ISSN 1563-0331 eISSN 2312-7554

ӘЛ-ФАРАБИ атындағы ҚАЗАҚ ҰЛТТЫҚ УНИВЕРСИТЕТІ

ХИМИЯ СЕРИЯСЫ

КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени АЛЬ-ФАРАБИ

ВЕСТНИК КазНУ

СЕРИЯ ХИМИЧЕСКАЯ

CHEMICAL BULLETIN

OF KAZAKH NATIONAL UNIVERSITY

Алматы "Қазақ университеті" 2022 Министерство информации и коммуникаций Республики Казахстан Основан 04.05.2017 г.

Регистрационное свидетельство № 16499-Ж

Выходит 4 раза в год (март, июнь, сентябрь, декабрь)

РЕДАКЦИОННАЯ КОЛЛЕГИЯ ЖУРНАЛА «ВЕСТНИК КАЗНУ. СЕРИЯ ХИМИЧЕСКАЯ»

НАУЧНЫЙ РЕДАКТОР

Кенесов Булат Нурланович кандидат химических наук, профессор, директор Центра физико-химических методов исследования и анализа КазНУ им. аль-Фараби (г. Алматы, Казахстан)

ОТВЕТСТВЕННЫЙ СЕКРЕТАРЬ

Бакайкина Надежда Центр физико-химических методов исследования и анализа КазНУ им. аль-Фараби (г. Алматы, Казахстан) editor@bulletin.chemistry.kz

ЧЛЕНЫ РЕДАКЦИОННОЙ КОЛЛЕГИИ:

Виталий Хуторянский PhD Университет Рединга (Великобритания)

Шмаков Сергей Николаевич кандидат химических наук Университет Коннектикута (США)

Аппазов Нурбол Орынбасарулы кандидат химических наук, профессор-исследователь кафедры Инжиниринговых технологий Кызылординского университета им. Коркыт Ата (г. Кызылорда, Казахстан)

Карлсен Ларс доктор наук, профессор Awareness Center, Роскильде (Дания)

Дженизян Тьерри PhD, профессор Center of Microelectronics in Provence, MINES Saint-Étienne (Франция)

Турдеан Грациелла PhD, ассоциированный профессор University «Babes-Bolyai», Cluj-Napoca (Румыния)

Козиел Яцек Адам РhD, профессор Университет штата Айова (США)

Уралбеков Болат Муратович кандидат химических наук, профессор КазНУ им. аль-Фараби (г. Алматы, Казахстан)

Даниел Сноу PhD, Research Professor, Laboratory Director, Water Sciences Laboratory, University of Nebraska-Lincoln (США)

Сейлханова Гульзия Амангельдыевна доктор химических наук, профессор КазНУ им. аль-Фараби (г. Алматы, Казахстан)

Галеева Алина Кулбаевна кандидат химических наук, ассоциированный профессор, декан факультета химии и химической технологии КазНУ им. аль-Фараби (г. Алматы, Казахстан)

Адильбекова Акбота Оразбакеевна кандидат химических наук, ассоциированный профессор КазНУ им. аль-Фараби (г. Алматы, Казахстан)

Надиров Рашид Казимович кандидат химических наук, профессор КазНУ им. аль-Фараби (г. Алматы, Казахстан)

Тасибеков Хайдар Сулейманович кандидат химических наук, ассоциированный профессор КазНУ им. аль-Фараби (г. Алматы, Казахстан)

ВЕСТНИК КАЗНУ СЕРИЯ ХИМИЧЕСКАЯ

Nº 4 (107)

Редакторы: Адильбекова А.О., Уралбеков Б.М., Кенесов Б.Н. Компьютерная верстка: Бакайкина Н.В.

ИБ №14868

Формат 60х84 1/8. Бумага офсетная. Печать цифровая. Заказ №17114. Тираж 500 экз. Цена договорная. Отпечатано в типографии издательского дома «Қазақ университеті».

© КазНУ им. аль-Фараби, 2022

ИБ №14868

Пішімі 60х84 1/8. Офсетті қағаз. Сандық басылыс. Тапсырыс №17114. Таралымы 500 дана. Бағасы келісімді. «Қазақ университеті» баспа үйінің баспаханасында басылды.

© Әл-Фараби атындағы ҚазҰУ, 2022

ЗАМЕСТИТЕЛЬ НАУЧНОГО РЕДАКТОРА

Optimization of headspace solid-phase microextraction of volatile organic compounds from dry soil samples by porous coatings using COMSOL Multiphysics

B.N. Kenessov*, A.A. Kapar

Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan *E-mail: bkenesov@cfhma.kz Headspace solid-phase microextraction (HSSPME) is one of the simplest and cost-efficient sample preparation approaches for determination of volatile organic compounds (VOCs) in soil. This study was aimed at the development of the model for numerical optimization of HSSPME of volatile organic compounds from dry soil samples by porous coatings using COMSOL Multiphysics (CMP). 'Transport of Diluted Species in Porous Medium' physics was used for modeling. Effect of sample mass, pressure, fiber-headspace and soil-headspace distribution constants on extraction profiles and time of 95% equilibrium has been studied using the developed model. Equilibrium extraction under atmospheric pressure (1 atm) can take up to 97 min, while under vacuum (0.0313 atm) - 2.3 min. Equilibration time under vacuum was 42-43 times lower than under 1 atm at all studied distribution constants and sample masses. The developed model was modified for optimization of pre-incubation time can reach 13.3 min and depends on both sample mass and soil-headspace distribution constant of the analyte. The developed model can be recommended for optimization of pressure, preincubation and extraction time when fiber-headspace and soil-headspace and soil-headspace distribution constants, soil porosity and density are known.

Keywords: solid-phase microextraction; numerical modeling; COMSOL; soil analysis; volatile organic compounds; computational optimization.

COMSOL Multiphysics көмегімен кеуекті жабындар арқылы құрғақ топырақ сынамаларынан ұшпалы органикалық қосылыстардың буфазалы қатты фазалы микроэкстракциясын оңтайландыру

Б.Н. Кенесов*, А.А. Капар

Физико-химиялық зерттеулер және талдау әдістері орталығы, әл-Фараби атындағы Қазақ ұлттық университеті, Алматы қ., Қазақстан *E-mail: bkenesov@cfhma.kz

Бу-фазалы қатты фазалы микроэкстракция (БҚФМЭ) топырактағы ушпалы органикалық қосылыстарды (ҰОҚ) анықтау үшін сынама дайындаудың қарапайым және үнемді әдістерінің бірі болып табылады. Бұл зерттеу COMSOL Multiphysics (СМР) көмегімен кеуекті жабындар арқылы құрғақ топырақ үлгілерінен БҚФМЭ ұшпалы органикалық қосылыстарды сандық оңтайландыру моделін әзірлеуге бағытталған. Модельдеу үшін «Сұйылтылған заттардың кеуекті ортада тасымалдануы» физикасы қолданылды. Әзірленген модельді пайдалана отырып, экстракциялық жабын мен газ фазасы арасындағы және топырақ пен газ фазасы арасындағы сынама массасының, қысымның, талданатын заттардың таралу константаларының экстракция профильдеріне әсері және 95% тепе-теңдікке жету уақыты зерттелді. Атмосфералық қысымда (1 атм) тепе-теңдікке жету 97 минутқа дейін, ал вакуумда (0,0313 атм) 2,3 минутқа дейін созылуы мүмкін. Вакуумдағы тепе-теңдік уақыты барлық зерттелген таралу константалары мен сынама массалары үшін 1 атм - ға қарағанда 42-43 есе төмен болды. Әзірленген модель «Сұйылтылған заттарды тасымалдау» физикасын қолдана отырып, алдын ала инкубациялау уақытын оңтайландыру үшін өзгертілді. Алынған графиктерге сәйкес, 95% тепе-теңдікті орнату уақыты 13,3 минутқа жетуі мүмкін және сынаманың массасына да, топырақ пен газ фазасы арасындағы талданатын заттың таралу константасына да байланысты. Әзірленген модель қысымды, алдын ала инкубациялау және экстракция уақытын оңтайландыру үшін ұсынылуы мүмкін, бұл кезде талданатын заттың экстракциялық жабын мен газ фазасы арасындағы, топырақ пен газ фазасы арасындағы таралу константалары, сонымен қатар кеуектілігі мен тығыздығы белгілі болуы қажет.

Түйін сөздер: қатты фазалы микроэкстракция; сандық модельдеу; COMSOL; топырақ талдауы; ұшпалы органикалық қосылыстар; компьютерлік оңтайландыру.

Оптимизация парофазной твердофазной микроэкстракции летучих органических соединений из образцов сухих почв пористыми покрытиями с использованием COMSOL Multiphysics

Б.Н. Кенесов*, А.А. Капар

Центр физико-химических методов исследования и анализа, Казахский национальный университет им. аль-Фараби, г. Алматы, Казахстан *E-mail: bkenesov@cfhma.kz

Парофазная твердофазная микроэкстракция (ПТФМЭ) — один из самых простых и экономичных методов пробоподготовки для определения летучих органических соединений (ЛОС) в почве. Данное исследование было направлено на разработку модели численной оптимизации ПТФМЭлетучих органических соединений из образцов сухой почвы пористыми покрытиями с использованием COMSOL Multiphysics (СМР). Для моделирования использовали физику «Транспорт разбавленных веществ в пористой среде». С помощью разработанной модели изучено влияние массы образца, давления, констант распределения аналита между экстракционным покрытием и газовой фазой и между почвой и газовой фазой на профили экстракции и время достижения 95%-ного равновесия. Достижение равновесия при атмосферном давлении (1 атм) может занимать до 97 мин, а под вакуумом (0,0313 атм) – 2,3 мин. Время установления равновесия в вакууме было в 42-43 раза меньше, чем при 1 атм при всех исследованных константах распределения и массах образцов. Разработанная модель была модифицирована для оптимизации времени преинкубации с использованием физики «Транспорт разбавленных веществ». Согласно полученным графикам, время установления 95%-ного равновесия может достигать 13,3 мин и зависит как от массы образца, так и от константы распределения аналита между почвой и газовой фазой. Разработанная модель может быть рекомендована для оптимизации давления, времени преинкубации и экстракции, когда известны константы распределения аналита между экстракционным покрытием и газовой фазой, между почвой и газовой фазой, а также пористость и плотность почвы.

Ключевые слова: твердофазная микроэкстракция; численное моделирование; COMSOL; анализ почвы; летучие органические соединения; компьютерная оптимизация.

(2022) Chem Bull Kaz Nat Univ 4:4-12

IRSTI 31.19.00

Article (Статья)

CHEMICAL BULLETIN

of Kazakh National University

http://bulletin.chemistry.kz/

https://doi.org/10.15328/cb1300

Optimization of headspace solid-phase microextraction of volatile organic compounds from dry soil samples by porous coatings using COMSOL Multiphysics

B.N. Kenessov* 🔍, A.A. Kapar 🔍

Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, Tole bi str. 96a, 050012 Almaty, Kazakhstan *E-mail: *bkenesov@cfhma.kz*

1. Introduction

Headspace solid-phase microextraction (HSSPME) is one of the simplest and cost-efficient sample preparation techniques for quantification of volatile organic compounds in soil samples [1, 2]. HSSPME is based on extraction of analytes by a small (typically, polymeric) coating located in a headspace above sample. It combines extraction, concentration, clean-up, and allows obtaining low detection limits. HSSPME-based analytical methods have been developed for quantitation of pesticides [3-5], volatile organic compounds [6], petroleum hydrocarbons [7, 8], chemical warfare agents [9,10], rocket fuel residuals [11, 12], phenols [13-15] and other pollutants in soil. Due to its simplicity, HSSPME has a great potential for on-site application [16-19].

Development of methods for quantification of volatile organic compounds in soil samples based on HSSPME is tedious because many parameters should be experimentally optimized – amount of sample, fiber coating, extraction temperature, pressure and time [20, 21]. Typically, parameters are optimized sequentially (one parameter per experiment) [20]. Design of experiments (DOE) is often used for enhancing the optimization process by decreasing the number of experiments [22]. COMSOL Multiphysics[®] (CMP) have been successfully used for a much simpler and faster computational optimization of HSSPME of volatile organic compounds from samples of air [23-25] and water [26, 27]. COMSOL Multiphysics[®] allows monitoring changes in concentrations of analytes in different locations of an extraction vessel and obtaining extraction profiles of analytes.

Fick's second law of diffusion has been used to model mass transport in the gas phase:

$$\frac{\partial c}{\partial t} = D \,\nabla^2 \mathbf{c} \tag{1}$$

where: *c* is the analyte concentration, mol/m³; *D* is the diffusion coefficient of the analyte in a corresponding gas, m²/s; *t* is time. Diffusion coefficient of an analyte in gas phase (D, cm²/s) is typically estimated using Fuller et al. [28] method:

$$D = 0.001 \frac{T^{1.75} \left(\frac{1}{M_a} + \frac{1}{M_h}\right)^{0.5}}{p[(V_a)^{1/3} + (V_h)^{1/3}]^2}$$
(2)

where T is the temperature, K, M_a is the molecular mass of an analyte, g/mol, M_h is the molecular mass of a gas (e.g., air) in headspace, g/mol, p is the pressure, atm, V_a is the molecular diffusion volume of an analyte; V_h is the molecular diffusion volume of a gas in headspace.

Mass transport in a porous coating has been modeled using [23, 26]:

$$\left(\varepsilon + \rho K_p\right) \frac{\partial c}{\partial t} = D_e \nabla^2 c \tag{3}$$

where: ε is a porosity of a porous material (0.366 for 85 µm Carboxen/polydimethylsiloxane, Car/PDMS, fiber [23]); ρ is a bulk density of a porous material (760 kg/m³ for 85 µm Car/PDMS [23]); K_p is a distribution constant between coating and air, m³/kg; D_e is the effective diffusivity in the coating, m²/s, that can be determined using:

$$D_{e} = D \varepsilon / \sigma \tag{4}$$

Received 09 Sep 2022; Received in revised form 02 Oct 2022; Accepted 05 Oct 2022; Available online 19 Oct 2022.

© 2022 The Authors

This is an open access article under the CC BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

where: *D* is the diffusion coefficient of an analyte in the gas inside the coating calculated by Eq. (2); σ is the tortuosity factor of the coating (1.317 for 85 μ m Car/PDMS [23]) that is calculated from the corresponding porosity [29].

To our best knowledge, the modeling of HSSPME of VOCs from soil samples has not been described in the open literature. This research was aimed at developing the model for simulation of HSSPME of VOCs from dry soils. Modeling mass transport and adsorption of VOCs in dry soils should be similar to that in porous coatings because both of them are saturated with gas. Wet soils contain or are saturated with water, which will require developing of a different, more complex model.

2. Experiment

2.1 General modeling parameters

Modeling was conducted using COMSOL Multiphysics 5.6 (Burlington, MA, USA) software with Chemical Engineering module installed on a personal computer equipped with a sixcore Core i7-8700 central processing unit (Intel, Santa Clara, CA, USA), 16 Gb of DDR4 random access memory (Apacer, Taiwan) and 250 Gb 860 Evo solid-state drive (Samsung, Seoul, Rep. of Korea).

2.2 Modeling of HSSPME

Two-dimensional (2D) axisymmetric model was built using 'Transport of Diluted Species in Porous Media' physics. The geometry (Figure 1) consisted of four main rectangular domains: soil, headspace, fiber core ($0.13 \times 10 \text{ mm}$) and fiber coating ($0.08 \times 10 \text{ mm}$). A small additional rectangle ($0.49 \times 10.2 \text{ mm}$) was built around the coating as proposed by Kenessov et al. [23] for improved modeling accuracy. Fiber core and coating were located in the center of the headspace. Mass transport in the headspace was modeled using Eq. (1). Headspace was considered static. Mass transport and adsorption in the coating and soil were modeled using Eq. (3).

Modeling was conducted for 85 μ m Car/PDMS coating (Supelco, USA), the structure of which was thoroughly studied before [23]. Coating porosity, tortuosity factor and bulk density were set to 0.366, 1.317 and 760 kg/m³, respectively. Porosity, tortuosity factor and bulk density of soil were set to typical values - 0.4, 1.3 and 1300 kg/m³, respectively [30]. User defined adsorption isotherm was chosen for the adsorption modeling using:

$$c_p = c \cdot K_p \tag{5}$$

Geometry components: 1 – soil, 2 – headspace, 3 – fiber core, 4 – SPME coating, 5 – additional rectangle around the coating where the initial concentration was set to zero.

