspond to five partial differential equations, which contain thirteen
unknowns. This system of equations is not closed, since the conservation equations include
additional variables – stresses and heat flux. Assuming that the particle distribution function
has a special form depending only on thermodynamic variables and their derivatives, one
can express stresses and heat flux in terms of these thermodynamic variables. Thus, the
system of conservation equations is brought to a closed form. Within the framework of such a
scheme, various approximations are possible, leading, respectively, to the equations of Euler,
Navier-Stokes, Barnett, etc. Moment equations, which are a series of nonlinear equations
represented in partial derivatives, can be used to characterize the state of the system in
the transition phase. Between the kinetic (Boltzmann equation) and hydrodynamic (Euler
and Navier-Stokes equations, etc.) levels of characterizing the state of a gas lies the system of
moment equations. Different basis function systems, the degree of arbitrariness of the particle
distribution function, and the procedures for calculating the coefficients of the expansion of
the particle distribution function in a Fourier series set apart the various moment approaches.
Expanding the particle distribution function in terms of Hermite polynomials around a local
Maxwellian distribution produced the Grad system of moment equations in [1] and [2]. By
expanding the particle distribution function in terms of the eigenfunctions of the linearized
collision operator [5],[6], the moment system of equations, which is distinct from the Grad
system, was constructed in [3,[4]. The Boltzmann system of moment equations was the
name given to this set of equations. The moment system’s and the Boltzmann equation’s
structures are comparable. Calculating the collision integral’s moments is the source of
the entire challenge [7]. Solution The mixed value problem for the nonlinear nonstationary
moment system of equations of Boltzmann’s existence and uniqueness in three dimensions
were established [3],[4].

The design and operation of aircraft at high altitudes requires the calculation of
aerodynamic characteristics in a wide range of determining parameters (flight altitude,
atmospheric parameters, flight speed, spacecraft orientation, aircraft configuration, etc.).

The aerodynamic characteristics of the flow around bodies in the upper layer of the
atmosphere in the transition mode are obtained by calculation. On the basis of the kinetic
theory of gases, computational investigations of the flow around bodies in the transitional
regime are conducted. The condition at the moving boundary, more specifically the interaction
of a gas with a moving solid surface, is important in aerospace engineering [8]. If the gas’s
initial state is known and the condition on the moving boundary is defined, the integra-
differential Boltzmann equation can characterize the gas’ evolution. The moment method
stands out among the approximate methods for resolving the Boltzmann equation.

The system of moment equations contains all the macroscopic quantities that are
of primary interest when it comes to rarefied gas theory. Therefore, moment equations
are sufficient to determine the macroscopic quantities characterizing the state of gas
molecules. However, boundary conditions must be formulated for a set of partial differential
equations. As a result, the issue of estimating the Boltzmann equation’s boundary condition
approximation emerges. Additionally, the moment equations’ ensuing problem needs to be
properly phrased.

In [9], the macroscopic boundary conditions for the Boltzmann’s nonstationary one-
dimensional moment system of equations were used to approximate the Maxwell’s microscopic
boundary conditions for the Boltzmann’s nonlinear equation. Maxwell-Auzhan conditions
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were given to new macroscopic boundary conditions.
In problems of atmospheric optics, the theory of radiative transfer, and the rarefied gas

dynamics moment equations are often used. As a result, it is a crucial and pressing issue to
design approximate solutions to the mixed problem for the system of moment equations.

2 Materials and methods

2.1 Numerical experiment for Boltzmann’s six-moment one- dimensional system of
equations with macroscopic boundary conditions

We investigate the mixed problem for the third approximation of the Boltzmann system
of moment equations under the approximate Maxwell boundary condition. The third
approximation of the mixed problem for the Boltzmann system of moment equations is
created through the finite-difference method.

We take into account the third approximation of the Boltzmann’s moment system
equations [4]
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where ϕ00 = ϕ00(t, x), ϕ01 = ϕ01(t, x), . . . , ϕ11 = ϕ11(t, x) are the coefficients of particle
distribution function’s expansion to Fourier series;
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, Θ is the reflective wall temperature

and Θ is the constant. Three homogeneous equations that represent the laws of conservation
of mass, momentum, and energy can be found in the system of equations (1).
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The system of equations (1) under the boundary conditions obtained by approximating
the Maxwell boundary condition write in vector-matrix form

∂u

∂t
+

1

α
C
∂w

∂x
= I1(u, w)

∂w

∂t
+

1

α
C ′∂u

∂x
= I2(u, w), t ∈ (0, T ], x ∈ (−a, a),

(2)

u
∣∣∣
t=0

= u0(x), w
∣∣∣
t=0

= w0(x), x ∈ [−a, a], (3)

1

α
(Cw− +Du−)

∣∣∣
x=−a

=
1

αβ
(Cw+ −Du+)

∣∣∣
x=−a

−(1− β)

αβ
√
π
F, t ∈ [0, T ], (4)

1

α
(Cw− −Du−)

∣∣∣
x=a

=
1

αβ
(Cw+ +Du+)

∣∣∣
x=a

+
(1− β)

αβ
√
π
F, t ∈ [0, T ], (5)

where

C =

⎛⎜⎜⎜⎜⎝
1 0 0

2√
3

3√
5

−2
√
2√
15

−
√

2

3
0

√
5

3

⎞⎟⎟⎟⎟⎠ , D =
1√
π

⎛⎜⎜⎜⎜⎜⎜⎝

√
2

√
2

3
− 1√

3√
2

3
2
√
2 −1

− 1√
3

−1 3
√
2

⎞⎟⎟⎟⎟⎟⎟⎠
I1(u, w) = (0, I02, 0)′, I2(u, w) = (0, I03, I11)