Figure 1 – Geometry of the model for solid-phase microextraction of VOCs from soil

where c_p is the concentration adsorbed to the solid material, mol/kg; c is the concentration in gas inside a solid material, mol/m³; K_p is the solid-headspace distribution constant, m³/kg, calculated from the dimensionless solid-headspace constant (K_{cp}) using:

$$K_p = \frac{K_{sh} - \varepsilon}{\rho} \tag{6}$$

It was assumed that before HSSPME, the equilibrium between soil and headspace was established. Initial concentration of an analyte in headspace and soil gas before extraction (C_{ab}) was calculated using:

$$C_{oh} = \frac{C_{0s} m_s}{K_{ps} m_s + V_h + \varepsilon_s m_s / \rho_s}$$
(7)

where C_{os} is the initial analyte concentration in soil before introducing it to the vial (mol/kg); $K_{\rho s}$ is the soil-headspace distribution constant, m³/kg; m_s and d_s are the mass (kg) and the bulk density (kg/m³) of soil, respectively; V_h is the headspace volume (m³), ε_s is the soil porosity. Initial analyte concentrations in the coating and in the small rectangle around the coating were set to zero.

Benzene was chosen as a model analyte for study because it has successfully been used (as one of the analytes) for developing the CMP models for air [23, 25] and water [26]. Two coating-headspace distribution constants (K_{p}) were tested – 150000 and 8300, as reported by Prikryl and Sevcik [31] for 85 μ m Car/PDMS and 65 μ m polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibers, respectively. Because the internal structure of PDMS/DVB is not reported in the available literature, parameters (dimensions, porosity, tortuosity factor and bulk density) for Car/PDMS were used for calculations at K_{fh} = 8300. Modeling was conducted using seven different dimensionless soil-headspace constants (K_{sh}): 1, 10, 100, 1000, 10000, 100000 and 1000000.

Diffusion coefficient of benzene in headspace was calculated using Eq. (2). Extraction temperature (298 K) and pressure (1 atm or 0.0313 atm) were assumed constant and homogeneous in all domains. Fuller diffusion volumes for benzene, air and water molecules were set to 90.7, 20.1 and 12.7 [28]. Fluid diffusion coefficients of benzene in gas inside the coating and the soil were set equal to the diffusion coefficient in headspace.

Extra fine free triangular mesh was used for the modeling. For better accuracy, resolution of narrow regions was increased to 10 and maximum element size was set to 0.2. All other study settings were set to default (Physics controlled).

During data processing, surface average derived values were calculated. 'Concentration species absorbed to the solid' were used for calculating concentration in the coating. Relative concentrations in the coating were calculated by dividing computed concentrations absorbed to the coating by equilibrium concentrations calculated using [21]:

$$[c_f] = \frac{K_{pf}C_{0s}m_s}{K_{pf}m_f + K_{ps}m_s + V_h + \frac{m_f\varepsilon_f}{\rho_f} + \frac{m_s\varepsilon_s}{\rho_s}}$$
(8)

where C_{os} is the initial analyte concentration in soil before introducing it to the vial (mol/kg); K_{pf} is the coating-headspace distribution constant, m³/kg; K_{ps} is the soil-headspace distribution constant, m³/kg; m_f , ε_f and ρ_f are the mass (kg), porosity and the bulk density (kg/m³) of the coating, respectively; m_s , ε_s and ρ_s are the mass (kg), porosity and the bulk density (kg/ m³) of soil, respectively; V_h is the headspace volume (m³).

2.3 Modeling of pre-incubation

Two-dimensional (2D) axisymmetric model was built using two 'Transport of Diluted Species' physics. The geometry consisted of two main rectangular domains: soil and headspace. Equation (1) has been used to model mass transport in both soil and headspace. Apparent diffusion coefficient was set for simulating mass transport in soil [23]:

$$D_a = \frac{D \,\varepsilon_s}{\rho_s \,K_{sh}} \tag{9}$$

Fluxes to (or backward from) headspace (Flux₁ and Flux₂, respectively) at the soil-air boundary were set to [23]:

$$Flux_{1} = 1000 \frac{m}{s} (c_{s} - c_{h}K_{sh});$$

$$Flux_{2} = 1000 \frac{m}{s} (c_{h}K_{sh} - c_{s})$$
(10)

where: 1000 m/s is the flux coefficient at the soil-headspace interface (set to a very high value as previously used [23]); c_s and c_h are concentrations of the analyte in soil and headspace at the interface, respectively, mol/m³. Initial analyte concentration in headspace was set to zero.

Relative concentrations in the headspace were calculated by dividing computed concentrations in the headspace by equilibrium concentrations calculated using [21]:

$$[c_h] = \frac{c_{0s}m_s}{m_s/(\rho_s K_{sh}) + V_h}$$
(11)

3. Results and Discussion

3.1 Extraction profiles obtained during the modeling

The model allowed obtaining extraction profiles of benzene from headspace above 1 g of soil in 20 mL vial (Figure 2) using different values of the coating-headspace and soil-headspace distribution constants. At K_{fn} = 150000, the increase of K_{sh} from 100 to 1000 resulted in a substantially longer equilibration process. Time required for extracting 95% of the equilibrium benzene amount ($t_{a.95}$) increased from 33.7 to 65.3 min. At K_{fn} = 8300, the increase of K_{sh} from 100 to 1000 resulted

in the increase of $t_{0.95}$ from 4.4 to 5.9 min. Equilibration at K_{fh} = 150000 takes about one order of magnitude longer time than at K_{fh} = 8300.

Such extraction profiles can be used for optimizing extraction time, which is typically chosen after the equilibrium is established. However, to minimize competition between analytes and matrix ingredients, extraction can be conducted at the linear range – when analyte concentration in a coating linearly increases with the increase of time [21].

Figure 2 – Benzene solid-phase microextraction profiles from headspace above 1.00 g of soil in 20 mL vial at 1 atm simulated in CMP using two different K_{fh} (150000 and 8300) and K_{sh} (100 and 1000) values

3.2 Effect of sample mass under atmospheric pressure

Sample mass is an important parameter in HSSPME. Increase in a sample mass can result in an increased analyte amount in a coating and a lower detection limit. This parameter is particularly important when extraction effectiveness is high [21]. However, the increase of soil mass and height in the vial can slow down the equilibration process, which will be more affected by the mass transfer in soil – analytes located at the bottom of the vial will have to pass via a thicker level of soil to reach the headspace. In the case of HSSPME of VOCs from water, mass transfer in the sample can be enhanced by stirring, but this approach is impossible for soil. According to Eq. (3), the mass transfer rate in soil depends on the fluid diffusion coefficient, porosity, tortuosity factor and soil-headspace distribution constant.

CMP allows simulating the effect of soil mass on extraction profiles and optimization of this important parameter along with extraction time (Figure 3). At K_{fh} = 150000 and K_{sh} = 1, sample mass has a minor effect on the equilibration time (Figure 3A). At K_{th} = 150000 and K_{sh} = 10, linear dependence of $t_{0.95}$ on the sample mass is observed. At K_{fh} = 150000 and K_{sh} = 100, linear dependence of $t_{0.95}$ on the sample mass is observed when increasing m_s from 2 to 10 g. At K_{fh} = 150000, K_{sh} = 100 and m_s = 10 g, $t_{a.95}$ reaches 97.0 min, the highest value in this study. At K_{ff} = 150000, K_{sh} = 100000 and 1000000, $t_{0.95}$ linearly decreases from 69.8-71.5 min to 52.3-54.0 min with the increase in m_s from 1 to 10 g. At K_{fh} = 150000 and K_{sh} = 10000, $t_{0.95}$ linearly decreases from 74.0 to 59.8 min with the increase in m_{c} from 2 to 10 g. At K_{fh} = 8300, $t_{0.95}$ values are not higher than 6 min meaning that equilibrium extraction can be conducted at any m_{e} with low time expenses (Figure 3B). The trends are similar to those at K_{fh} = 150000, except at K_{sh} = 100: $t_{0.95}$ increases when increasing m_s from 1 to 5 g followed by the decrease when m_s is increased to 10 g. At K_{fh} = 150000 and K_{sh} = 1000, $t_{0.95}$ increases when increasing m_s from 1 to 5 g followed by a slight decrease when *m*_c is increased to 10 g.

3.3 Effect of sample mass under vacuum conditions

HSSPME under vacuum conditions (Vac-HSSPME) can be used to achieve equilibrium faster [32-35]. This is mainly caused by the decreased diffusion coefficients in headspace under vacuum conditions [36]. The effect of vacuum when extracting VOCs from a dry soil is even more pronounced because it enhances mass transfer in the soil sample. As is seen from Eq. (4),

Figure 3 – Time required for extracting 95% of the equilibrium benzene amount ($t_{0.95}$) using coating-headspace distrbution constants 150000 (A) and 8300 (B) at 298 K, 1 atm and different soil-headspace distribution constants

Figure 4 – Time required for extracting 95% of the equilibrium benzene amount (t_{0.95}) using coating-headspace distribution constants 150000 (A) and 8300 (B) at 298 K, 0.0313 atm and different soil-headspace distribution constants

effective diffusion coefficient in soil is directly proportional to the diffusion coefficient in soil gas that is the same as headspace. To estimate the effect of vacuum on $t_{a,gs'}$ a pressure in the model was set to 0.0313 atm corresponding to the saturated pressure of water at 298 K. Benzene diffusion coefficient in water vapor at 0.0313 atm was calculated using Eq. (2).

At $K_{fh} = 150000$, $t_{0.95}$ under vacuum were 0.15-2.3 min at all studied K_{sh} and m_s values (Figure 4A). The trends were similar to those at atmospheric pressure, and $t_{0.95}$ under vacuum were 42-43 times lower than under atmospheric pressure. At $K_{fh} = 8300$, $t_{0.95}$ under vacuum were 0.04-0.14 min at all studied K_{sh} and m_s values (Figure 4B). The trends were also similar to those at atmospheric pressure, and $t_{0.95}$ under vacuum were 42-43 times lower than under atmospheric pressure. The obtained results prove that the decrease of pressure in the vial substantially decreases equilibration time at all studied values of distribution constants and sample masses. CMP can be used to estimate the effect of vacuum and optimize extraction time under vacuum conditions.

3.4 Optimization of pre-incubation time

Pre-incubation time is an important parameter for achieving greatest accuracy and precision of methods based on HSSPME. It is required to establish the equilibrium between a sample and headspace in a vial before introducing and exposing an SPME fiber. Typically, pre-incubation time is optimized experimentally. Recently, CMP has been successfully used for optimization of preincubation time before HSSPME of VOCs from a water sample [26]. The model developed for HSSPME of VOCs from soil has been modified for optimization of preincubation time by removing SPME fiber and related domains from the geometry and physics. However, it was impossible to accurately set the initial concentration of the analyte in soil and soil gas, and another model was built using two 'Transport of Diluted Species' physics (for soil and headspace).

According to the modeling results, equilibration time ($t_{a.g.}$) depends on both sample mass and soil-headspace distribution

constant of the analyte (Figure 5). At $K_{sh} = 1 \text{ and } 10$, $t_{o.95}$ increases linearly with the increase of sample mass. At $K_{sh} = 100$, $t_{o.95}$ increases linearly only in the range from 1 to 5 g followed by a decrease. At $K_{sh} = 1000$, 10000 and 1000000, $t_{o.95}$ decreases linearly when increasing a sample mass from 2 to 10 g. At $K_{sh} =$ 100000, $t_{o.95}$ decreases linearly in the whole studied range of sample mass. Thus, the developed model can be used for optimizing the pre-incubation time.

Figure 5 – Effect of sample mass on the time required for achieving 95% of the equilibrium of benzene between headspace and soil ($t_{0.95}$) at 298 K, 1 atm and different soil-headspace distribution constants

4. Conclusion

Thus, a new CMP model has been developed for optimizing HSSPME of VOCs from dry soil samples. For optimization, coating-headspace and soil-headspace distribution coefficients at the extraction temperature, coating and soil porosities and bulk densities should be known. Fluid diffusion coefficients can be estimated using Fuller method. Sample mass, geometry of the extraction vessel, location of the fiber, extraction time and pressure can be optimized using the model. Pre-incubation time can also be optimized after a minor modification of the main model. In addition to the optimization of extraction parameters, the model can be used for a better understanding of an extraction process, disclosing and solving various problems related with, e.g., poor accuracy and precision.

In the future, the developed model can be improved by considering soils saturated and unsaturated with water, which can be done using the 'Unsaturated Porous Medium' feature in the 'Transport of Diluted Species in Porous Medium' physics. Such modeling will require soil-water distribution constants, diffusion coefficients in water and volatilization rates for studied analytes. The model can be improved by adding a possibility of temperature optimization that will dependences of most modeling parameters on the temperature. Losses of unstable analytes during storage, pre-incubation and extraction of samples can also be potentially estimated in the developed

References (GOST)

1 Souza-Silva É.A., Jiang R., Rodriguez-Lafuente A., Gionfriddo E., Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis // Trends in Analytical Chemistry. – 2015. – Vol. 71. – P. 224–235.

2 Pena-Pereira F., Bendicho C., Pavlović D.M., Martín-Esteban A., Díaz-Álvarez M., Pan Y., Cooper J., Yang Z., Safarik I., Pospiskova K., Segundo M.A., Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern – A review // Analytica Chimica Acta. – 2021. – Vol. 1158. – Article. 238108.

3 Durović R.D., Dorđević T.M., Santrić L.R., Gasić S.M., Ignjatović L.M. Headspace solid phase microextraction method for determination of triazine and organophosphorus pesticides in soil // Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. – 2010. – Vol. 45, Is. 7. – P. 626–632.

4 Doong R.A., Liao P.L. Determination of organochlorine pesticides and their metabolites in soil samples using headspace solid-phase microextraction // Journal of Chromatography. A. – 2001. – Vol. 918, Is. 1. – P. 177–188.

5 Orazbayeva D., Koziel J.A., Trujillo-Rodríguez M.J., Anderson J.L., Kenessov B. Polymeric ionic liquid sorbent coatings in headspace solid-phase microextraction: A green sample preparation technique for the determination of pesticides in soil // Microchemical Journal. – 2020. – Vol. 157. – Article 104996.

6 Llompart M., Li K., Fingas M. Headspace solid phase microextraction (HSSPME) for the determination of volatile and semivolatile pollutants in soils // Talanta. – 1999. – Vol. 48, Is. 2. – P. 451–459.

7 Cam D., Gagni S. Determination of petroleum hydrocarbons in contaminated soils using solid-phase microextraction with gas chromatography-mass spectrometry. // Journal of model by adding Reactions to 'Transport of Diluted Species in Porous Medium' physics and providing corresponding equations for reaction rates.

Conflicts of interest

The authors declare no conflicts of interest in relation to this research.

Acknowledgements

This research was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP08052684). Anel Kapar acknowledges the funding of Ph.D. scholarships from the Ministry of Science and Higher Education of the Republic of Kazakhstan.

Chromatographic Science. – 2001. – Vol. 39, Is. 11. – P. 481–486. 8 Alimzhanova M., Kenessov B., Nauryzbayev M., Koziel J. Effects of moisture content and solvent additive on headspace solid-phase microextraction of total petroleum hydrocarbons from soil // Eurasian Chemico-Technological Journal. – 2012. – Vol. 14, Is. 4. – P. 331–335.

9 Popiel S., Sankowska M. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography // Journal of Chromatography A. – 2011. – Vol. 1218, Is. 47. – P. 8457–8479.

10 Rearden P., Harrington P.B. Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME– IMS) // Analytica Chimica Acta. – 2005. – Vol. 545, Is. 1. – P. 13–20.

11 Bakaikina N., Kenessov B., Ul'yanovskii N., Kosyakov D.S. Quantification of transformation products of rocket fuel unsymmetrical dimethylhydrazine in soils using SPME and GC-MS // Talanta. – 2018. – Vol. 184. – P. 332–337.

12 Yegemova S., Bakaikina N., Kenessov B., Koziel J., Nauryzbayev M. Determination of 1-methyl-1H-1,2,4-triazole in soils contaminated by rocket fuel using solid-phase microextraction, isotope dilution and gas chromatography – mass spectrometry // Talanta. – 2015. – Vol. 143. – P. 226–233.

13 Baciocchi R., Attinà M., Lombardi G., Boni M.R. Fast determination of phenols in contaminated soils // Journal of Chromatography. A. – 2001. – Vol. 911, Is. 1. – P. 135–141.

14 Yegemova S.S., Derbissalin M., Kenessov B.N., Koziel J.A. Quantification of phenol in soil using solid-phase microextraction, gas chromatography-mass spectrometry and standard addition // Chemical Bulletin of Kazakh National University. – 2015. – Is. 4. – P. 4–12.

15 Llompart M., Blanco B., Cela R. Determination of

phenols in soils by in situ acetylation headspace solid-phase microextraction // Journal of Microcolumn Separations. – 2000. – Vol. 12, Is. 1. – P. 25–32.

16 Ouyang G., Pawliszyn J. Recent developments in SPME for on-site analysis and monitoring // Trends in Analytical Chemistry. – 2006. – Vol. 25, Is. 7. – P. 692–703.

17 Pawliszyn J. Integration and miniaturization facilitate onsite and in-vivo analysis // Trends in Analytical Chemistry. – 2011. – Vol. 30, Is. 9. – P. 1363–1364.

18 Duan C., Shen Z., Wu D., Guan Y. Recent developments in solid-phase microextraction for on-site sampling and sample preparation // Trends in Analytical Chemistry. – 2011. – Vol. 30, Is. 10. – P. 1568–1574.

19 Kenessov B., Koziel J.A., Bakaikina N., Orazbayeva D. Perspectives and challenges of on-site quantification of organic pollutants in soils using solid-phase microextraction // Trends in Analytical Chemistry. – 2016. – Vol. 75. – P. 111–122.

20 Risticevic S., Lord H., Górecki T., Arthur C.L., Pawliszyn J. Protocol for solid-phase microextraction method development // Nature protocols. – 2010. – Vol. 5, Is. 1. – P. 122–139.

21 Pawliszyn J. Handbook of Solid Phase Microextraction. – Elsevier, 2012.

22 Niño L.R., Grosseli G.M., Mozeto A.A., Fadini P.S. Optimization study of BTEX extraction from soils spiked with two kinds of Brazilian diesel by HS SPME using Box–Behnken experimental design and multi-response analysis // Analytical Methods. – 2014. – Vol. 6. – P. 3247–3253.

23 Kenessov B., Derbissalin M., Koziel J.A., Kosyakov D.S. Modeling solid-phase microextraction of volatile organic compounds by porous coatings using finite element analysis // Analytica Chimica Acta. – 2019. – Vol. 1076. – P. 73–81.

24 Kenessov B., Koziel J.A., Baimatova N., Demyanenko O.P., Derbissalin M. Optimization of time-weighted average air sampling by solid-phase microextraction fibers using finite element analysis software // Molecules. – 2018. – Vol. 23, Is. 11. – Article 2736.

25 Kapar A., Muratuly A., Orazbayeva D., Bakaikina N., Bukenov B., Kenessov B. Modeling the effect of temperature on solid-phase microextraction of volatile organic compounds from air by polydimethylsiloxane coating using finite element analysis // Analytica Chimica Acta. – 2022. – Vol. 1195. – Article 339431.

26 Muratuly A., Kapar A., Kenessov B. Modeling headspace solid-phase microextraction of volatile organic compounds from water samples with porous coatings using finite element analysis // Advances in Sample Preparation. – 2022. – Vol. 3. – Article 100030.

27 Jafari M., Jamshidian M., Habibi S. Application of numerical simulation to solid phase-microextraction for decreasing of extraction time of pyrene and phthalate esters on solid coatings // Journal of Chromatography A. – 2022. – Vol. 1673. – Article 463113.

Fuller E.N., Schettler P.D., Giddings J.C. New method for prediction of binary gas-phase diffusion coefficients // Industrial & Engineering Chemistry. – 1966. – Vol. 58, Is. 5. – P. 18–27.

29 Mocho P., Desauziers V. Static SPME sampling of VOCs emitted from indoor building materials: Prediction of calibration curves of single compounds for two different emission cells // Analytical and Bioanalytical Chemistry. – 2011. – Vol. 400, Is. 3. – P. 859–870.

30 Weil R.R., Brady N.C. The Nature and Properties of Soils. Pearson, 2016.

31 Prikryl P., Sevcik J.G.K. Characterization of sorption mechanisms of solid-phase microextraction with volatile organic compounds in air samples using a linear solvation energy relationship approach // Journal of Chromatography A. -2008. - Vol. 1179, Is. 1. - P. 24-32.

32 Psillakis E., Yiantzi E., Sanchez-Prado L., Kalogerakis N. Vacuum-assisted headspace solid phase microextraction: Improved extraction of semivolatiles by non-equilibrium headspace sampling under reduced pressure conditions // Analytica Chimica Acta. – 2012. – Vol. 742. – P. 30–36.

33 Yiantzi E., Kalogerakis N., Psillakis E. Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples // Analytica Chimica Acta. – 2015. – Vol. 890. – P. 108–116.

34 Zhakupbekova A., Baimatova N., Psillakis E., Kenessov B. Quantification of trace transformation products of rocket fuel unsymmetrical dimethylhydrazine in sand using vacuum-assisted headspace solid-phase microextraction // Environmental Science and Pollution Research. – 2022. – Vol. 29. – P. 33645–33656.

35 Psillakis E. The effect of vacuum: an emerging experimental parameter to consider during headspace microextraction sampling // Analytical and Bioanalytical Chemistry. – 2020. – Vol. 412, Is. 24. – P. 5989–5997.

36 Zhakupbekova A., Baimatova N., Kenessov B. Trends in Environmental Analytical Chemistry A critical review of vacuum-assisted headspace solid-phase microextraction for environmental analysis // Trends in Environmental Analytical Chemistry. – 2019. – Vol. 22. – Article e00065.

References

1 Souza-Silva ÉA, Jiang R, Rodriguez-Lafuente A, Gionfriddo E, Pawliszyn J (2015) TRAC-Trend Anal Chem 71:224–235. *http:// doi.org/10.1016/j.trac.2015.04.016*

2 Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, et al. (2021) Anal Chim Acta 1158:238108. http://doi.org/10.1016/j.aca.2020.11.040

3 Durović RD, Dorđević TM, Santrić LR, Gasić SM, Ignjatović LM (2010) J Environ Sci Health B 45:626–632. *http://doi.org/10.* 1080/03601234.2010.502416

4 Doong RA, Liao PL (2001) J Chromatogr A 918:177–188. https://doi.org/10.1016/S0021-9673(01)00740-3

5 Orazbayeva D, Koziel JA, Trujillo-Rodríguez MJ, Anderson JL, Kenessov B (2020) Microchem J. *http://doi.org/10.1016/j. microc.2020.104996*

6 Llompart M, Li K, Fingas M (1999) Talanta 48:451–459. http://doi.org/10.1016/S0039-9140(98)00263-X

eISSN 2312-7554

7 Alimzhanova M, Kenessov B, Nauryzbayev M, Koziel J (2012) Eurasian Chem Tech J 14:331–335. *https://doi.org/10.18321/ectj131*

8 Cam D, Gagni S (2001) J Chromatogr Sci 39:481–486. http://doi.org/10.1093/chromsci/39.11.481

9 Popiel S, Sankowska M (2011) J Chromatogr A 1218:8457– 8479. http://doi.org/10.1016/j.chroma.2011.09.066

10 Rearden P, Harrington PB (2005) Anal Chim Acta 545:13– 20. http://doi.org/10.1016/j.aca.2005.04.035

11 Bakaikina N, Kenessov B, Ul'yanovskii N, Kosyakov DS (2018) Talanta 184:332–337. http://doi.org/10.1016/j. talanta.2018.02.047

12 Yegemova S, Bakaikina N, Kenessov B, Koziel J, Nauryzbayev M (2015) Talanta 143:226–233. *http://doi.org/10.1016/j.talanta.2015.05.045*

13 Baciocchi R, Attinà M, Lombardi G, Boni MR (2001) J Chromatogr A 911:135–141. http://doi.org/10.1016/S0021-9673(00)01249-8

14 Yegemova SS, Derbissalin M, Kenessov BN, Koziel JA (2015) Chemical Bulletin of Kazakh National University 4–12. http:// doi.org/10.15328/cb672

15 Llompart M, Blanco B, Cela R (2000) Journal of Microcolumn Separations 12:25–32. http://doi.org/10.1002/ (SICI)1520-667X(2000)12:1<25::AID-MCS4>3.0.CO;2-U

16 Ouyang G, Pawliszyn J (2006) Trends Anal Chem 25:692– 703. http://doi.org/10.1016/j.trac.2006.05.005

17 Pawliszyn J (2011) Trends Anal Chem 30:1363–1364. http://doi.org/10.1016/j.trac.2011.08.002

18 Duan C, Shen Z, Wu D, Guan Y (2011) Trends Anal Chem 30:1568–1574. http://doi.org/10.1016/j.trac.2011.08.005

19 Kenessov B, Koziel JA, Bakaikina N, Orazbayeva D (2016) Trends Anal Chem 75:111–122. http://doi.org/10.1016/j. trac.2016.04.007

20 Risticevic S, Lord H, Górecki T, Arthur CL, Pawliszyn J (2010) Nat Protoc 5:122–139. *http://doi.org/10.1038/nprot.2009.179*

21 Pawliszyn J (2012) Handbook of Solid Phase Microextraction. Elsevier. http://doi.org/10.1016/C2011-0-04297-7 22 Niño LR, Grosseli GM, Mozeto AA, Fadini PS (2014) Analytical Methods 6:3247–3253. http://doi.org/10.1039/ c3ay42253d

23 Kenessov B, Derbissalin M, Koziel JA, Kosyakov DS (2019) Anal Chim Acta 1076:73–81. *http://doi.org/10.1016/j. aca.2019.05.042*

24 Kenessov B, Koziel JA, Baimatova N, Demyanenko OP, Derbissalin M (2018) Molecules 23:2736. http://doi. org/10.3390/molecules23112736

25 Kapar A, Muratuly A, Orazbayeva D, Bakaikina N, Bukenov B, Kenessov B (2022) Anal Chim Acta 1195:339431. *http://doi.org/10.1016/j.aca.2022.339431*

26 Muratuly A, Kapar A, Kenessov B (2022) Advances in Sample Preparation 3:100030. http://doi.org/10.1016/j. sampre.2022.100030

27 Jafari M, Jamshidian M, Habibi S (2022) J Chromatogr A 1673:463113. http://doi.org/10.1016/j.chroma.2022.463113

28 Fuller EN, Schettler PD, Giddings JC (1966) Ind Eng Chem 58:18–27. http://doi.org/10.1021/ie50677a007

29 Mocho P, Desauziers V (2011) Anal Bioanal Chem 400:859– 870. http://doi.org/10.1007/s00216-011-4820-y

30 Weil RR, Brady NC (2016) The Nature and Properties of Soils. Pearson.

31 Prikryl P, Sevcik JGK (2008) J Chromatogr A 1179:24–32. http://doi.org/10.1016/j.chroma.2007.10.016

32 Psillakis E, Yiantzi E, Sanchez-Prado L, Kalogerakis N (2012) Anal Chim Acta 742:30–36. http://doi.org/10.1016/j. aca.2012.01.019

33 Yiantzi E, Kalogerakis N, Psillakis E (2015) Anal Chim Acta 890:108–116. http://doi.org/10.1016/j.aca.2015.05.047

34 Zhakupbekova A, Baimatova N, Psillakis E, Kenessov B (2022) Environ Sci Pollut Res 29: 33645–33656. *http://doi. org/10.1007/s11356-021-17844-1*

35 Psillakis E (2020) Anal Bioanal Chem 412:5989–5997. http://doi.org/10.1007/s00216-020-02738-x

36 Zhakupbekova A, Baimatova N, Kenessov B (2019) Trends Environ Anal Chem 22:e00065. http://doi.org/10.1016/j. teac.2019.e00065

In silico drug-likeness, biological activity and toxicity prediction of new 3,5-bis(hydroxymethyl) tetrahydro-4H-pyran-4-one derivatives

E.M. Yergaliyeva^{1,2*}, K.B. Bazhykova¹, S.B.Abeuova³, V.V. Vazhev⁴, P. Langer⁵

¹Al-Farabi Kazakh National University, Almaty, Kazakhstan ²JSC «A.B. Bekturov Institute of Chemical Sciences», Almaty, Kazakhstan ³«Astana» International University, Astana, Kazakhstan ⁴Kostanay Social Technical University named after the Academician Z. Aldamzhar, Kostanay, Kazakhstan ⁵University of Rostock, Rostock, Germany *E-mail: *erg_el@mail.ru* This paper presents the results of predicting drug-likeness, biological activity, and toxicity for 8 new derivatives of 3,5-bis(hydroxymethyl)tetrahydro-4H-pyran-4-one using bioinformatic methods. The physicochemical and pharmacokinetic parameters of the studied compounds were determined, *in silico* screening for biological activity and prediction of their toxicity were carried out. Physicochemical and pharmacokinetic parameters were evaluated using the Molinspiration Cheminformatics service. It was found that compounds **1–11** corresponded to Lipinski's rule for drug-like compounds. As predicted in Molinspiration, compound **4** exhibits significant biological activity as a possible enzyme inhibitor and G-protein coupled receptor ligand. Compound **6** is active as an ion channel modulator. Virtual PASS screening identified compounds with potential antidiabetic activity (**1–3**, **5–8**) and activity in the treatment of phobic disorders and dementias (**1–5**, **7**, **8**, **11**). Compound **1** can potentially act as a substrate for CYP2H, and inhibitors of enzymes of the peptidase group are **1**, **3**, **4**, **6**, **7**, **11**. As a result of QSAR prediction based on LD₅₀ values calculated in ProTox-II, compound **10** belongs to class **6**; compounds **1–3**, **5** and **8** belong to the 5th class of toxicity; compounds **6** and **9** belong to the 4th class. Compound **1** belongs to class **3**. Compounds **1–9** do not exhibit the toxicities shown in the ProTox-II models. Compounds **10** and **11** may be carcinogenic.

Keywords: tetrahydropyran-4-one; bioavailability; drug-likeness; biological activity; toxicity; PASS.

In silico 3,5-бис(гидроксиметил) тетрагидро-4Н-пиран-4-онның жаңа туындыларының дәрілік қосылыстарға ұқсастығын, биологиялық белсенділігін және уыттылығын болжау

Э.М. Ергалиева^{1,2}*, К.Б. Бажықова¹, С.Б. Абеуова³, В.В. Важев⁴, П. Лангер⁵

¹Әл-Фараби атындағы Қазақ ұлттық университеті, Алматы қ., Қазақстан ²«А.Б. Бектұров атындағы химия ғылымдары институты» АҚ, Алматы қ., Қазақстан ³ «Астана» халықаралық университеті, Астана қ., Қазақстан ⁴3. Алдамжар атындағы Қостанай әлеуметтіктехникалық университеті, Қостанай қ., Қазақстан ⁵Росток университеті, Росток қ., Германия *E-mail: *erg_el@mail.ru*

Макалада биоинформатикалык әдістерді пайдалана отырып. 3,5-бис(гидроксиметил)тетрагидро-4Н-пиран-4-онның 8 жаңа туындысы ушін дәрілік қосылыстармен ұқсастықты, биологиялық белсенділікті және уыттылықты болжау нәтижелері ұсынылған. Зерттелетін қосылыстардың физика-химиялық және фармакокинетикалық параметрлері анықталды, биологиялық белсенділікке in silico скринингі және олардың уыттылығын болжау жүргізілді. Физика-химиялық және фармакокинетикалық параметрлерді бағалау Molinspiration Cheminformatics сервисінің көмегімен жүргізілді. Зерттелген 1-11 қосылыстары дәрілік қосылыстар үшін Липинский ережесіне сәйкес келеді. Molinspiration болжамына сәйкес, 4 косылыс биологиялық белсенділікті фермент ингибиторы және G ақуызымен байланысқан рецепторлардың лигандасы ретінде көрсетеді. 6 қосылыс иондық канал модуляторының белсенділігін көрсетеді. PASS бағдарламасындағы виртуалды скрининг диабетке қарсы белсенділігі (1–3, 5–8) және фобтық бұзылулар мен деменцияны емдеу саласындағы белсенділігі бар қосылыстарды анықтады (1–5, қосылыстары 4 классқа жатады. 4 қосылыс 3 классқа жатады. 1-9 қосылыстары ProTox-II модельдерінде көрсетілген уыттылық түрлерін көрсетпейді. 10 және 11 қосылыстар канцерогенді болуы мүмкін.

Түйін сөздер: тетрагидропиран-4-он; биожетімділік, дәрілерге ұқсастық; биологиялық белсенділік; уыттылық; PASS.