′,

u = (ϕ00, ϕ02, ϕ10)
′, w = (ϕ01, ϕ03, ϕ11)

′, F =

(
1

4
√
2
,

1

8
√
6
,

1

8
√
3

)′
,

C ′ is the transpose matrix, while D is the positive definition matrix;
u0(x) = (ϕ0

00(x), ϕ0
02(x), ϕ

0
10(x))

′, w0(x) = (ϕ0
01(x), ϕ0

03(x), ϕ
0
11(x))

′ are the moments of
initial function provided; w+, u+ are the falling vectors to the moments of the boundary
distribution function; w−, u− – are the reflection vector from the moments of the boundary
distribution function. Pure mirror reflection is represented by the value of β ∈ [0, 1] and
parameter value of β = 1.

Through straightforward calculations, it is feasible to verify

detC1 = det

(
0 C
C ′ 0

)
�= 0,

hence the matrix C1 has eigenvalues are real, with an equal number of positive and negative
eigenvalues. Macroscopic boundary conditions correspond to the number of positive and
negative eigenvalues of matrix C1. Correctness of the problem (2) – (5) in C([0, T ];L2[−a, a])R
was proved in [10-11].
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As a result, system (2) is a hyperbolic type system of nonlinear partial differential
equations. To define approximate solution of the problem (2) – (5) we use finite-difference
method.

Divide the segment [0, T] into N1 equal parts, and divide the segment [−a, a] into N2 equal
parts. Let us consider the grid functions uij = u(ti, xj) and wij = w(ti, xj). We approximate
the differential problem (2) – (5) by the following finite-difference scheme [12, 13]

un+1
i+1,j − un+1

ij

τ
+

1

α
C
wn+1

ij − wn+1
i,j−1

h
= I1(u

n
ij, w

n
ij),

i = 0, 1, . . . , N1 − 1; j = 1, . . . , N2;
(6)

wn+1
i+1,j − wn+1

ij

τ
+

1

α
C ′u

n+1
i,j+1 − un+1

i,j

h
= I2(u

n
ij, w

n
ij),

i = 0, 1, . . . , N1 − 1; j = N2 − 1, . . . , 0;
(7)

un+1
0j = u0

j , wn+1
0j = w0

j , j = 0, 1, . . . , N2; (8)

1

α
(Cw− −Du−)n+1

i,0 =
1

αβ
(Cw+ +Du+)

n

i,0 −
1− β

αβ
√
π
F, i = 0, 1, . . . , N1, (9)

1

α
(Cw− +Du−)n+1

i,N2
=

1

αβ
(Cw+ −Du+)

n

i,N2
+

1− β

αβ
√
π
F, i = 0, 1, . . . , N1, (10)

τ is time step, h is spatial variable step.
From the difference equations (6) – (7) it follows that the derivatives on t and x are

approximated by the first order.
In order to find a numerical solution of the problem (6) – (10), we use the iterative method.

We start the iterative process by n and continue calculations until we achieve the following
conditions
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ij − un
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ij| < ε, i = 0, 1, . . . , N1 − 1; j = 1, . . . , N2,

where ε is a given sufficiently small number.
Numerical experiment.
With the following data, a numerical experiment was performed: [−a, a] ∼= [0, 1],
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h =
1

10
, τ =

2

100
.

Interval [0, 1] is divided into 10 equal parts, h is the step in the spatial variable x, τ is
the time step. The relation

τ

h
satisfied the stability condition. Let us present the graphs of

the vectors u and w for value of β = 1.
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3 Conclusion

The moments ϕ00, ϕ01, ϕ10 expressed by the macroscopic characteristics of the gas such that
density, average speed and temperature. More exactly, we have following equalities ϕ00 = ρ,

ϕ01 = αρV, ϕ10 =

√
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2
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2

3
α2ρ(

3
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2
V 2), where ρ is the gas density, V is the gas average

speed, θ is the gas temperature and α = 38.681 is the constant. On the plot unfirst1 = ϕ00,
unfirst3 = ϕ10, wnfirst1 = ϕ01. β = 1 corresponds to pure specular reflection. The value of
the parameter β appreciable affected to the values of moments ϕ00, ϕ01, ϕ10. Moreover we
define approximate values of
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f0(α|v|) – is global Maxwell distribution, more exactly we define following functions
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MATHEMATICAL MODELING OF THE EPIDEMIC PROPAGATION WITH LIMITED

TIME SPENT IN COMPARTMENTS AND VACCINATION

The paper proposes discrete and continuous mathematical models of epidemic development. A
division of the population into nine compartments is suggested: susceptible, exposed, vaccinated,
contact vaccinated, undetected patients, isolated patients, hospitalized patients, recovered and
deceased. At the same time, the time spent in exposed and infected compartments is considered
limited. According to the assumptions made in the models, a susceptible person can encounter
the patient and go into the exposed compartment, and be vaccinated, and then also encounter
the infection and go into the contact vaccinated compartment. Exposed people may become ill
to any degree of severity or not, returning to the susceptible group. A contact vaccinated either
does not become ill or becomes undetected or isolated patient. Every patient can recover. An
undiagnosed patient may develop symptoms of the disease, because of which he moves into the
isolated compartment. An isolated patient may be hospitalized, and a hospitalized patient may
die. In the discrete model, discrete quantitative data for each day of the epidemic are considered,
in the continuous one, these indicators are considered continuous functions. The article provides
a qualitative and quantitative analysis of the proposed models. The influence of all parameters on
the process under study is investigated.

Key words: mathematical model, epidemic, vaccination.
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ЭПИДЕМИЯНЫҢ ДАМУЫН ТОПТАРДА ОТЫРУ УАҚЫТЫ ШЕКТЕУЛI БОЛУДЫ

ЖӘНЕ ВАКЦИНАЦИЯЛАУДЫ ЕСКЕРЕ ОТЫРЫП МАТЕМАТИКАЛЫҚ
МОДЕЛЬДЕУ

Эпидемия дамуының дискреттi және үздiксiз математикалық модельдерi ұсынылған.
Олар халықты тоғыз топқа бөлудi ұсынады: сезiмтал, контактiлi, вакцинацияланған,
вакцинацияланған контактiлi, анықталмаған науқастар, оқшауланған науқастар, ауруханаға
жатқызылған науқастар, сауығып кеткендер және қайтыс болғандар. Бұл модельдерде
контактiлi және ауру топтарында болу уақыты шектеулi болып саналады. Модельдерде
жасалған болжамдарға сәйкес, сезiмтал адам науқаспен байланыста болу арқылы байланыс
тобына кiруi, және вакцинациялануы, содан кейiн науқаспен байланыста болу арқылы
вакцинацияланған контакт тобына өтуi мүмкiн болады. Контактiлi сезiмтал топқа қайта
оралуы, немесе кез келген ауру дәрежесiмен ауруы мүмкiн. Вакцинацияланған контактiлi
ауырмай сезiмтал тобына қайта оралуы немесе анықталмай немесе оқшауланып ауыруы
мүмкiн. Әрбiр науқас сауығып кете алады. Анықталмаған науқаста аурудың белгiлерi пайда
болуы мүмкiн, нәтижесiнде ол оқшауланған топқа ауысады. Оқшауланған науқас ауруханаға
жатқызылуы мүмкiн, ал ауруханада жатқан науқас өлуi мүмкiн. Дискреттi модельде
эпидемияның әрбiр күнi үшiн дискреттi сандық деректер қарастырылады, үздiксiз модельде
бұл көрсеткiштер үздiксiз функциялар болып саналады. Мақалада ұсынылған модельдердiң
сапалық және сандық талдауы берiлген. Барлық параметрлердiң зерттелетiн процеске әсерi
зерттеледi.

Түйiн сөздер: математикалық модель, эпидемия, вакцинация.
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МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАЗВИТИЯ ЭПИДЕМИИ С
УЧЕТОМ ВАКЦИНАЦИИ И ОГРАНИЧЕННОГО ВРЕМЕНЕМ

ПРЕБЫВАНИЯ В ГРУППАХ

Предлагаются дискретная и непрерывная математические модели развития эпидемии. Они
предполагают разбиение популяции на девять групп: восприимчивые, контактные, вакцини-
рованные, вакцинированные контактные, невыявленные больные, изолированные больные,
госпитализированные больные, выздоровевшие и умершие. При этом время пребывания в
группах контактных и больных считается ограниченным. Согласно допущениям, принятым
в моделях, восприимчивый может войти в контакт с больным, перейдя в группу контактных,
а также вакцинироваться, после чего также войти в контакт с больным, перейдя в группу
контактных вакцинированных. Контактные могут заболеть в любой степени тяжести или
не заболеть, вернувшись в группу восприимчивых. Контактный восприимчивый либо не
заболевает, либо становится невыявленным или изолированным больным. Каждый больной
может выздороветь. У невыявленного больного могут появиться симптомы болезни, в
результате чего он переходит в группу изолированных. Изолированный больной может быть
госпитализирован, а госпитализированный – умереть. В дискретной модули рассматривают-
ся дискретные количественные данные по каждому дню эпидемии, в непрерывной, данные
показатели считаются непрерывными функциями. В статье проводится качественный и
количественный анализ предлагаемых моделей. Исследуется влияние всех параметров на
исследуемый процесс.

Ключевые слова: математическая модель, эпидемия, вакцинация.

1 Introduction

The development of the COVID-19 pandemic has largely updated the development of
mathematical models of epidemic development. The first application of mathematical
methods in the analysis of epidemics is associated with the works of outstanding
mathematicians of the second half of the 18th and early 19th centuries D. Bernoulli, I.
Lambert, P.S. Laplace. Modern mathematical models of epidemiology go back to the work
of R. Ross, published in 1911, on the study of the spread of malaria [1] and, to an even
greater extent, to the SIR model proposed in 1927 by W. Kermack and A. McKendrick [2].
This model is based on the division of the entire population into three compartments of
susceptible, infected and recovered. The model is a system of non-linear differential equations
and describes the change in the number of these population compartments over time.

The main drawback of the SIR model is that it does not take into account the presence
of an incubation period, i.e. it assumes that a person who has had contact with a sick person
immediately falls ill. To eliminate it the SEIR model was proposed, in which a compartment of
exposed was added, see, for example, [3]. Thus, in the process of infection, a person susceptible
to the disease first becomes exposed and only then becomes infected. There are a significant
number of SEIR model modifications. Thus, the SEIRD model additionally includes a
compartment of deceased [4,5]. In the MSEIR model in addition to the compartments of the
SEIR model, people endowed with immunity from birth (maternally derived immunity) are
added [6]. In [7], a model which additionally takes into account patients in whom the disease
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proceeds in an asymptomatic form (asymptomatic) is considered. The SEIRHCD model also
has compartments of hospitalized and critical patients [8, 9]. Along with continuous models,
discrete models, in which time is an integer variable, are also considered, see, for example, [10].