In silico прогнозирование сходства с лекарственными соединениями, биологической активности и токсичности новых производных 3,5-бис(гидроксиметил) тетрагидро-4Н-пиран-4-она

Э.М. Ергалиева^{1,2*}, К.Б. Бажыкова¹, С.Б. Абеуова³, В.В. Важев⁴, П. Лангер⁵

¹Казахский национальный университет им. аль-Фараби, г. Алматы, Казахстан ²АО «Институт химических наук им. А.Б. Бектурова», г. Алматы, Казахстан ³Международный университет «Астана», г. Астана, Казахстан ⁴Костанайский социально-технический университет имени академика 3. Алдамжар, г. Костанай, Казахстан ⁵Ростокский университет, г. Росток, Германия *E-mail: erg_el@mail.ru

В настоящей работе представлены результаты прогнозирования сходства лекарственными соединениями, биологической активности и токсичности для 8 новых производных 3,5-бис(гидроксиметил)тетрагидро-4Н-пиран-4-она с использованием биоинформатических методов. Определены физико-химические и фармакокинетические параметры исследуемых соединений, проведен *in silico* скрининг на биологическую активность и прогнозирование их токсичности. Оценка физико-химических и фармакокинетических параметров проводилась с помощью сервиса Molinspiration Cheminformatics. Найдено, что исследованные соединения 1-11 соответствуют правилу Липински для лекарственно-подобных соединений. Согласно прогнозированию в Molinspiration, соединение 4 проявляет биологическую активность в качестве возможного ингибитора ферментов и лиганда рецепторов, связанных с G-белком. Соединение 6 проявляет активность модулятора ионных каналов. Виртуальный скрининг в программе PASS выявил соединения, потенциально обладающие противодиабетической активностью (1-3, 5-8) и активностью в области лечения фобических расстройств и деменций (1-3, 7, 8, 11). Соединение 1 потенциально может выступать субстратом СҮР2Н, а ингибиторами ферментов пептидазной группы являются 1, 3, 4, 6, 7, 11. В результате прогноза QSAR на основе рассчитанных в ProTox-II значений LD₅₀, соединение 10 относится к классу 6, соединения 1–3, 5 и 8 относятся к 5 классу токсичности, соединения 6 и 9 относятся к 4 классу. Соединение 4 относится к классу 3. Соединения 1–9 не проявляют виды токсичности, представленные в моделях ProTox-II. Соединения 10 и 11 могут проявлять канцерогенность.

Ключевые слова: тетрагидропиран-4-он; биодоступность; подобность лекарствам; биологическая активность; токсичность; PASS.

(2022) Chem Bull Kaz Nat Univ 4:14-20

IRSTI 31.21.27

Article (Статья)

CHEMICAL BULLETIN

of Kazakh National University

http://bulletin.chemistry.kz/

https://doi.org/10.15328/cb1272

In silico drug-likeness, biological activity and toxicity prediction of new 3,5-bis(hydroxymethyl)tetrahydro-*4H*-pyran-4-one derivatives

E.M. Yergaliyeva^{1,2*}, K.B. Bazhykova¹, S.B. Abeuova³, V.V. Vazhev⁴, P. Langer⁵

¹Al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan

²JSC «A.B. Bekturov Institute of Chemical Sciences», 106 Sh. Ualikhanov str., 050010 Almaty, Kazakhstan

³«Astana» International University, 8 Kabanbay batyr str., Z05H0T3 Astana, Kazakhstan

⁴ Academician Z. Aldamzhar Kostanay Social Technical University, 27 Koblandy batyr str., 110010 Kostanay, Kazakhstan

⁵University of Rostock, 1 Universitätsplatz, 18055 Rostock, Germany

*E-mail: erg_el@mail.ru

1. Introduction

In the laboratory of al-Farabi KazNU, derivatives of 3,5-substituted tetrahydropyran-4-one **1** were obtained. The synthesis and characteristics of **1-11** are given in [1-4]. The structures of the described compounds are shown in the scheme (Figure 1).

Tetrahydropyran-4-ones and their derivatives are among the simplest, widely studied and used in medicine heterocyclic compounds [5], which are building blocks for the synthesis of compounds with biological activity [6-8]. Tetrahydropyran-4one cycles have been found in biologically active natural compounds [9]. Modern computer forecasting tools based on available databases make it possible to investigate *in silico* the bioavailability, biological activity and toxicological properties of organic compounds of various classes. This computational approach facilitates the search for active compounds and screening of drug candidates in preclinical studies.

Unfavorable bioavailability is an important reason for the failure of drug candidates. Given the lack of experimental data on the biological activity of compounds **1–11**, *in silico* prediction seems to be an appropriate approach for the preliminary assessment of parameters such as bioavailability, biological activity, and toxicity.

Figure 1 – Derivatives of 3,5-bis(hydroxymethyl)tetrahydro-4H-pyran-4-one

Received 18 Feb 2022; Received in revised form 25 Apr 2022; Accepted 30 May 2022; Available online 03 Dec 2022.

© 2022 The Authors

This is an open access article under the CC BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

The aim of this study is to predict the parameters of bioavailability and drug-likeness by Molinspiration Cheminformatics [10], to predict the spectra of biological activity by PASS online [11] and to calculate the toxicity by ProTox-II [12] for 3,5-bis(hydroxymethyl)tetrahydro-4H-pyran-4-one **1** and its new derivatives **2–11**.

2. Experiment

The synthesis and identification of **1-11** are reported in [1-4] The program Molinspiration Cheminformatics was used to calculate the topological polar surface area (TPSA), logP, molecular weight (MW), the volume of the molecule, the number of rotatable bonds (NRotB), the number of donors (ND) and acceptors (NA) of hydrogen bonds.

The prediction of biological activity of **1–11** was performed using PASS online. Chemical structures and SMILES notations were created using ACD Labs ChemSketch [13].

QSAR prediction of the toxicity for compounds **1–11** was performed using the ProTox-II service. The training set consists of 40,000 compounds; LD_{s0} values were determined in experiments on mice or rats.

3. Results and discussions

3.1 Drug-likeness and pharmacokinetic properties

In order to establish the bioavailability and drug-likeness of the studied compounds, they were tested against Lipinski's "rule of five", according to which active compounds can violate no more than one of the following conditions (all numbers are multiples of 5, which explains the name of the rule) [14]: a) the number of H bond donors (the total number of N-H and O-H bonds) does not exceed 5; b) the number of H bonds acceptors (the total number of N or O atoms) does not exceed 10; c) the molecular weight must be less than 500 a.m.u.; d) *logP* (measure of lipophilicity of molecules) not higher than 5. Lipinski's rule is used to identify drug-like compounds, although, like any rule, it allows exceptions [15–17]. But in most cases, the compliance of compounds with this rule determines their bioavailability and pharmacokinetics [18, 19]. The data in Table 1 shows that all tested compounds satisfy Lipinski's rule.

The descriptors for compounds **1–11** calculated using Molinspiration Cheminformatics are shown in Table 1.

The data in Table 1 shows that all target compounds satisfy Lipinski's rule.

In addition to Lipinski parameters, the descriptors of pharmacokinetic properties and bioavailability of molecules are the molecular polar surface area (PSA) and the number of rotatable bonds (NRotB).

PSA is defined as "the sum of the surfaces of polar atoms (usually O, N, and attached H atoms) in a molecule" [16]. This parameter correlates with the transport of compounds across membranes, which links this descriptor to human intestinal absorption and drug penetration through the blood-brain barrier. Molinspiration Cheminformatics uses PSA calculated as the topological area of the polar surface (TPSA, Table 1). The literature indicates that 'In order for molecules to cross the blood-brain barrier and act on receptors in the central nervous system, a PSA level of less than 90 Å squared is usually required. If the PSA of a molecule exceeds 140 Å squared, it will not have the ability to penetrate cell membranes" [20]. According to calculations, molecules **1–11** satisfy both requirements.

Number of rotatable bonds "is a topological parameter that is a measure of molecular flexibility. This parameter is used as a descriptor for the oral bioavailability of drugs" [21]. A rotating bond is any simple single non-ring bond with a nonterminal atom (except H). So, C-N bonds (amide bond) have a high rotational energy barrier, therefore they are not considered as rotational. The NRotB should not exceed 10. As Table 1 shows, all the studied compounds correspond to this parameter.

Table 1 – Pharmaceutically significant descriptors and drug-like properties

Compound	MW ≤ 500	mi <i>Log</i> P ≤ 5	NA ≤ 10	ND ≤ 5	Volume , Å cubed	TPSA, Å squared	NRotB ≤ 10	Rule of 5
1	160.17	-1.20	4	2	146.66	66.76	2	+
2	162.19	-1.01	4	3	152.52	69.92	2	+
3	175.18	-0.75	5	3	158.95	82.28	2	+
4	245.28	0.85	6	2	229.07	88.36	6	+
5	203.24	-1.06	5	3	192.56	82.28	4	+
6	215.29	1.01	4	2	217.90	62.05	5	+
7	235.28	1.27	4	2	222.34	62.05	3	+
8	249.31	1.67	4	2	238.91	62.05	3	+
9	249.31	0.97	4	2	239.15	62.05	4	+
10	345.40	0.66	7	2	316.59	88.99	4	+
11	142.15	-0.09	3	0	128.77	35.54	0	+

NA – number of H bond acceptors; NB – number of H bond donors; TPSA – topological polar surface area; NRotB – number of rotatable bonds

Compound	GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
1	-0.92	-0.59	-1.34	-0.92	-0.76	-0.38
2	-0.73	-0.35	-0.98	-0.71	-0.68	-0.10
3	-0.55	-0.41	-0.81	-0.73	-0.68	-0.17
4	0.08	-0.41	-0.61	-0.01	-0.38	0.08
5	-0.67	-0.10	-0.86	-0.97	-0.74	-0.14
6	-0.34	0.04	-0.68	-0.61	-0.41	-0.01
7	-0.40	-0.15	-0.44	-0.48	-0.42	-0.06
8	-0.36	-0.15	-0.40	-0.37	-0.38	-0.05
9	-0.19	-0.02	-0.28	-0.45	-0.32	-0.04
10	-0.50	-0.64	-0.52	-0.72	-0.59	-0.26
11	-1.21	-0.72	-1.71	-1.21	-1.05	-0.68

Table 2 – Molinspiration analysis of bioactivity score

3.2 Prediction of biological activity

Biological activity parameters calculated using Molinspiration Cheminformatics are distributed as follows: more than 0 - significant biological activity; from -0.5 to 0 - moderate activity; less than -0.5 – inactive.

The prediction results are shown in Table 2.

Compound **4** shows significant biological activity as a possible inhibitor of enzymes and a ligand of G-protein coupled

receptors. Compound **6** is active as an ion channel modulator. Compound **11** doesn't have any activity against all analyzed parameters.

The biological activity for compounds **1–11** was also predicted using PASS online. The entire obtained data was analyzed and only the highest activity indicators (P_a) of the studied compounds were selected. The results of *in silico* screening are shown in Table 3.

Table 3 – PASS screening results, probability (%)

No	Biological activity	%	No	Biological activity	%
1	CYP2H substrate	92.3	2	Sugar-phosphatase inhibitor	91.9
	Sugar-phosphatase inhibitor	87.8		Alkenylglycerophosphocholine hydrolase inhibitor	90.9
	Acrocylindropepsin inhibitor	87.8		UDP-N-acetylglucosamine 4-epimerase inhibitor	88.2
	Chymosin inhibitor	87.8		Glucan 1.4-alpha-maltotriohydrolase inhibitor	87.2
	Saccharopepsin inhibitor	87.8			86.3
	Phobic disorders treatment	87.1		Pullulanase inhibitor	85.8
	Alkenylglycerophosphocholine hydrolase inhibitor	86.9		Ribulose-phosphate 3-epimerase inhibitor	85.3
	Ubiquinol-cytochrome-c reductase inhibitor	85.2		Testosterone 17beta-dehydrogenase (NADP $^{+}$) inhibitor	85.2
3	Antiischemic, cerebral	86.9	4	Saccharopepsin inhibitor	85.8
	Phobic disorders treatment	84.2		Acrocylindropepsin inhibitor	85.8
	Sugar-phosphatase inhibitor=	80.4		Chymosin inhibitor	85.8
				Alkenylglycerophosphocholine hydrolase inhibitor	85.2
				Phobic disorders treatment	84.8
5	Phobic disorders treatment	83.3	6	Sugar-phosphatase inhibitor	83.5
	Sugar-phosphatase inhibitor	77.2		Saccharopepsin inhibitor	83.4
	Alkenylglycerophosphocholine hydrolase inhibitor	75.9		Acrocylindropepsin inhibitor	83.4
				Chymosin inhibitor	83.4
7	Saccharopepsin inhibitor	84.3	8	Ubiquinol-cytochrome-c reductase inhibitor	79.2
	Chymosin inhibitor	84.3		Alkenylglycerophosphocholine hydrolase inhibitor	78.1
	Acrocylindropepsin inhibitor	84.3		Phobic disorders treatment	77.1
	Phobic disorders treatment	84.2		Sugar-phosphatase inhibitor	75.8
	Sugar-phosphatase inhibitor	82.1			
	Alkenylglycerophosphocholine hydrolase inhibitor	81.7			

No	Biological activity	%	No	Biological activity	%
9	Atherosclerosis treatment	84.7	10	Analgesic	86.0
	Potassium channel small-conductance Ca-activated 3	81.6		Antiinflammatory	84.3
	blocker			Antiviral (Picornavirus)	79.4
	Phobic disorders treatment	80.9		Analgesic, non-opioid	78.0
				Insulysin inhibitor	75.7
11	Phobic disorders treatment	92.3		Acrocylindropepsin inhibitor	89.1
	Testosterone 17beta-dehydrogenase (NADP+) inhibi-	89.4		Chymosin inhibitor	89.1
	tor			Aspulvinone dimethylallyltransferase inhibitor	88.4
	Saccharopepsin inhibitor	89.1			

Compounds **1**, **2** and **11** show the most significant results. With a probability of 92.3%, compound **1** can exhibit the properties of a CYP2H substrate (CYP2H belongs to the family of heme-containing monooxygenases, metabolizing xenobiotics, including drugs).

Compound **11** shows a high probability of activity (92.3%) in the treatment of phobic disorders. This activity is also found for compounds **1**, **3–5** and **7–9**.

The properties of a sugar-phosphatase inhibitor are exhibited by compounds **1–3**, **5–8** with a probability from 75.8 (8) to 91.9% (2). Sugar phosphatase inhibitors are used to treat type 2 diabetes mellitus [22].

Activity in relation to the inhibition of alkenylglycerophosphocholine hydrolase was established for compounds **1**, **2**, **4**, **5**, **7** and **8** (78.1–90.9% of probability). Alkenylglycerophosphocholine hydrolase inhibitors are among "the acetylcholinesterase inhibitors used in the treatment of Alzheimer's disease and other dementias" [23].

Thus, according to the results of PASS prediction, compounds **1–11** are likely to have a wide range of biological activity, including atherosclerosis treatment (**9**), inhibition of the activity of enzymes of peptidase groups (**1**, **3**, **4**, **6**, **7**, **11**), testosterone 17beta-dehydrogenase (NADP+) inhibition (**2**, **11**), anti-ischemic (**3**), analgesic (**10**), anti-inflammatory (**10**) activities and others.

Analyzing the relationship "Structure - Activity" based on the results of screening, we can conclude that the widest set of activities with high P_a was obtained for small molecules, for which there are well-studied analogues in the databases. Such examples are 3,5-substituted tetrahydropyran-4-one **1** and its reduction product **2**, as well as the bicyclization product **11**. When passing to the oximes (**3**–**4**) and imino derivatives of the ketone (**5**–**10**), a decrease in the amount of activities and P_a becomes noticeable. It is possible that imino derivatives are less represented in the PASS database than ketones and their other derivatives. More detailed screening reports are provided in the Supplementary material.

3.3 Prediction of toxicological properties

ProTox-II is a virtual laboratory for predicting some of the toxicological properties associated with chemical structure.

Prediction is performed using computer models, trained on real experimental data (*in vitro* or *in vivo*). That allow *in silico* calculation of the acute toxicity class and toxicological activity of a compound based on chemical and structural similarity to toxic compounds.

As the prediction results in Table 4 show, compound **10** belongs to toxicity class 6 (non-toxic). Compounds **1–3, 5, 7, 8** and **11** belong to the class 5 (may be harmful if swallowed) with a probability between 54.3 and 69.3%. Toxicity class 4 includes compounds **6** and **9** (harmful if swallowed). Compound **4** is predicted to be class 3 with a 54.3% probability (toxic if swallowed). The prediction accuracy may depend on the number of compounds of a similar class in the training set of the QSAR model.