These models do not take into account the limited stay in exposed and infected
compartments. In particular, any person who has been in contact with a sick person, after
some time, will most likely either get sick or not get sick, which means that they will
certainly leave the exposed compartment. Anyone who falls ill after some time will surely
either recover or die, i.e. will definitely leave the compartment of infected. This shortcoming
is overwhelmed in [8, 9, 11] for continuous systems and in [11–13] for discrete systems.
There are also models that take into account the vaccination of the population [14–22].
In this case, vaccination is considered at certain points in time (impulsive vaccination), as
well as vaccination of newborns. Here, vaccinated susceptible people go directly into the
compartment of recovered, see [15–18]. In the SIRV model [19], the vaccinated are treated
as an independent compartment. The SEIRV model also uses a separate compartment of
vaccinated people, some of whom may become infected in the future, and birth and natural
mortality are also taken into account [20]. In [21], a model is proposed in which there is
an additional compartment of people in quarantine. [22] explores the SUIHTER model,
which also includes compartment of asymptomatic and hospitalized patients, and separately
considers people received one and two doses of the vaccine.

This paper proposes discrete and continuous models for the development of the epidemic,
providing for vaccination and limited time spent in compartments, which are a generalization
of the models described in [11] for the case of vaccination. They assume the division of
the entire population into nine compartments: susceptible, exposed, vaccinated, contact
vaccinated, undetected, isolated and hospitalized patients, as well as recovered and deceased.
A qualitative and quantitative analysis of the models is carried out. The influence of various
parameters of the system on the process is investigated.

2 Description of models

An isolated population under the conditions of an epidemic is considered. The entire
population is divided into the following compartments:

S: susceptible (healthy, but potentially sick);

V : vaccinated (healthy vaccinated);

E: exposed (healthy, in contact with sick);

C: contact vaccinated (vaccinated, who were in contact with patients);

U : undetected (infected with an asymptomatic course of the disease and mildly ill with
an undiagnosed disease);

I: isolated (patients in a mild form, undergoing treatment at home);

H: hospitalized (seriously ill, hospitalized);

R: recovered (recovered from illness, who do not have any signs of illness);
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D: died.

The sum of N numbers of people in all compartments is considered unchanged, i.e. natural
births and deaths are not taken into account in the model.

The change in the number of people in each compartment is carried out due to
intercompartment transitions, see Fig. 1.

Figure 1: Graph of intercompartment transitions.

According to the accepted assumptions, a susceptible person can come into contact with
the patient by moving to the exposed compartment, and also be vaccinated. A vaccinated
person can also encounter a sick person and move into compartment of contact vaccinated
people. The exposed may become ill in any degree of severity or not get ill, returning to
the susceptible compartment. A contact vaccinated either does not become ill or becomes
undetected or isolated sick. Every patient can recover. An undiagnosed patient may develop
symptoms of the disease moving into the isolated compartment in result. An isolated patient
may be hospitalized, and a hospitalized patient may die.

The number of days spent in all compartments of contact and patients is considered fixed
and is indicated as follows ne, nc, nu, ni and nh, where the index corresponds to the name
of the compartment (the first letter of the compartment name). For vaccinated contacts, the
time spent in the compartment is assumed to be the same as for unvaccinated contacts, i.e.
nc = ne. At the end of the time spent in the compartment, each person in it goes into one of
the possible compartments in accordance with the above figure. In this case, pαβ denotes the
proportion of people in the compartment indicated as α passing into the compartment β. In
this case, the conditions

∑
β

pαβ = 1∀α,

where the sum is taken over all compartments β, to which you can go from the
compartment α.
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Sources of infection are people in undetected (to a greater extent) and isolated (to a
lesser extent) compartments, but not hospitalized. The degree of infectivity is described by
the coefficients of contagiousness ku and ki undetected and isolated patients, and ku > ki.
Vaccination of the population is characterized by the rate of vaccination v.

The mathematical model of the process is a system of equations for the number of people
in each compartment that changes over time. In this case, the number of people in each
compartment is indicated by the first letter of the compartment name, i.e. S, V , etc. These
quantities are functions of a continuous argument t or an integer argument n, written as an
index. Thus, Sk, Vk, etc. characterize the number of susceptible, vaccinated, etc. at the k-th
time step (on the k-th day from the beginning of the study). In the continuous model, the
values of S(t), V (t), etc. characterize the number of susceptible, vaccinated, etc. at time t
(after t time from the start of the study).

Let us formulate a description of the discrete model. The number of all categories of
contacts and patients at a given point in time is the sum of their numbers by the days they
were in the compartment, i.e. following equalities are true

Zk =
nz∑
j=1

zjk, Z = E,C, U, I,H, (1)

where zjk denotes the number of people in compartment Z at time k on the j-th day of being
in this compartment. Here, any compartment of exposed and patients is chosen as Z, i.e. Z
can take the values E, C, U , I, H. In this case, each member of Z of the j-th day of being
in this compartment passes to the category of the j + 1st day of being in the compartment
every day, if this was not the last day of being in the compartment, which corresponds to the
equalities

zj+1
k+1 = zjk, j = 2, ..., nz − 1, z = e, c, u, i, h. (2)

The susceptible number on the following day is equal to the susceptible number on the
previous day minus the number of those vaccinated on that day, minus the susceptible number
who contacted infection on that day, plus the number of contacts of the last day of stay in the
exposed compartment who did not get infected. At the same time, the vaccinated number
is directly proportional to the susceptible number, and the susceptible number contacted
with infection is directly proportional to the susceptible number, as well as the number of
undetected and isolated patients who are sources of infection. As a result, we obtain the
equality

Sk+1 = Sk − vSk − kuUk + kiIk
N

Sk + pese
ne
k . (3)

The division by the size of the entire population is carried out for reasons of normalization
(otherwise, the numbers of two compartments, which are sufficiently large values, are
multiplied).
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The vaccinated number on the following day is equal to the vaccinated number on the
previous day plus the number of new susceptible people who were vaccinated that day minus
the number of vaccinated people contacted with infection on that day plus the number of
people on the last day of stay in the contact vaccinated compartment who did not get infected.
The corresponding quantities are determined in the same way as in the previous formula. As
a result, we obtain the equality

Vk+1 = Vk + vSk − kuUk + kiIk
N

Vk + pcvc
nc
k . (4)

The number of all people in compartments of exposed and infected patients on the next
day is equal to their number on the previous day plus the number of people who entered this
compartment this day, minus the number of people who left the compartment the previous
day

Zk+1 = Zk + z1k+1 − znz
k , Z = E,C, U, I,H. (5)

The recovery number of at the next time point is equal to their number on the previous
day plus the number of patients of all compartments who recovered on the previous day.

Rk+1 = Rk + puru
na
k + piri

ni
k + phrh

nh
k . (6)

The death number at a subsequent point in time is equal to their number on the previous
day plus the number of people that died on this day

Dk+1 = Rk + phdh
nh
k . (7)

The number of new exposed (exposed of the first day of being in the compartment), both
unvaccinated and vaccinated, is exactly equal to the number, respectively, susceptible and
vaccinated, who had contact with patients on the previous day

e1k+1 = (kuUk + kiIk)
Sk

N
, c1k+1 = (kuUk + kiIk)

Vk

N
, (8)

The number of new undetected is the sum of both exposed compartments of the last day
of being in the compartment, who fell ill with an undetected form of the disease

u1
k+1 = peue

ne
k + pcuc

nc
k . (9)

The number of new isolated patients is the sum of the number of both exposed
compartments of the last day being in the compartment who fell ill with an isolated form of
the disease, and the number of undetected contacts of the last day being in the compartment
in whom the disease was detected
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i1k+1 = peie
ne
k + pcic

nc
k + puiu

nu
k . (10)

The number of new hospitalized patients is the sum of exposed and isolated patients of
the last day of being in the compartment, in which the disease turned into a severe form, as
a result of which they were hospitalized

h1
k+1 = pehe

ne
k + pihi

ni
k . (11)

The initial states of the system S0, E0, U0, V0, C0, I0, H0, R0, D0 are known, and the
distribution of all forms of exposed and patients at the initial moment of time by days of
being in compartments is considered uniform, i.e. taken according equalities

zj0 = Z0/nz, j = 1, ..., nz, z = e, c, u, i, h. (12)

Relations (1) - (12) constitute a discrete model of the process under study.
Let us proceed to the description of the corresponding continuous model. The change

in the number of susceptible people is its decrease due to vaccination and the fact that a
certain number of susceptible people contacted with infection, and an increase, since some
of the exposed do not get sick. At the same time, the new vaccinated number is directly
proportional to the susceptible number and the number of susceptible who became exposed
is directly proportional to the susceptible number, as well as the number of undetected and
isolated patients. The number of non-diseased exposed is proportional to the exposed number
and inversely proportional to the number of days spent in the exposed compartment. As a
result, we obtain the equation

dS(t)

dt
= −vS(t)− kuU(t) + kiI(t)

N
S(t) + pes

E(t)

ne

. (13)

The change in the vaccinated number is its decrease due to the fact that some part of
the vaccinated who contacted with patients, and the increase due to vaccination and the fact
that part of the contact vaccinated people does not get sick. The corresponding quantities are
determined in the same way as in the previous formula. As a result, we obtain the equality

dV (t)

dt
= vS(t)− kuU(t) + kiI(t)

N
V (t) + pcv

C(t)

nv

. (14)

The change in the number of contacts, both unvaccinated and vaccinated, increases due
to, respectively, susceptible and vaccinated, who had contact with patients, and decreases
due to the limited time spent in these compartments. Thus, we have the equalities

dE(t)

dt
=

kuU(t) + kiI(t)

N
S(t)− E(t)

ne

, (15)
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dC(t)

dt
=

kuU(t) + kiI(t)

N
V (t)− C(t)

nc

. (16)

The number of undetected patients increases due to the disease of both exposed
compartments and decreases due to the limited time spent in this compartment:

dU(t)

dt
= peu

E(t)

ne

+ pcu
C(t)

nc

− U(t)

nu

. (17)

The number of isolated patients increases due to the disease of both exposed
compartments and the detection of the disease in some of the undetected and decreases
due to the limited time spent in this compartment:

dI(t)

dt
= pei

E(t)

ne

+ pci
C(t)

nc

+ pui
U(t)

nu

− I(t)

ni

. (18)