Table 4 – ProTox-II prediction of LD₅₀ and toxicity class

Compound	Predicted LD ₅₀ , mg/kg	Predicted Toxicity Class	Average similarity, %	Prediction accuracy, %
1	3730	5	78.48	69.26
2	3000	5	72.06	69.26
3	3000	5	50.79	67.38
4	284	3	47.17	54.26
5	3000	5	41.59	54.26
6	1300	4	43.84	54.26
7	3000	5	46.85	54.26
8	3000	5	50.57	67.38
9	840	4	43.29	54.26
10	5600	6	72.37	69.26
11	3730	5	76.03	69.26

When analyzing the relationship "Structure - Toxicity" in a series of studied derivatives, it can be noted that the elongation of the substituent chain leads to a change in the toxicity class compared to their analogues. For example, the toxicity of compound **4** compared with **3**; or the toxicity of **9** compared

with **7** and **8**. However, to draw a more accurate conclusion, a series with a large number of derivatives is needed, which is beyond the scope of this study.

ProTox-II also predicts several types of toxicity, such as carcinogenicity, mutagenicity, hepatotoxicity, immunotoxicity, cytotoxicity, etc. According to the prediction results, compounds **1–9** are not active for all types of toxicity presented in ProTox-II models. Compounds **10** and **11** might exhibit carcinogenic properties (the probabilities are 53 and 55% relatively).

4. Conclusion

The physicochemical and pharmacokinetic parameters of 3,5-bis(hydroxymethyl)tetrahydro-4*H*-pyran-4-one **1** and its new derivatives **2–11** were determined, *in silico* screening of biological activity and prediction of their toxicity were carried out. Physicochemical and pharmacokinetic parameters were evaluated using the Molinspiration Cheminformatics service. It was found that compounds **1–11** corresponded to Lipinski's rule for drug-like compounds.

As predicted in Molinspiration, compound **4** exhibits significant biological activity as a possible enzyme inhibitor and G-protein coupled receptor ligand. Compound **6** is active as an ion channel modulator.

Virtual PASS screening identified compounds with potential antidiabetic activity (1–3, 5–8) and activity in the

References (GOST)

1 Yergaliyeva E.M., Bazhykova K.B., Mukhan D.N., Langer P. Synthesis of substituted tetrahydropyran-4-one and its oxime // International Journal of Biology and Chemistry. – 2020. – Vol.13, Is.1. – P.148-153.

2 Bazhykova K.B., Langer P., Yergaliyeva E.M., Seylkhanov T.M., Abilov Z.A. Synthesis and identification of 3,5-bis (hydroxymethyl) tetrahydro-4H-pyran-4-one // Chemical Bulletin of Kazakh National University. – 2018. – Vol.91, Is.4. – P.4-9.

3 Bazhykova K.B., Yergaliyeva E.M., Abduali G.A., Mukhan D. N., Abik N.A. Otynshiyev E.B. Synthesis of new heterocyclic compounds from a number of substituted tetrahydropyranones // New Materials, Compounds and Applications. – 2019. – Vol. 3, ls.1. – P.47-51.

4 Бажыкова К.Б., Ергалиева Э.М., Лангер П. Синтез 3,5-бис(гидроксиметил)тетрагидро-4Н-пиран-4-она и его производных // Материалы научной конференции «Тонкий органический синтез-2021». – Алматы, 2021. – С.18.

5 Li W., Su Z.Y., Guo Y., Zhang C., Wu R., Gao L., Kong A.N. Curcumin derivative epigenetically reactivates Nrf2 antioxidative stress signaling in mouse prostate cancer TRAMP C1 cells // Chemical research in toxicology. – 2018. – Vol.31, Is.2. – P.88-96.

6 Chainoglou E., Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets // Expert Opinion on Drug Discovery. – 2019. – Vol.14, Is.8. – P.821-842. treatment of phobic disorders and dementias (1–5, 7, 8, 11). Compound 1 can potentially act as a substrate for CYP2H, and inhibitors of enzymes of the peptidase group are 1, 3, 4, 6, 7, 11.

As a result of QSAR prediction based on LD_{50} calculated in ProTox-II, compound **10** belongs to class 6; compounds **1–3**, **5** and **8** belong to the 5th class of toxicity; compounds **6** and **9** belong to the 4th class. Compound **4** belongs to class 3. Compounds **1–9** do not exhibit the toxicities shown in the ProTox-II models. Compounds **10** and **11** may be carcinogenic.

The results show that 3,5-bis(hydroxymethyl)tetrahydro-4H-pyran-4-one and its new derivatives demonstrate a wide spectrum of activity *in silico* and can be used for the synthesis of potential biologically active compounds.

Acknowledgments

The work was carried out as part of the dissertation for the degree of Doctor of Philosophy (PhD) Elmira Murzabaevna Yergalieva on the topic: "Synthesis and some transformations of new compounds based on N-, O-containing heterocycles" in the specialty "Chemical technology of organic substances". Scientific supervisors: Candidate of Chemical Sciences, Associate Professor Bazhykova K.B., Professor of the Institute of Chemistry at the Rostock University Dr. Peter Langer.

7 Kuhnert R., Sárosi M.B., George S., Lönnecke P., Hofmann B., Steinhilber D., Hey-Hawkins E. Carborane-based analogues of 5-Lipoxygenase Inhibitors Co-inhibit heat shock protein 90 in HCT116 Cells // ChemMedChem. – 2019. – Vol.14, Is.2. – P.255-261.

8 Weires N.A., Slutskyy Y., Overman L.E. Facile preparation of spirolactones by an alkoxycarbonyl radical cyclization–crosscoupling cascade // Angewandte Chemie International Edition. – 2019. – Vol.58, Is.25. – P.8561-8565.

9 Devi N., Borthakur U., Saikia A. K. Recent developments in the synthesis of bioactive natural products using Prins-type cyclization // Studies in Natural Products Chemistry. – 2021. – Vol.70. – P.265-312.

10 Molinspiration (2011). Calculation of molecular properties and bioactivity score. http://www.molinspiration.com/cgibin/properties

11 Filimonov D.A., Lagunin A.A., Gloriozova T.A., Rudik A.V., Druzhilovskii D.S., Pogodin P.V., Poroikov V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource // Chemistry of Heterocyclic Compounds. – 2014. – Vol.50, Is.3. – P.444-457.

12 Banerjee P., Eckert O.A., Schrey A.K., Preissner R.: ProTox-II: a webserver for the prediction of toxicity of chemicals // Pro-Tox-II. – 2018. https://tox-new.charite.de/protox_II

13 ACD/ChemSketch, version 2021.2.0 (2022) // Advanced Chemistry Development, Inc., Toronto, Canada. – 2022. *www. acdlabs.com* 14 Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings // Advanced drug delivery reviews. – 1997. – Vol.23, Is.1-3. – P.3-25.

15 Tyagi M., Begnini F., Poongavanam V., Doak B.C., Kihlberg J. Drug syntheses beyond the rule of 5 // Chemistry–A European Journal. – 2020. – Vol.26, Is.1. – P.49-88.

16 Poongavanam V., Doak B.C., Kihlberg J. Opportunities and guidelines for discovery of orally absorbed drugs in beyond rule of 5 space //Current Opinion in Chemical Biology. – 2018. – Vol.44. – P.23-29.

17 Protti Í.F., Rodrigues D.R., Fonseca S.K., Alves R.J., de Oliveira R.B., Maltarollo V.G. Do Drug-likeness Rules Apply to Oral Prodrugs? // ChemMedChem. – 2021. – Vol.16, Is.9. – P.1446-1456.

18 Jablonsky M., Haz A., Burcova Z., Kreps F., Jablonsky J. Pharmacokinetic properties of biomass-extracted substances isolated by green solvents // BioResources. – 2019. – Vol.14, Is.3. – P. 6294-6303.

19 Chen X., Li H., Tian L., Li Q., Luo J., Zhang Y. Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five // Journal of computational biology. – 2020. – Vol.27, Is.9. – P.1397-1406.

20 Ibrahim M.A., Abdelrahman A.H., Hussien T.A., Badr E.A., Mohamed T.A., El-Seedi H.R., Hegazy M.E.F. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors // Computers in Biology and Medicine. – 2020. – Vol.126. – P. 104046.

21 Ritzén A., David L. Physicochemical parameters of recently approved oral drugs // Successful Drug Discovery. – 2019. – Vol.4. – P.35-53.

22 Ovalle-Magallanes B., Navarrete A., Haddad P.S., Tovar A.R., Noriega L.G., Tovar-Palacio C., Mata R. Multi-target antidiabetic mechanisms of mexicanolides from Swietenia humilis // Phytomedicine. – 2019. – Vol.58. – P.152891.

23 Akıncıoğlu H., Gülçin İ. Potent acetylcholinesterase inhibitors: potential drugs for Alzheimer's disease // Mini Reviews in Medicinal Chemistry. – 2020. – Vol.20, Is.8. – P.703-715.

References

1 Yergaliyeva EM, Bazhykova KB, Mukhan DN, Langer P (2020) International Journal of Biology and Chemistry 13:148-153. https://doi.org/10.26577/ijbch.2020.v13.i1.15

2 Bazhykova KB, Langer P, Yergaliyeva EM, Seylkhanov TM, Abilov ZA (2018) Chem Bull Kaz Nat Univ 4:4-9. https://doi. org/10.15328/cb1039

3 Bazhykova KB, Yergaliyeva EM, Abduali GA, Mukhan D N, Abik NA, Otynshiyev EB (2019) New Materials, Compounds and Applications 3:47-51

4 Bazhykova KB, Yergaliyeva EM, Langer P (2021) Synthesis of 3,5-bis(hydroxymethyl)tetrahydro-*4H*-pyran-4-one and its derivatives [Sintez 3,5-bis(gidroksimetil)tetragidro-*4H*-piran-4ona i ego proizvodnyh]. Abstracts of the scientific conference "Fine organic synthesis-2021", Almaty, Kazakhstan. P.18. (In Russian)

5 Li W, Su ZY, Guo Y, Zhang C, Wu R, et al. (2018) Chem Res Toxicol 31:88-96. https://doi.org/10.1021/acs. chemrestox.7b00248

6 Chainoglou E, Hadjipavlou-Litina D (2019) Expert Opin Drug Dis 14:821-842. *https://doi.org/10.1080/17460441.2019.* 1614560

7 Kuhnert R, Sárosi MB, George S, Lönnecke P, Hofmann B, et al. (2019) ChemMedChem 14:255-261. https://doi.org/10.1002/ cmdc.201800651

8 Weires NA, Slutskyy Y, Overman LE (2019) Angew Chem Int Edit 58:8561-8565. https://doi.org/10.1002/anie.201903353

9 Devi N, Borthakur U, Saikia AK (2021) Studies in Natural Products Chemistry 70:265-312. *https://doi.org/10.1016/B978-*0-12-819489-8.00010-7

10 Molinspiration (2022) Calculation of molecular properties and bioactivity score. http://www. molinspiration.com/cgi-bin/ properties

11 Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, et al. (2022) Chem Heterocyc Compd 50:444-457. https://doi.org/10.1007/s10593-014-1496-1

12 Banerjee P, Eckert OA, Schrey AK, Preissner R (2022) ProTox-II Prediction Of Toxicity Of Chemicals. *https://tox-new.charite.de*

13 ACD/ChemSketch, version 2021.2.0 (2022) Advanced Chemistry Development, Inc., Toronto, Canada. *www.acdlabs. com*.

14 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Deliver Rev 23:3-25. https://doi.org/10.1016/S0169-409X(96)00423-1

15 Tyagi M, Begnini F, Poongavanam V, Doak BC, Kihlberg J (2020) Chem-Eur J 26:49-88. https://doi.org/10.1002/ chem.201902716

16 Poongavanam V, Doak BC, Kihlberg J (2018) Curr Opin Chem Biol 44:23-29. https://doi.org/10.1016/j.cbpa.2018.05.010

17 Protti ÍF, Rodrigues DR, Fonseca SK, Alves RJ, de Oliveira RB, Maltarollo VG (2021) ChemMedChem 16:1446-1456. https://doi.org/10.1002/cmdc.202000805

18 Jablonsky M, Haz A, Burcova Z, Kreps F, Jablonsky J (2019) BioResources 14:6294-6303.

19 Jablonsky M, Haz A, Burcova Z, Kreps F, Jablonsky J (2020) J Comput Biol 17:1397-1406. https://doi.org/10.1089/ cmb.2019.0323

20 Ibrahim MA, Abdelrahman AH, Hussien TA, Badr EA, Mohamed TA, et al. (2020) Comput Biol Med 126:104046. https://doi.org/10.1016/j.compbiomed.2020.104046

21 Ritzén A, David L (2019) Successful Drug Discovery 4:35-53. https://doi.org/10.1002/9783527814695.ch2

22 Ovalle-Magallanes B, Navarrete A, Haddad PS, Tovar AR, Noriega LG, et al. (2019) Phytomedicine 58:152891. *https://doi.org/10.1016/j.phymed.2019.152891*

23 Akıncıoğlu H, Gülçin İ (2020) Mini Rev Med Chem 20:703-715. https://doi.org/10.2174/1389557520666200103100521

Синтез донорноакцепторных соединений на основе азулена

Н. Мерхатулы¹, А.Н. Искандеров^{1*}, С.К. Жокижанова², Б.Б. Ерниязова¹

¹Карагандинский университет имени E.A. Букетова, г. Караганда, Казахстан ²Казахский Агротехнический университет имени С. Сейфуллина, г. Астана, Казахстан *E-mail: *dr.amantay@ya.ru* В настоящее время небензоидные ароматические углеводороды находят широкое применение в качестве прекурсоров для синтеза новых материалов с полезными электронными свойствами. В частности, неальтернантный ароматический углеводород азулен с уникальной дипольной структурой и склонностью к образованию стабилизированных ион-радикалов должен быть предопределен как строительный блок для получения новых π -сопряженных систем с интересными оптоэлектронными свойствами. В этой статье рассматривается направленный синтез и исследование оптических свойств новых донорно-акцепторных соединений на основе азулена. Показано, что для синтеза донорно-акцепторных фенилкетонных азуленов в качестве ключевой стадии впервые использована реакция направленного (в положение С₁ и С₃) ацилирования бензоилхлоридом в присутствии Li₂MnCl₄ в тетрагидрофуране. Выявлено, что пуш-пульные фенилдициановинильные азуленовы получаемые путем конденсации Кнёвенагеля азуленилкетонов с калононитрилом легко протекают (с увеличением выхода конечных продуктов) в присутствии (λ_{maxc} 452 и 434 нм), вызванные интенсивным внутримолекулярным переносом заряда между донорным азуленовым кольцом и акцепторной фенилдициановинильной сруппой.

Ключевые слова: азулен; дициановинилированные азулены; ацилирование; конденсация Кневенагеля; пуш-пульные молекулы; оптические свойства; внутримолекулярный перенос заряда.

Азулен негізіндегі донорлы-акцепторлы қосылыстардың синтезі

Н. Мерхатұлы¹, А.Н. Искандеров^{1*}, С.К. Жокижанова², Б.Б. Ерниязова¹

¹ Е.А. Бөкетов атындағы Қарағанды университеті, Қарағанды қ., Қазақстан ²С. Сейфуллин атындағы Қазақ Агротехникалық университеті, Астана қ., Қазақстан *E-mail: dr.amantay@ya.ru Қазіргі уақытта бензоидты емес ароматты көмірсутектер пайдалы электрондық қасиеттері бар жаңа материалдарды синтездеу үшін прекурсорлар ретінде кеңінен қолданылады. Атап айтқанда, ерекше дипольді құрылымы және тұрақтандырылған радикалды иондарды құру үрдісі бар альтернантты емес ароматты көмірсутекті азулен қызықты оптоэлектрондық қасиеттері бар жаңа т. конъюгацияланған жүйелерді алу үшін құрылыс элементі ретінде алдын ала анықталыну керек. Бұл мақалада азулен негізіндегі жаңа донорлы-акцепторлық қосылыстардың бағытталған синтезі және оптикалық қасиеттерін зерттеу қарастырылды. Донорлы-акцепторлық фенилкетонды азулендерін синтездеу үшін бензоилхлоридпен Li₂MnCl₄ қатысуымен тетрагидрофуранда бағытталған ацилдену реакциясы (С₁ және С₃ орындарына) негізгі саты ретінде алғаш рет қолданылғаны көрсетілді. Азуленилкетондарын малононитрилмен Кневенагель конденсациялау арқылы алынған пуш-пульді фенилдициановинилді азулендер пиридиннің қатысуымен диметилсульфоксидте оңай жүретіні (соңғы өнім шығымының жоғарылауымен) анықталды. Фенилдициановинилді азулен қосылыстарлы фенилдициановинил тобы арасындағы интенсивті молекулаішілік заряд алмасуынан туындаған көрінетін аймақта (λ_{таа} = 452 және 434 нм) күшті сіңіру жолақтарын көрсетті.