The number of hospitalized increases due to infection of people in exposed compartment
in a severe form and the hospitalization of a part of the isolated ones and decreases due to
the limited time spent in this compartment:

dH(t)

dt
= peh

E(t)

ne

+ pih
I(t)

ni

− H(t)

nh

. (19)

The number of recovered patients is increasing due to the recovery of patients of all
categories:

dR(t)

dt
= pur

U(t)

nu

+ pir
I(t)

ni

+ phr
H(t)

nh

. (20)

The number of deaths increases due to the death of a part of the hospitalized:

dD(t)

dt
= phd

H(t)

nh

. (21)

The initial states of the system S0, E0, U0, V0, C0, I0, H0, R0, D0 are known, i.e. the
following equalities hold

Z(0) = Z0. (22)

where Z = S,E, U, V, C, I,H,R,D. The system of differential equations (13) – (21) with
initial conditions (22) constitutes a continuous model of the system.
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3 Analysis of mathematical models

Let us establish the simplest qualitative properties of the models under consideration. The
discrete model is characterized by the following statement.

Theorem 1. For any values of the parameters, the system has a unique equilibrium
position, and the limiting values of the numbers of all categories of exposed and infected
people are equal to zero, and the functions R and D are increasing.

To prove it, it suffices to pass to the limit in recurrence relations (3) – (7), taking into
account that the sequences {Zk} and {Zk+1} have the same limit. At the same time, the zero
limit values of the numbers of all categories of exposed and patients indicate the end of the
epidemic. The monotonicity of the functions R and D (growth in the number of recovered
and deceased) is due to the negativity of all expressions on the right side of equalities (6)
and (7).

Theorem 2. For any values of the system parameters, problem (13) - (22) has a unique
equilibrium position, and the limiting values of the numbers of all categories of contact and
patients is equal to zero, and the functions R and D are increasing.

To prove it, it suffices to equate all derivatives to zero in differential equations (13) - (21).
The results obtained indicate that the qualitative properties of the continuous and discrete
models generally coincide.

The quantitative analysis of both models was carried out at the same parameter values,
and the continuous model was implemented using the 4th order Runge - Kutta method. In
doing so, the following numbers of days spent in compartments have been taken:ne = 14, nu =
3, ni = 5, nh = 7, nc = ne = 7. The coefficients of the equations take the following values: ku =
3.180, ki = 0.171, pes = 0.679, peu = 0.154, pei = 0.145, peh = 0.022, pcv = 0.9, pcu = 0.05, pci =
0.05, pui = 0.03, pur = 0.97, pih = 0.021, pir = 0.979, phr = 0.982, phd = 0.018, v = 0.0005.
The calculations were carried out at the initial stage of the epidemic, and N = 18699640,
which corresponded to the population of Kazakhstan at the time of the start of the COVID-
19 epidemic. In addition, it was assumed that at the initial moment of time there are 140
contact people, and all the rest are susceptible. Graphs of the obtained solutions are shown
in Fig. 2, where the red curves correspond to the discrete model, and the blue curves to the
continuous one.

Based on the results obtained, the following conclusions can be made. The qualitative
properties of the solutions of both models are almost the same, and the corresponding
functions for the continuous model are smoother. For some time, the number of exposed
and patients has been growing. Then the epidemic reaches its peak, after which the incidence
decreases. Over time, the system is observed to reach a position of equilibrium, and the
number of all compartments of exposed and patients tends to zero, which corresponds to
the end of the epidemic. The susceptible number decreases monotonously as more and more
people get sick or get vaccinated over time. The number of vaccinated, recovered and dead
people is gradually increasing, which is quite natural, since the vaccinated people will no
longer become usually susceptible, the recovered acquire immunity.

Table. 1 shows the most important quantitative characteristics corresponding to the
selected computation variant. According to the results obtained, the general characteristics
of the discrete and continuous models are approximately the same. However, for the discrete
model, the epidemic proceeds somewhat less intensively than for the continuous model. In
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Figure 2: System states for discrete (red) and continuous (blue) models.

particular, the duration of the epidemic is shorter (by about two months), the time of the
peak of the epidemic comes later (almost a month), the total number of cases and deaths
is slightly less. However, the observed difference is insignificant, as a result of which we can
conclude that the considered models are equivalent.

Let us now estimate the influence of system parameters on the considered process. Each
of the tables below shows the values of the most important characteristics of the system for
three counting options. The first of them corresponds to the main variant of the computation
given above, and the next two correspond to the specified parameter, increased and decreased
by some value.

Table. 2 evaluates the impact of the coefficient of contagiousness of undiagnosed patients.
It turns out to be about the same for both models. In particular, an increase in the
contagiousness coefficient leads to a reduction in the duration of the epidemic and the
time it takes to reach its peak, as well as an increase in the number of simultaneously ill
people, the total number of ill people and deaths. Such changes indicate a greater intensity
of the epidemic development, which seems quite logical. At the same time, the percentage of
recovered and dead people remains unchanged, since these characteristics are determined by
the transition coefficients in the compartments of patients. Comparing the degree of influence
of the parameter on the models under consideration, we note, for example, that an increase
(respectively, a decrease) in the coefficient by 10% leads to a decrease in the duration of the
epidemic by 11.8% for the discrete model and 11.6% for the continuous model (respectively,
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Table 1: The most important quantitative characteristics of the system
Discrete model continuous model

Epidemic end time 1101 1154
Peak time of the epidemic 442 419

Total number of cases and % of the total population 7284183
(38.95%)

The total number of recovered and % of the total number of cases 7274363
(99.87%)

7456303
(39.93%)

The total number of deaths and % of the total number of cases 9546
(0.13%)

9822
(0.13%)

The maximum number of patients at the same time 163412
(0.87%)

154790
(0.83%)

an increase of 20.5% for the discrete model and 20.4% for the continuous model). At the same
time, the total number of cases increases by 21.3% for the discrete model and 21.2% for the
continuous model (respectively, it decreases by 32.2% for the discrete model and by 32.4%
for the continuous model). Thus, the degree of influence of the parameter on both models is
almost the same.