Түйін сөздер: азулен; дициановинилденген азулендер; ацилдену; Кневенагель конденсациясы; пуш-пульді молекулалары; оптикалық қасиеттер; молекулаішілік зарядты тасымалдау.

Synthesis of donor-acceptor compounds based on azulene

N. Merkhatuly¹, A.N. Iskanderov^{1*}, S.K. Zhokizhanova², B.B. Yerniyazova¹

¹Karaganda University named after E.A. Buketov, Karaganda, Kazakhstan ²S. Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan *E-mail: *dr.amantay@ya.ru* At present, non-benzenoid aromatic hydrocarbons are widely used as precursors for the synthesis of new materials with useful electronic properties. In particular, the non-alternative aromatic hydrocarbon azulen with a unique dipole structure and a tendency to form stabilized radical ions should be predetermined as a building block for obtaining new π-conjugated systems with interesting optoelectronic properties. This article discusses the directed synthesis and study of optical properties of new donor-acceptor compounds based on azulene. It was shown that for the synthesis of donor-acceptor phenylketone azulenes, the reaction of directed (to positions C₁ and C₂) acylation with benzoyl chloride in the presence of Li₂MnCl₄ in tetrahydrofuran was used for the first time as a key step. It was found that push-pull phenyldicyanovinyl azulenes obtained by Knoevenagel condensation of azulenylketones with malononitrile flow easily (with an increase in the yield of end products) in the presence of pyridine in dimethyl sulfoxide. Electron UV-visible spectra of phenyldicyanovinyl azulene compounds showed strong absorption bands in the visible region (λ_{max} = 452 and 434 nm) caused by intense intramolecular charge transfer between the donor azulene ring and the acceptor phenyldicyanovinyl group.

Keywords: azulene; dicyanovinylated azulenes; nucleophilic acylation; Knoevenagel condensation; push-pull molecules; optical properties; intramolecular charge transfer.

(2022) Chem Bull Kaz Nat Univ 4:22-28

МРНТИ 31.21.25+31.21.15

Article (Статья)

CHEMICAL BULLETIN

of Kazakh National University

http://bulletin.chemistry.kz/

https://doi.org/10.15328/cb1299

Синтез донорно-акцепторных соединений на основе азулена

Н. Мерхатулы¹ , А.Н. Искандеров^{1*} , С.К. Жокижанова² , Б.Б. Ерниязова¹

¹Карагандинский университет имени Е.А. Букетова, 28 ул. Университетская, 100028 Караганда, Казахстан ²Агротехнический университет им. С.Сейфулина, 62 пр. Женис, 010000 Астана, Казахстан *E-mail: *dr.amantay@ya.ru*

1. Введение

В настоящее время растущий интерес к *п*-сопряженным производным ароматических соединений ввиду их важности в качестве функциональных материалов для органической оптоэлектроники в значительной степени сосредоточен на синтезе донорно-акцепторных бензоидных и гетероароматических соединений. Однако небензоидные ароматические соединения не нашли своего широкого применения в качестве прекурсоров для синтеза новых материалов с полезными электронными свойствами. К таковым относится небензоидный ароматический углеводород азулен (1). Азулен является уникальным углеводородом, неальтернантным состояшим ИЗ конденсированных пяти- и семичленных циклов. Его резонансная структура показана на рисунке 1, который содержит электрически заряженные циклы, приводящие к внутримолекулярному дипольному моменту порядка 1,08 D [1].

Особенная структура азулена вызвала большой интерес в области оптических и электронных исследований [1-3]. Он необычен не только своей полярной природой, но и особенностью энергетического перехода. Азулен имеет небольшую запрещенную зону ВЗМО (высшая занятая молекулярная орбиталь) – НСМО (низшая свободная молекулярная орбиталь). Это связано с его неальтер-нантной природой, которая индуцирует ВЗМО и НСМО к не зеркальному расположению, тем самым уменьшая взаимное отталкивание между электронами. Как следствие, энергетическая щель ВЗМО – НСМО снижается по сравнению с обычными альтернантными аромати-ческими соединениями [4]. Азулен дает сильное поглощение, связанное с оптическим переходом S₀-S₂ [5], в

то время как его переход $S_0 - S_1$ дает слабое поглощение в видимом диапазоне, что объясняет его синий цвет [6]. Еще одна особенность азулена заключается в том, что его флуоресценция в основном происходит из состояния S_2 , тогда как переход $S_1 - S_0$ незначителен [7]. Этот характер перехода нарушает правила Каша [2, 7]. Причиной его аномальной флуоресцентной природы является то, что энергетическая щель между состоянием S_1 и S_2 относительно велика (Δ E более 10000 см⁻¹) [8], что приводит к уменьшению скорости перехода от S_2 к состоянию S_1 , в результате чего, излучение от S_3 к S_0 становится доминирующим.

2. Эксперимент

ИК спектры записывали на Фурье - спектрометре Avatar - 360 (США) в таблетках с КВг. Спектры ЯМР ¹Н и ¹³С регистрировали на спектрометре JeolECA-500 (Япония) [рабочая частота 500.15 МГц] в CDCl₃, внутренний стандарт - TMC. Спектры поглощения снимали на спектрофотометре Shimadzu UV-1800 (Япония) в дихлорметане (С=10⁻⁴ моль/л). Macc-спектры снимали на хромато-масс-спектрометре Shimadzu GC-MSQP-2010 Ultra (Япония) с ионизацией электронным ударом (энергия ионизации 70 эВ, колонка

Received 24 Aug 2022; Received in revised form 10 Nov 2022; Accepted 15 Nov 2022; Available online 03 Dec 2022.

GsBP-5MS: 0,25 мкм x 0.25 мм x 30 м, газ-носитель гелий, методика программируемого нагрева от 100 до 300°С, режим сканирования всех целочисленных значений m/z в диапазоне от 15 до 900 со скоростью 5000 а.е.м./сек). Элементный анализ выполняли на автоматическом CHNSанализаторе EuroVektor EA-3000 (Италия). Температуру плавления определяли на приборе Melting Point *M-560* (Швейцария). Для TCX использовали пластинки Sorbfil ПTCX-АФ-УФ (Россия), элюент - гексан, гексан-этилацетат, проявляли насыщенным раствором KMnO₄. Для колоночной хроматографии использовали силикагель 60 (Merck).

Исходные азулен (99,5%), NBS (99%), бензоилхлорид (99%), малононитрил (≥99%), Li₂MnCl₄ (0,5 M раствор в ТГФ), ДМСО (99,5 %), ТГФ (безводный, ≥99.9%), пиридин (≥99,0%), дихлорметан (≥99,8%) производства компании «Sigma-Aldrich» использовали без дополнительной очистки.

1-Бром азулен (2). К раствору 0,1 г (0,78 ммоль) азулена (1) в 3 мл дихлорметана при 0°С в атмосфере аргона добавляли 0,13 г (0,78 ммоль) NBS. Затем реакционную смесь перемешивали в течение 30 мин при комнатной температуре. После окончания реакции растворитель отогнали в вакууме. Остаток очищали колоночной хроматографией на силикагеле (элюент - гексан). Выход 0,11 г (68%), синее масло. ИК спектр, v, см⁻¹: 1578-1389 (С=С). Спектр ЯМР ¹Н, δ, м.д.: 7,12 т (1Н, Н⁵, Ј 9,9 Гц), 7,19 т (1Н, Н⁷, Ј 9,8 Гц),7,29 д (1H,H³, J 4,2 Гц), 7,56 т (1H, H⁶, J 9,8 Гц), 7,80 д (1H, $\rm H^2,$ J 4,2 Гц), 8,19 д (1H, H^4, J 9,5 Гц), 8,32 д (1H, H^8, J 9,8 Гц). Спектр ЯМР ¹³С, δ, м.д.: 104,1, 117,1, 123,4, 123,7, 135,4, 136,1, 137,3, 137,9, 138,8, 140,1. Масс-спектр, *m/z* (I_{отн}, %): 206 (43,10) [M]⁺. Найдено, %: C, 57,93; H, 3,37. C₁₀H₇Br. Вычислено, %: С, 58,00; Н, 3,41.

1,3-Дибром азулен (3). К раствору 0,1 г (0,78 ммоль) азулена (1)в 4 мл дихлорметана при 0°С в атмосфере аргона добавляли 0,26 г (1,56 ммоль) NBS. Затем реакционную смесь перемешивали в течение 30-40 мин при комнатной температуре. После окончания реакции растворитель отогнали в вакууме. Остаток очищали колоночной хроматографией на силикагеле (элюент - гексан) и перекристаллизацией из дихлорметана. Выход 0,20 г (90%), синие кристаллы, т.пл. 92-93°С. ИК спектр, v, см⁻¹: 1574-1377 (С=С). Спектр ЯМР ¹Н, δ , м.д.: 7,28 т (2H, H^{5,7}, J 9,9 Гц). Спектр ЯМР ¹³С, δ , м.д.: 102,9, 124,2, 135,9, 136,8, 138,4, 140,2. Массспектр, *m/z* (I_{отн}, %): 284(53,17) [М]⁺. Найдено, %: 41,92; H, 2,07. С₁₀H₆Br₂. Вычислено, %: C, 42,00; H, 2,11.

1-Моно(фенилкетон) азулен (4). Раствор 0,1 г (0,78 ммоль) бромазулена (2) в 1 мл ТГФ добавили к суспензии 0,02 г (0,79 ммоль) магния в 2 мл ТГФ в атмосфере аргона. Затем реакционную смесь перемешивали при нагревании в течение 2 ч. Далее полученный реагент Гриньяра прикапали к раствору 0,11 г (0,78 ммоль) бензоилхлорида и Li₂MnCl₄ (0,02 ммоль) в 3 мл ТГФ при 0°С. Затем смесь перемешивали в течение 1 ч при комнатной температуре. После завершения реакции реакционную смесь вылили в 30 мл холодной дистиллированной воды и экстрагировали

дихлорэтаном. Органическую фазу сушили над MgSO, растворитель отогнали в вакууме. Остаток очищали колоночной хроматографией на силикагеле (элюент: гексан-этилацетат, 9:1) и перекристаллизацией ИЗ Выход дихлорметана. 0,13 г (71%), темно-красные кристаллы, т.пл. 111-112°С. ИК спектр, v, см⁻¹: 1663 (С=О), 1588-1393 (C=C). Спектр ЯМР ¹Н, δ, м.д.: 7,30 д (1Н, Н³, Ј 4,15 Гц), 7,48-7,52 м (2Н_{аром}), 7,55 т (1Н, Н⁷, Ј 9,8 Гц), 7,56 т (1Н, Н⁵, Ј 9,8 Гц), 7,64 т (1Н, Н⁶, Ј 9,8 Гц), 7,83-7,86 м (3Н_{апом}), 8,08 д (1Н, H², J 4,15 Гц), 8,52 д (1Н, Н⁴, J 9,8 Гц), 9,75 д (1Н, Н⁸, J 9,8 Гц). Спектр ЯМР ¹³С, δ, м.д.: 117,77, 125,03, 127,65, 128,21, 129,26, 129,69, 131,27, 138,69, 139,28, 139,74, 141,39, 141,66, 142,72, 145,36, 193,07 (COPh). Масс-спектр, *m/z* (I_{лт.}, %): 232 (55,00) [M]⁺. Найдено, %: С 87,99; Н5,19. С₁₇Н₁₂О. Вычислено, %: С 87,90; H5,21.

1,3-Бис(фенилкетон) азулен (5). Раствор 0,1 г (0,78 ммоль) дибромазулена (3) в 1 мл ТГФ добавили к суспензии 0,04 г (1,58 ммоль) магния в 4 мл ТГФ в атмосфере аргона. Затем реакционную смесь перемешивали при нагревании в течение 2 ч. Далее полученный реагент Гриньяра прикапали к раствору 0,22 г (1,56 ммоль) бензоилхорида и Li₂MnCl₄ (0.04 ммоль) в 4 мл ТГФ при 0°С. Затем смесь перемешивали в течение 1,5 ч при комнатной температуре. После завершения реакции реакционную смесь вылили в 40 мл холодной дистиллированной воды и экстрагировали дихлорэтаном. Органическую фазу сушили над MgSO,, растворитель отогнали в вакууме. Остаток очищали колоночной хроматографией на силикагеле (элюент: гексан-этилацетат, 9:1) и перекристаллизацией из дихлорметана. Выход 0,16 г (60%), темно-красные кристаллы, т.пл. 174-175°С. ИК спектр, v, см⁻¹: 1624 (С=О), 1508-1388 (C=C). Спектр ЯМР ¹Н, δ, м.д.: 7,45 -7,48 м (3Н_{апом}), 7,53-7,56 м (3Н_{аром}), 7,83 уш,д (4Н_{аром}, J 8,5 Гц), 7,90 т (2Н, Н^{5,7}, J 9,8 Гц), 8,10 т (1Н, Н⁶, Ј 9,8 Гц), 8,24 с (1Н, Н²), 9,85 д (2Н, Н^{4,8}, Ј 9,8 Гц). Спектр ЯМР ¹³С, δ, м.д.: 124,02, 128,42, 129,74, 131,96, 132,50, 136,01, 140,45, 140,85, 142,09, 145,21, 146,95, 193,05 (COPh). Масс-спектр, *m/z* (I_{отн}, %): 336 (63.05) [М]⁺. Найдено, %: С 85,62; Н 4,75. С₂₄Н₁₆О₂. Вычислено, %: С 85,69; Н 4,79.

1-Моно(фенилдициановинил) азулен (6). К раствору 0,2 г (0,86 ммоль) кетона (4) в 2 мл ДМСО при комнатной температуре в атмосфере аргона прибавляли раствор 0,1 г (1,5 ммоль) малононитрила в 1 мл пиридина. Затем реакционную смесь перемешивали в течение 8ч при температуре 107-110°С. После окончания реакции ДМСО и пиридин отогнали в вакууме. Остаток очищали колоночной хроматографией на силикагеле (элюент: гексан-этилацетат, 9:1) и перекристаллизацией из дихлорметана. Выход 0,17 г (71%), красные кристаллы, т.пл. 149-150°С. ИК спектр, v, см⁻¹: 2216 (CN), 1508-1365 (C=C). Спектр ЯМР ¹Н, δ, м.д.: 7,33 д (1H, H³, J4,15 Гц), 7,47 -7,54 м (3H_{аром}), 7,60 -7,63 м (2H_{аром}), 7,66 т (2Н, Н^{5,7}, Ј 9,8 Гц), 8,01 т (1Н, Н⁶, Ј 9,8 Гц), 8,07 д (1Н, Н², Ј 4,15 Гц), 8,10 д (1Н, Н^₄, Ј 9,8 Гц), 8,15 д (1Н, Н⁸, Ј 9,8 Гц). Спектр ЯМР ¹³С, δ, м.д.: 116,08, 117,11, 120,05, 121,18, 125,25, 130,84, 131,21, 132,85, 136,55, 141,17, 142,60, 145,49, 146,79, 151,18, 168,38. Масс-спектр, *m/z* (I_{отн}, %): 280 (78,12) [М]⁺. Найдено, %:

С 85,61; Н 4,27; N 9,89. С₂₀Н₁₂N₂. Вычислено, %: С 85,69; Н 4,31; N 9,99.

1,3-Бис(фенилдициановинил) азулен(7). К раствору 0,2 г (0,6 ммоль) дикетона (5) в 2 мл ДМСО при комнатной температуре в атмосфере аргона прибавляли раствор 0,2 г (3 ммоль) малононитрила в 2 мл пиридина. Затем реакционную смесь перемешивали в течение 10 ч при температуре 107-110°С. После окончания реакции ДМСО и пиридин отогнали в вакууме. Остаток очищали колоночной хроматографией на силикагеле (элюент: гексан-этилацетат, 9:1) и перекристаллизацией из дихлорметана. Выход 0,18 г (70%), красные кристаллы, т.пл. 238-239°С. ИК спектр, v, см-¹: 2218 (CN), 1504-1361 (C=C). Спектр ЯМР ¹Н, δ, м.д.: 7,49 -7,55 м (8Н_{апом}), 7,61 -7,64 м (2Н_{апом}), 7,68 т (2Н, Н^{5,7}, Ј 9,8 Гц), 8,03 т (1H, H⁶, J 9,8 Гц), 8,07 с (1H, H²), 8,15 д (2H, H^{4,8}, J 9,8 Гц). Спектр ЯМР ¹³С, δ, м.д.: 114,06, 115,10, 124,05, 125,19, 129,35, 130,84, 131,21, 133,35, 136,55, 139,17, 142,70, 143,39, 144,79, 147,02, 155,18, 167,98. Масс-спектр, m/z (I_{отн}, %): 432 (75,10) [M]⁺. Найдено, %: 83,41; Н, 3,71; N, 12,86, С₃₀Н₁₆N₄. Вычислено, %: C, 83,32; H, 3,73; N, 12,95.

3. Результаты и обсуждение

В этой статье мы сообщаем о результатах синтеза и исследования оптических свойств новых донорноакцепторных фенилкетонных и фенилдициановинильных азуленовдля дальнейшего использования в качестве пушпульных хромофоров в устройствах органической электроники.

Для синтеза фенилкетонных азуленов в качестве ключевой стадии использовали реакцию ацилирования. Как показано на схеме (рисунок 2), взаимодействие азулена (1) с одним или двумя эквивалентами N-бромсукцинимида (NBS) в дихлорметане региоселективно приводит к получению 1-моно- и 1,3-дибромазуленов (2) и (3) с выходами 68 и 90%, которые затем вступают в реакцию с бензоилхлоридом в условиях нуклеофильного замещения (т.е. через получение соответствующих реактивов Гриньяра) в присутствии катализатора Li₂MnCl₄ [9, 10], с образованием 1-моно- и 1,3-бис(фенилкетон) азуленов (4) и (5), в виде темно-красных кристаллов с выходами 71 и 95% соответственно.

Синтез фенилдициановинильных азуленов осуществили по схеме, показанной на рисунке 3, где применили конденсацию Кнёвенагеля. Как видно из схемы, кетоны (4) и (5) вступают в конденсацию с малононитрилом в присутствии пиридина в ДМСО с образованием пушпульных 1-моно- и 1,3-бис(фенилдициановинил)азуленов (6) и (7), в виде красных кристаллов с выходами 71 и 60% соответственно.

Рисунок 2 – Синтез фенилкетонных азуленов (4) и (5)

Рисунок 3 – Синтез фенилдициановинильных азуленов (6) и (7)

ISSN 1563-0331 eISSN 2312-7554 Chemical Bulletin of Kazakh National University 2022, Issue 4

Для исследования оптических свойств полученных соединений проводили анализ азуленов (4-7) с помощью абсорбционной спектрофотометрии в УФ и видимой области.

УФ/вид спектры (4) и (5) показали максимумы поглощения при λ=380 и 381 нм соответственно (таблица 1, рисунок 5). В спектрах (6) и (7) наблюдались сильные полосы поглощения в видимой области с $\lambda_{\text{макс}}$ = 452 и 434 нм соответственно (таблица 1, рисунок 6), вызванные интенсивным внутримолекулярным переносом заряда (ВПЗ) между азуленовым кольцом и фенилдициановинильной группой (донорно-акцепторное взаимодействие), как продемонстрировано на резонансных структурах (рисунок 4).

Рисунок 4 – Резонансные структуры фенилдициановинильных азуленов (6) и (7)

Рисунок 5 – Спектры поглощения фенилкетонных азуленов (4) и (5) в дихлорметане

Таблица 1 – Данные по поглощению УФ/видимого света для азуленов (4-7)

Соединение	Растворитель	С, моль/л	λ _{abs} , HM	ε, Μ ^{-1.} cm ⁻¹
4	дихлорметан	10-4	380	2975
5	дихлорметан	10-4	381	3364
6	дихлорметан	10-4	452	6591
7	дихлорметан	10-4	434	8186

Рисунок 6 – Спектры поглощения фенилдициановинильных азуленов (6) и (7) в дихлорметане

4. Заключение

Ацилированием азулена бензоилхлоридом в условиях нуклеофильного замещения (путем получения промежуточных 1-моно- и 1,3-дибромазуленов и их магнийорганических производных) синтезированы с высокими выходами донорно-акцепторные 1-моно- и 1,3-бис(фенилкетон) азулены. Кроме того, конденсацией Кнёвенагеля азуленилкетонов с малононитрилом синтезированы пушпульные 1-моно- и 1,3-бис(фенилдициановинил) азулены. Выявлены интенсивные полосы поглощения ВПЗ в видимой области у пуш-пульных фенилдициановинильных азуленов с максимумами при 452 и 434 нм.

Литература

Lopez-Alled C.M., Park S.J., Lee D.J., Murfin L.C., Kociok-Kohn G., et al. Azulene-based fluorescent chemosensor for adenosine diphosphate // Chemical Communications. – 2021. – Vol.57. – P.10608-10611.

2 Ou L., Zhou Y., Wu B., Zhu L. The unusual physicochemical properties of azulene and azulene-based compounds // Chinese Chemical Letters. – 2019. – Vol.30. – P.1903-1907.

3 Xin H., Hou B., Gao X. Azulene-based π -functional materials: design, synthesis, and applications // Accounts of Chemical Research. – 2021. – Vol.54. – P.1737-1753.

4 Puodziukynaite E., Wang H.W., Lawrence J. Azulene methacrylate poly-421 mers: synthesis, electronic properties, and solar cell fabrication// Journal of the American Chemical Society. – 2014. – Vol.136. – P.11043-11049.

5 Korichi H., Zouchoune F., Zendaoui S.M., et al. The coordination chemistry of azulene: a comprehensive DFT investigation // Organometallics. – 2010. – Vol.29. – P.1693-1706.

Благодарности

Спектральные исследования (спектры ЯМР и ИКспектры) выполнены с использованием оборудования Международного научно-производственного холдинга «Фитохимия» (г. Караганда, Казахстан), масс-спектрометрический и элементный анализ выполнен с применением оборудования Карлова Университета (г. Прага, Чехия).

Данная работа выполнена в рамках гранта (ИРН проекта AP15473272), финансируемого Комитетом науки Министерства науки и высшего образования РК.

6 Shevyakov S.V., Li H.R., Muthyala R. Orbital control of the color and excited state properties of formylated and fluorinated derivatives of azulene // Journal of Physical Chemistry A. – 2003. – Vol.107. – P.3295-3299.

7 Myahkostupov M., Pagba C.V., Gundlach L., Piotrowiak P. Vibrational state dependence of interfacial electron transfer: hot electron injection from the S1 state of azulene into TiO2 nanoparticles // Journal of Physical Chemistry C. – 2013. – Vol.117. – P.20485-20493.

8 Itoh T. Fluorescence and phosphorescence from higher excited states of organic molecules // Chemical Reviews. – 2012. – Vol.112. – P.4541-4568.

9 Патент РФ № 2 624 820 С2. Донорно-акцепторные сопряженные молекулы и способ их получения: Лупоносов Ю.Н., Пономаренко С.А. / от 07.07.2017.

10 Касаткин А.Н., Цыпышев О.Ю., Романова Т.Ю., Толстиков Г.А. Органические производные марганца(II) в органическом синтезе // Успехи химии. – 1992. – Т.61(5). – С.978-1001.

References

1 Lopez-Alled CM, Park SJ, Lee DJ, Murfin LC, Kociok-Kohn G, et al. (2021) Chem Commun 57:10608-10611. https://doi. org/10.1039/d1cc04122c

2 Ou L, Zhou Y, Wu B, Zhu L (2019) Chinese Chem Lett 30:1903-1907. https://doi.org/10.1016/j.cclet.2019.08.015

3 Xin H, Hou B, Gao X (2021) Accounts Chem Res 54:1737-1753. https://doi.org/10.1021/acs.accounts.0c00893

4 Puodziukynaite E, Wang HW, Lawrence JJ (2014) Am Chem Soc 136:11043-11049. https://doi.org/10.1021/ja504670k

5 Korichi H, Zouchoune F, Zendaoui SM, Zouchoune B, Saillard JY (2010) Organometallics 29:1693-1706. https://doi. org/10.1021/om901089z

6 Shevyakov SV, Li HR, Muthyala R (2003) J Phys Chem A 107:3295-3299. https://doi.org/10.1021/jp021605f

7 Myahkostupov M, Pagba CV, Gundlach L, Piotrowiak P (2013) J Phys Chem C 117:20485-20493. https://doi.org/10.1021/ jp406662n

8 Itoh T (2012) Chem Rev 112:4541-4568. https://doi. org/10.1021/cr200166m

9 (2017) Patent of the Russian Federation No. 2 624 820 C2. Luponosov YuN, Ponomarenko SA, dated 07.07.2017.

10 Kasatkin AN, Tsypyshev OY, Romanova TY, Tolstikov GA (1992) Rus Chem Rev C 61(5):978-1001. https://doi.org/10.1070/ RC1992v061n05ABEH000961

Желатиннің композициялық үлдірлерінің құрылымдықмеханикалық қасиеттері

Г.Е. Ерлан¹*, Б.Б. Тюсюпова¹, С.М. Тажибаева¹, К.Б. Мусабеков¹, Н.Г. Балабушевич²

¹Әл-Фараби атындағы Қазақ ұлттық университеті, Алматы қ., Қазақстан ²М.В. Ломоносов атындағы Мәскеу мемлекеттік университеті, Мәскеу к., Ресей *E-mail: *erlan.gulzhan@mail.ru* Желатиннің хитозан, лимон қышқылы және L-глутамин қышқылы қатысында түзілген үлдірлерінің беріктік, серпімділік модулі және деформациялық қасиеттері зерттелді. Зерттеу нәтижелері бойынша желатин негізіндегі үлдірлерге хитозанды, лимон және L-глутамин қышқылдарын енгізу желатин үлдірінің беріктігін және серпімділік модулін арттыратындығы байқалды. Желатин - хитозан, желатин - лимон қышқылы және желатин - L-глутамин қышқылы жүйелеріне pH әсерін бақылау, олардың осы ортадағы өзгерістері жайлы мағлұмат береді. Зерттеуде қарастырылған жүйелерден желатиннің L-глутамин қышқылымен тігілуінде төмен pH мәндерінде берік құрылым түзіп, асқазанның қышқыл ортасының шарттарына төзетіндігін, ал сілтілік ортада осы жүйенің құрылымдықмеханикалық сипаттамалары кеміп, ішек фазасында инкапсуляцияланған инсулиннің босап шығуына қолайлы жағдай тудырады деп болжалды. Модельді асқазан ішек жолы ортасының pH мәндеріндегі үлдірлердің физика-химиялық, құрылымдық-механикалық өзгерістері инфрақызыл спектроскопия әдісімен нақтыланды. Үлдірлердің әр түрлі pH (pH = 1,0; 6,86; 9,18) орталарындағы инфрақызыл спектрлерінде С-H, С-OH, С=O, C-N, N-H, CH(NH₂), СҢ2OH топтар жолақтарының байқалуы молекулааралық сутектік байланыстардың жоғарылауымен және ассоциативтік құрылымдардың түзілуімен байланысты.

Түйін сөздер: инсулин; инкапсуляция; үлдір; реология; желатин; хитозан; лимон қышқылы; *L*-глутамин қышқылы.

Структурно-механические свойства композиционных пленок желатина

Г.Е. Ерлан^{1*}, Б.Б. Тюсюпова¹, С.М. Тажибаева¹, К.Б. Мусабеков¹, Н.Г. Балабушевич²

¹Казахский национальный университет имени аль-Фараби, г. Алматы, Казахстан ²Московский государственный университет имени М.В. Ломоносова, г. Москва, Россия *E-mail: erlan.gulzhan@mail.ru

Исследованы деформационные свойства. модуль ипругости И прочность желатиновых пленок с хитозаном, лимонной кислотой и L-глутаминовой кислотой. По результатам исследования установлено, что добавление хитозана, лимонной и L-глутаминовой кислоты увеличивает прочность и модуль упругости желатиновых пленок. Оценка влияния pH на системы желатин - хитозан, желатин - лимонная кислота и желатин - L-глутаминовая кислота дает представление об их изменениях в этих средах. Предполагается, что желатин с L-глутаминовой кислотой образует прочную структуру при низком рН и выдерживает условия кислой среды желудка, а в шелочной среде структурномеханические характеристики этой системы снижаются, создавая благоприятные условия для высвобождения инкапсулированного инсулина в кишечной фазе. Изменения физикохимических, структурно-механических свойств пленок в значениях рН среды (рН = 1,0; 4,01; 6,86; 9,18) модельного желудочно-кишечного тракта определены методом инфракрасной спектроскопии. Наблюдаемость полос групп C-H, C-OH, C=O, C-N, N-H, CH(NH_2), CH₂OH в инфракрасных спектрах пленок в различных рН средах связана с увеличением межмолекулярных водородных связей и образованием ассоциативных структур.

Ключевые слова: инсулин; инкапсуляция; пленка; реология; желатин; хитозан; лимонная кислота; L-глутаминовая кислота.

Structural and mechanical properties of gelatin composite films

G.Ye. Yerlan^{1*,} B.B. Tyussyupova¹, S.M. Tazhibayeva¹, K.B. Musabekov¹, N.G. Balabushevich²

¹Al-Farabi Kazakh National University, Almaty, Kazakhstan ²Lomonosov Moscow State University, Moscow, Russia *E-mail: *erlan.gulzhan@mail.ru* The deformation properties, elastic modulus and strength of gelatin films with chitosan, citric acid and L-glutamic acid were studied. According to the results of the study, it was found that the addition of chitosan, citric and L-glutamic acid increases the strength and elasticity modulus of gelatin films. Assessment of the pH effect on the gelatin - chitosan, gelatin - citric acid and gelatin - L-glutamic acid systems provide a representation of their changes in these media. It is assumed that gelatin with L-glutamic acid forms a strong structure at low pH and withstands the conditions of the acidic environment of the stomach, while in an alkaline environment the structural and mechanical characteristics of this system decrease, creating favorable conditions for the release of encapsulated insulin in the intestinal phase. The changes of the physicochemical, structural and mechanical properties of the films under simulated gastrointestinal conditions (pH = 1.0; 4.01; 6.86; 9.18) were determined by IR spectroscopy. The observability of the bands of C-H, C-OH, C-N, N-H, CH(NH₂), CH₂OH groups in the infrared spectra of films in various pH media is associated with an increase of intermolecular hydrogen bonds and the formation of associative structures.

Keywords: insulin; encapsulation; film; rheology; gelatin; chitosan; citric acid; L-glutamic acid.

(2022) Chem Bull Kaz Nat Univ 4:30-39

FTAXP 31.15.37

Article (Мақала)

CHEMICAL BULLETIN

of Kazakh National University

http://bulletin.chemistry.kz/

https://doi.org/10.15328/cb1267

Желатиннің композициялық үлдірлерінің құрылымдықмеханикалық қасиеттері

Г.Е. Ерлан^{1*} ^(D), Б.Б. Тюсюпова¹ ^(D), С.М. Тажибаева¹ ^(D), К.Б. Мусабеков¹ ^(D), Н.Г. Балабушевич² ^(D)

¹Әл-Фараби атындағы Қазақ ұлттық университеті, Әл-Фараби даңғылы 71, 050040 Алматы қ., Қазақстан ²М.В.Ломоносов атындағы Мәскеу мемлекеттік университеті, Колмогоров көшесі 1, 13 құрылыс, 119234 Мәскеу қ., Ресей *E-mail: *erlan.gulzhan@mail.ru*

1. Кіріспе

Қант диабеті қазіргі уақытта 537 миллионнан астам адам зардап шегетін, әлеуметтік және экономикалық салдары бар созылмалы аурулардың бірі болып табылады. 2030 жылға дейін бұл көрсеткіш 643 миллионға және 2045 жылға дейн 784 миллионға дейін өсуі мүмкін деп болжамдалынады [1]. Қант диабеті кезіндегі терапияның негізгі мақсаты қандағы глюкоза деңгейін қалыпқа келтіру арқылы гликемиялық бақылауды жақсарту [2]. Бірінші типті қант диабетімен ауыратын науқастарды, сонымен қатар пероралды дәрі – дәрмекпен, физикалық жаттығулар мен диета арқылы қандағы глюкоза мөлшерін бақылау мүмкін болмаған жағдайда екінші типті қант диабетін емдеудің негізі – инсулинді қолдану болып табылады [3]. Инсулин – жасушалардың глюкозаны сіңіруін реттейтін пептидтер негізіндегі гормон [4]. Қант диабетімен ауыратын науқастарда инъекциялық инсулин терапиясын сақтамау жиі кездеседі, оның себебі көп жағдайда инъекциялық қиындықтармен байланысты [5]. Инсулинді пероралды жеткізу әдісі қауіпсіз және науқастар үшін психиологиялық және әлеуметтік тұрғыдан қолайлы болуы тиіс [6]. Инсулинді пероралды жеткізу арқылы гипогликемиялық әсердің алдын алу мүмкіндігі бар, себебі оның барысында инсулин ішектен бауырға тікелей бағытталады [7]. Инсулинді пероралды жеткізу барысында туындайтын негізгі кедергілер келесідей сипатталады: инсулиннің физикалық және химиялық тұрақсыздығы, асқазанның қышқыл ортасында инсулиннің жылдам ыдырауы, ішек эпителийінің нашар өткізгіштігі [8].