Table 2: Influence of the coefficient of contagiousness of undiagnosed patients
Parameter
ku Epidemic end time Peak time

of the epidemic
Total number of cases
and % of the population

Discrete continuous Discrete continuous Discrete continuous

3.18 1101 1154 442 419 7284183
(38.95%)

7466126
(39.93%)

3.48 972 1020 377 344 8833599
(47.24%)

9047409
(48.38%)

2.88 1327 1389 571 547 4939864
(26.42%)

5049614
(27%)

Table 3 shows the results of assessing the impact of the contagiousness coefficient of
isolated patients with an increase and decrease in this parameter by 58.8%. With its increase,
there is a decrease in the duration of the epidemic and the time it takes to reach its peak, with
an increase in the total number of cases of simultaneously infected, the percentage of recovered
and dead remains unchanged. However, with the indicated increase (respectively, decrease) in
the contagiousness coefficient of isolated patients, there is a reduction in the duration of the
epidemic by 6.8% for the discrete model and by 6.5% for the continuous model (respectively,
it increases by 9.1% for the discrete model and by 8.8% for the continuous model). Under the
same conditions, there is an increase in the death number by 13.1% for the discrete model and
by 13.0% for the continuous model (respectively, a decrease of 16.1% for the discrete model
and 16.0% for continuous model). The weaker effect on the process of the contagiousness
coefficient of isolated patients compared to the similar coefficient for unidentified patients
is explained by the fact that isolated patients are a significantly less important source of
infection compared to unidentified ones.

Table. 4 examines the effect of the recovering proportion of hospitalized patients when it
changes by 1.5%. This parameter does not affect the duration of the epidemic, the time of its
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Table 3: Influence of the contagiousness coefficient of isolated patients
Parameter
ku Epidemic end time Peak time

of the epidemic
Total number of cases
and % of the population

Discrete continuous Discrete continuous Discrete continuous

0.171 1101 1154 442 419 7284183
(38.95%)

7466126
(39.93%)

0.271 1026 1079 410 376 8187581
(43.78%)

8384067
(44.84%)

0.071 1201 1255 505 474 6160891
(32.95%)

6322669
(33.81%)

peak, the total number of cases and the maximum number of cases at a time, since it only
applies to those patients who have already been hospitalized. Thus, it can only influence the
ratio between the recovered and the dead. In particular, an increase (respectively, a decrease)
in this parameter leads to a decrease (respectively, an increase) in the number of deaths by
83.3% for both models. It is clear that a reduction in the death number by a certain amount
means an increase in the recovered number by the same amount.

Table 4: Influence of recovering rate of hospitalized patients
Parameter
phr

The total number of recovered
and % of the total number of cases

The total number of deaths
and % of the total number of cases

Discrete continuous Discrete continuous

0.982 7274636
(99.87%)

7456303
(99.87%)

9546
(0.13%)

9822
(0.13%)

0.997 7282592
(99.98%)

7464489
(99.98%)

1591
(0.02%)

1637
(0.02%)

0.967 7266681
(99.76%)

7448118
(99.76%)

17501
(0.24%)

18007
(0.24%)

Table. 5 examines the impact of the proportion of isolated patients who were hospitalized,
with a change of 71.4%. This parameter does not affect the duration of the epidemic and the
time of its peak, as well as the total number of cases, however, it affects the further fate of
the patient. In particular, an increase (respectively, a decrease) in this parameter indicates
a more severe (respectively, milder) course of the epidemic. This is reflected in the fact that
the number of deaths increased by 9.7% for the discrete model and 9.6% for the continuous
model (respectively, it decreased by 9.7% for both models).

Table. 6 assesses the impact of the proportion of undetected patients who subsequently
developed symptoms of the disease and were isolated. A change in this parameter slightly
affects the duration of the epidemic, the maximum number of patients at a time, as well as the
proportion of recovered and dead. With an increase (respectively, decrease) of this parameter
by 66.7%, there is an increase (respectively, a decrease) in the total number of cases by 0.5%
for both models. At the same time, the number of deaths increases (respectively, decreases)
by 0.8% for both models.

Table. 7 examines the effect of the proportion of contact vaccinated pcv who do not
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Table 5: Influence of isolated patients proportion who were hospitalized
Parameter
pih

The total number of recovered
and % of the total number of cases

The total number of deaths
and % of the total number of cases

Discrete continuous Discrete continuous

0.021 7274636
(99.87%)

7456303
(99.87%)

9546
(0.13%)

9822
(0.13%)

0.036 7273712
(99.86%)

7455356
(99.86%)

10471
(0.14%)

10769
(0.14%)

0.006 7275561
(99.88%)

7457251
(99.88%)

8621
(0.12%)

8874
(0.12%)

Table 6: Impact of the proportion of undetected patients who were isolated
Parameter
pui

Total number of cases
and % of the population

The total number of recovered
and % of the total number of cases

The total number of deaths
and % of the total number of cases

Discrete continuous Discrete continuous Discrete continuous

0.03 7284183
(38.95%)

7466126
(39.93%)

7274636
(99.87%)

7456303
(99.87%)

9546
(0.13%)

9822
(0.13%)

0.05 7318481
(39.14%)

7500949
(40.11%)

7308861
(99.87%)

7491052
(99.87%)

9620
(0.13%)

9897
(0.13%)

0.01 7249636
(38.77%)

7431047
(39.74%)

7240163
(99.87%)

7421300
(99.87%)

9472
(0.13%)

9746
(0.13%)

become ill. This value does not affect the temporal characteristics of the epidemic, as well
as the percentage of recovered and dead, but affects their number. In particular, with an
increase (respectively, decrease) in this value by 3.3%, the number of cases decreases by 2.9%
for the discrete model and 2.8% for the continuous model (respectively, an increase of 2.8%
for the discrete model and 2.7% for the continuous model). This is explained by the fact that
with such a change, the number of cases among those who have been vaccinated decreases
(respectively, increases). As a result, the number of recovered and dead people also decreases
(respectively, increases).

Table 7: Impact of the proportion of contact vaccinated who did not infected
Parameter
pcv

Total number of cases
and % of the population

The total number of recovered
and % of the total number of cases

The total number of deaths
and % of the total number of cases

Discrete continuous Discrete continuous Discrete continuous

0.90 7284183
(38.95%)

7466126
(39.93%)

7274636
(99.87%)

7456303
(99.87%)

9546
(0.13%)

9822
(0.13%)

0.93 7071716
(37.82%)

7260647
(38.83%)

7062295
(99.87%)

7250946
(99.87%)

9421
(0.13%)

9701
(0.13%)

0.87 7486743
(40.04%)

7661702
(40.97%)

7477078
(99.87%)

7651766
(99.87%)

9665
(0.13%)

9936
(0.13%)

Table. 8 evaluates the impact of the exposed compartment proportion who did not
infected. An increase in this parameter leads to an increase in the duration of the epidemic and
the time it takes to reach its peak and a decrease in the number of ill, and therefore recovered
and died. This suggests that with less infection, the epidemic becomes less intense, i.e. its
terms are stretched, and fewer people get infected overall. In particular, with an increase
(respectively, decrease) of this parameter by 1.5%, the duration of the epidemic increases by
12.5% for the discrete model and 13.3% for the continuous model (respectively, a decrease of
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9.6% for the discrete model and 9.4% for the continuous model). Under the same conditions,
there is a decrease in the number of cases by 19.2% for the discrete model and 19.3% for
the continuous model (respectively, an increase of 15.1% for both models). Roughly the same
effect has the proportion of exposed that get infected and isolated.

Table 8: Impact of the proportion of exposed who do not get sick
Parameter
pes

Epidemic end time Peak time
of the epidemic

Total number of cases
and % of the population

Discrete continuous Discrete continuous Discrete continuous

0.679 1101 1154 442 419 5887261
(31.48%)

6024809
(32.22%)

0.689 1249 1307 522 497 8385774
(44.84%)

8596170
(45.97%)

0.669 996 1045 393 363 5887261
(31.48%)

6024809
(32.22%)

Table. 9 evaluates the impact of the rate of vaccination on the overall process. An increase
in this parameter leads to an increase in the duration of the epidemic and the time of its peak
and a significant reduction in the total number of cases and those who are simultaneously ill,
with a slight decrease in mortality. In particular, with an increase (respectively, a decrease)
of this parameter by 80%, it leads to an increase in the duration of the epidemic by 5% for a
discrete model and by 4% for a continuous model (respectively, a decrease in the duration of
an epidemic by 1.6% for a discrete model and by 0.3% for a continuous model). At the same
time, the total number of cases decreases by 36.8% for the discrete model and by 34.9% for
the continuous one (respectively, the total number of cases increases by 32.4% for the discrete
model and by 30.3% for the continuous model). The number of deaths is reduced by 41.2%
for the discrete model and 39.3% for the continuous model (respectively, increases by 40.6%
for the discrete model and 37.9% for the continuous model). The results obtained indicate
the extreme importance of maintaining a high rate of vaccination of the population.

Table 9: Impact of vaccination rate
Parameter
v Epidemic end time The total number of deaths

and % of the total number of cases
Total number of cases
and % of the population

Discrete continuous Discrete continuous Discrete continuous

0.0005 1101 1154 7284183
(38.95%)

7466126
(39.93%)

9546
(0.13%)

9822
(0.13%)

0.0009 1157 1201 4601617
(24.61%)

4857401
(25.98%)

5610
(0.12%)

5961
(0.12%)

0.0001 1083 1151 9645972
(51.58%)

9730947
(52.04%)

13420
(0.14%)

13548
(0.14%)

4 Conclusion

The results obtained indicate a fairly high efficiency of the proposed models and can be used
to predict the development of epidemics. In this case, in each specific case, the system is first
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identified based on the available statistical information, after which the forecasting problem
is solved. For models of epidemic development in the absence of vaccination, this procedure
is implemented in [5, 9, 11].

Further refinement of the models can be carried out by considering the possibility of re-
infection of those who have been ill due to the mutation of the virus and the gradual decrease
of immunity in recovered people, as well as the limited duration of the vaccine. In this case
all considered population compartments are preserved, but intercompartment transitions are
added, taking into account the possibility of transition from the compartments of recovered
and vaccinated to the susceptible compartment.
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