Дәрілік заттарды жеткізу жүйелері ретінде мукоадгезивті тасымалдаушыларды қолдану абсорбция

болу аумағында дәрілік заттардың **v**акытын арттыратындығын және оларды протеолиздік ыдыраудан сақтайтындығын көрсеткен [9]. Иондық күш, температура және рН мәніне байланысты мукоадгезивті полимерлер қабілеттілігін өзгерте өздерінің ісіну алады [10]. Мукоадгезивті, биоүйлесімді және биоыдырағыш қасиеттеріне байланысты биомедицинада, дәрілік заттарды тасымалдауда жиі қолданылатын табиғи полисахаридтердің бірі альгинат болып табылады. Гель түзілу, эмульгирлеу әдістерімен алынған альгинаттың микробөлшектері инсулинді пероралды түрде жеткізуде перспективті тасымалдығыштар бола алады [11].

Осыған орай, жұмыстың мақсаты инсулиннің пероралды формасын дайындауда инкапсуляциялаушы матрицаның негізі ретінде альгинат полисахаридінің асқазанның агрессивті ортасына тұрақтылығын арттыру үшін жабынды үлдір ретінде қолданылатын желатиннің хитозан, лимон қышқылы және *L*-глутамин қышқылы тәрізді қосылыстармен түзген үлдірлерінің құрылымдықмеханикалық қасиеттерін анықтау. Желатин, альгинат тәрізді биополимерлерді кең қолданудағы олардың артықшылығы биоыдырағыштығымен, табиғаттағы молшылығымен, биоүйлесімділігімен және химиялық құрылымы, физика-химиялық, биологиялық қасиеттерімен түсіндіріледі [12]. Белок немесе полисахаридтерді жеке қолдануға қарағанда олардың комбинациясын қолдану қосылыстардың дисперстілігі, антиоксиданттық қабілеттілігі, физика-химиялық қасиеттері тәрізді көптеген функционалды қасиеттерін жақсарта алады [13]. Желатинді капсулаларды өндіру кезінде жасалған герметикалық тығыздау қауіпті микрорганизмдердің дәріге сіңуіне жол бермейді. Әр түрлі тігуші агенттер мен толтырғыштарды

Received 11 Feb 2022; Received in revised form 28 Apr 2022; Accepted 03 May 2022; Available online 03 Dec 2022.

пайдалану желатин негізіндегі материалдардың қолдану аясын арттыра түседі. Бірақ, мұндай тігуші агенттерді қолдану желатиннің негізінде алынған капсуланың реологиялық қасиеттерін өзгертеді. Халықаралық нарықтық бәсекелестікке қабілетті капсулаларды дайындауда тұрақтылық жағынан да қойылатын талаптар өте қатал. Яғни, алынған үлдірдің беріктігін, серпімділік модулін және деформациялық қасиеттерін зерттеу өте маңызды болып табылады.

Ғылыми деректерде келтірілген мәліметтер бойынша, инкапсуляциялаушы матрица альгинат полисахаридінің тұрақтылығын арттыру мақсатында зерттеу жұмыстарында жабынды үлдір ретінде хитозанды пайдаланған екен. Хитозан - шаян тәрізділердің қабығында көп мөлшерлерде кездесетін, хитиннің деацетилденген түрін білдіретін полисахарид. Хитозан да, альгинат та пептидті, ақуызды дәрілік заттарды тасымалдауда қолданылатын биоыдырағыш полимерлер [14]. Бірақ хитозан әрқашан қолжетімді бола бермейді, алу жолы қымбат, экономикалық жағынан тиімсіз болғандықтан, оны басқа табиғи полимерлермен алмастыру қажеттілігі туындайды. Осыған орай зерттеу барысында хитозаннның үлесін азайту үшін экологиялық және экономикалық жағынан қолжетімді шикізат желатин қолданылды.

2. Тәжірибелік бөлім

2.1 Зерттеу нысандары

Желатин (ГОСТ (ТУ) 11293-89, Ресей), хитозан (төмен молекулалы массалы, 103 kDa, деацетилдену дәрежесі 85,6%, Sigma Aldrich, St. Louis, USA), лимон қышқылы (аса таза, Titan Biotech Limited, India), L-глутамин қышқылы (99% + кристаллды, Titan Biotech Limited, India).

2.2 Зерттеу әдістері

2.2.1 Желатин негізіндегі үлдірлерді алу

Үлдірлерді алу үшін желатиннің 8% сулы ерітіндісі және хитозанның (0,25%; 0,50%; 0,75%; 1,0%), лимон қышқылының (0,15%; 0,25%; 0,50%; 0,75%; 1,0%), *L*-глутамин қышқылының (0,25%; 0,50%; 0,75%; 1,0%) ерітінділері жеке дайындалынады. Алынған хитозан, лимон қышқылы және *L*-глутамин қышқылының әр түрлі концентрациялы ерітінділері желатиннің 8% сулы ерітіндісімен 1:1 қатынаста алынып $V_1:V_2$, магниттік араластырғышта 1500 айн/мин шартында 10 минут аралығында араластырылады, қоспаның жалпы көлемі 100 мл болуы тиіс. Араластырылған қоспаны шыны табақтарға құйып, 25°С термостатта 24 сағат бойы ұстайды. Түзілген үлдірлерді табақ бетінен бөліп, 12 х 4 см өлшемді үлгі түрінде кесіп, олардың серпімділік модулі және беріктік қасиеттерін анықтайды.

2.2.2 Желатин негізіндегі үлдірлердің модельді асқазан ішек жолы ортасындағы өзгерістерін анықтау

Желатин негізіндегі үлдірлер алынғаннан кейін, олардың pH мәніне байланысты өзгерістері анықталынады. Тәжірибе барысында асқазан ішек жолдарының моделі ретінде алынған ерітінділердің құрамы мен олардың pH мәндері бірінші кестеде көрсетілген.

Кестеде көрсетілген ерітінділерге алынған желатин негізіндегі үлдірлерді 12 х 4 см өлшемді үлгі түрінде кесіп, 30 мин уақытқа салады. 30 мин өткеннен кейін үлдірлерді ерітіндіден алып, кептіреді және олардың құрылымдық механикалық қасиеттерін анықтайды.

1-кесте – Асқазан ішек жолының әртүрлі аймақтарының жағдайларын модельдейтін ортаның құрамы мен рН мәні

NՉ	Модельді ерітінді	рН мәні
1	0,1 н. HCl ерітіндісі	1,0
2	25°С қаныққан калий гидрофталаты	4,01
3	Фосфатты буфер	6,86
4	0,01 моль/кг натрий тетраборатының ерітіндісі	9,18

2.2.3 Желатин негізіндегі үлдірлердің үзілу күші мен созылуын анықтау әдісі

Улдірлердің беріктігін анықтау үшін МТ-150 (Ресей) үзілуді сынау машинасы қолданылды. МТ үзілуді сынау машиналары бақыланатын материал үлгісінің созылу, сығу, серпімділік тәрізді қасиеттерін зерттеу кезіндегі деформация және жүктеу күшін өлшеуге арналған. Құралдың жұмыс істеу принципі күш өлшеуші тензорезистрлік сенсордың зерттелінетін үлгіге түсірілген кернеу күшін электр сигналына түрлендіруге негізделген. Зерттеуге алынған үлгінің ұзындығы 12 см, ал ені 4 см болуы керек. Сынақ жұмысын жүргізу барысында үлгінің созылу мәні – мм өлшем бірлігінде және жүктеу күшінің максималды мәні – кг өлшем бірлігінде индикатор бетінде көрсетіледі. Осы алынған мәліметтер негізінде үлдірдің деформация, беріктік және серпімділік модулі қасиеттері анықталды.

 $\delta = F/S$, мұндағы δ – беріктік, [кПа]; F – үлдірдің үзілу күші, [H]; S – үлдірдің ауданы, [м²].

ε = Δ//, мұндағы ε – деформация; Δ/ – үлдірдің созылуы, [мм]; / - үлдірдің бастапқы ұзындығы, [мм].

 $E = \delta/\varepsilon$, мұндағы E — серпімділік модулі, [кПа]; δ — беріктік, [кПа]; ε — деформация.

2.2.4 Инфрақызыл спектроскопия әдісі

Улгілердің ИҚ спектрлері Agilent Cary 660 FT-IR спектрометрінде (Agilent Technologies, АҚШ), диапазон 7900-375 см⁻¹.

3. Зерттеу нәтижелері және оларды талдау

Фармацевтика өнеркәсібінде өнімдерге қойылатын талаптар олардың кейбір физика-химиялық сипаттамаларына негізделеді. Бірақ, дәрілік үлдірлердің кейбір көрсеткіштерін реттеу үшін құрылымдық-механикалық қасиеттерін анықтап, арнайы мақсатта өзгерту жолдарын білу керек.

Желатиннің тек өзін ешқандай модификациясыз қолдану желатин негізіндегі полимерлік материалдардың төмен физика – механикалық қасиет көрсетуіне алып келеді, ал бұл өз кезегінде олардың қолданылу аясын шектейді. Осыған байланысты, тігуші агенттердің бірі ретінде лимон және *L*-глутамин қышқылдарымен желатинді үлдір алуды қарастыруға болады. Соңғы уақыттарда биоыдырағыш полимерлер өндірісінде лимон қышқылы тігуші агент ретінде кеңінен қолданылады [15]. Сонымен қатар лимон қышқылы бактериялардың өмір сүруін тежейтін агент болып есептелінеді [16]. L-глутамин қышқылы фармацевтикада кеңінен қолданылатын [17], табиғатта *L*-формасында кездесетін маңызды аминқышқылдарының бірі. Глутамин қышқылы биоүйлесімді, рН сезімтал хитозан гидрогельдерін гамма сәулелену арқылы егу сополимеризациясы әдісімен алуда мономер ретінде пайдаланылған [18]. Алынған хитозанның егілген глутамин қышқылымен гидрогельді түйіршіктері қатерлі ісікке қарсы дәрілік заттарды тасымалдау жүйесінде қолданылған және олардың қатерлі ісік жасушаларына қарсы тиімділігі бақыланған.

1-ші суретте желатин — хитозан, желатин — лимон қышқылы және желатин — *L*-глутамин қышқылы үлдірлерінің беріктік және серпімділік модулінің концентрацияларға тәуелділік қисықтары келтірілген. Зерттеу нәтижелері бойынша желатин негізіндегі үлдірлерге хитозанды, лимон және L-глутамин қышқылдарын енгізу желатин үлдірінің беріктігін және серпімділік модулін арттыратындығы байқалды. Яғни, 1(а)-суретте хитозан концентрациясының 0,75% дейін артуымен беріктік және серпімділік модулінің артып, одан кейін төмендейтіндігі анықталды. Хитозанның 0,75% концентрациясында желатин үлдірінің беріктігі 0,27 Па мәнінен 8,17 кПа мәніне, ал серпімділік модулін 7,22 кПа мәнінен 238,16 кПа мәніне дейін жоғарылады.

Желатин – лимон қышқылы негізіндегі үлдірлер үшін лимон қышқылының оптималды концентрация 0,25% екендігін көруге болады (1(ә)-сурет). Лимон қышқылының 0,25% ерітіндісі желатин негізіндегі үлдір беріктігін 0,27 кПа мәнінен 7,11 кПа мәніне, ал серпімділік модулін 7,22 кПа мәнінен 163,21 кПа мәніне жоғарылатып, бұдан үлкен шамада төмендейді.

Және *L*-глутамин қышқылының 0,5% ерітіндісі 0,25%; 0,75%; 1,0% ерітінділерімен салыстырғанда желатин негізіндегі үлдір беріктігін 0,27 кПа мәнінен 3,33 кПа мәніне, ал серпімділік модулін 7,22 кПа мәнінен 112,00 кПа мәніне дейін жоғарылатты (1 (б)-сурет).

1 – беріктік; 2 – серпімділік модулі

1-сурет – Желатин – хитозан (а), желатин – лимон қышқылы (ә) және желатин – *L*-глутамин қышқылы (б) негізінде алынған үлдірлердің беріктігі мен серпімділік модулінің концентрацияға тәуелділігі

Chemical Bulletin of Kazakh National University 2022, Issue 4

ISSN 1563-0331 eISSN 2312-7554 Яғни, зерттеу нәтижелерінен хитозан, лимон қышқылы және *L*-глутамин қышқылы тігуші агенттерінің желатин негізіндегі үлдірдің түзілуіне әсері оңтайлы және әр түрлі екендігі байқалды.

Тігуші агенттердің ең төменгі 0,25% концентрациясында хитозан мен *L*-глутамин қышқылына қарағанда, лимон қышқылы қатысында үлдірдің беріктік және серпімділік модулі жоғары мәндерге ие болатындығы анықталды.

2-суретте осы жүйелердің деформациялану қисықтары келтірілген. Бұл қисықтардан да, 0,25% концентрацияда жоғары деформациялану лимон қышқылы қатысында байқалды.

2-сурет – Желатин – хитозан (1), желатин – лимон қышқылы (2) және желатин – *L*-глутамин қышқылы (3) негізіндегі үлдірлердің деформациясының концентрацияға тәуелділігі

Желатиннің әсіресе, лимон қышқылының қатысында жоғары беріктік және жоғары деформация мәндеріне ие желатинннің диссоциацияланған карбоксил болуы. топтарының және протондаған амин топтарының санының артуынан электростатикалық әрекеттесуі болуы мүмкін [19, 20]. Сонымен бірге бұл байланыстарды тұрақтындыратын полярлы емес тізбектер арасындағы гидрофобтық әрекеттесулер мен сутектік байланыстардың маңызы зор. Олай болса, хитозан молекуласының құрамындағы СН₂ОН және ОН, *L*-глутамин қышқылының С=О және N-H топтарының арасындағы сүтектік байланыс желатин негізіндегі үлдірдің құрылымдануына әсер ететін негізгі фактор болуы мүмкін. Лимон қышқылын желатинге қосу өз кезегінде көлденең тігістің түзүлуіне алып келіп, полимерлі гидрофильділігін теңестіріп, материалдың сутектік байланыстардың түзілуін қамтамасыз етеді деген болжам жасауға болады.

Желатин – хитозан, желатин – лимон қышқылы және желатин - *L*-глутамин қышқылы үлдірлерінің құрылымдық механикалық қасиеттеріне әр түрлі pH мәндерінің әсерін бақылау олардың асқазан ішек жолындағы өзгерістері жайлы мәліметтерді анықтауға мүмкіндік береді. Хитозанның 0,75%, лимон қышқылының 0,25% және *L*-глутамин қышқылының 0,5% концентрацияларында беріктік, серпімділік модулінің жоғары болуына байланысты осы концентрацияларын оптималды деп алып, ары қарай ең негізгі қажетті зерттеу – ортаның pH мәніне байланысты реологиялық қасиеттерінің өзгерістері анықталды. Зерттеуге алынған үлгілердің pH мәніне байланысты құрылымдық-механикалық қасиеттерінің өзгерістері 3-ші, 4-ші суреттерде келтірілген.

Хитозанның 0,75% ерітіндісін қосу барысында алынған желатин негізіндегі үлдірдің беріктік, серпімділік қасиеттері pH = 6,86 мәнінде жоғары, ал pH = 1,0; pH = 4,01 мәндерінде төмен екендігін көруге болады (3(а)-сурет).

Хитозанның реакциялану қабілетіне орта рН-ның әсері өте зор. Себебі, хитозанның реакциялану қабілетін арттыратын функциональды амин тобы сутегі иондарының белсенділігіне байланысты әртүрлі қасиеттерге ие болады. Хитозан сулы қышқылдық ортада ери алады, нәтижесінде -NH₃⁺ топтары есебінен оң заряд алады. Хитозанның аминополисахаридінің протондаған түрі суда еритінін ескере отырып, желатин мен хитозанның комплекстенуі нәтижесінде суда еритін реакция өнімдері де, ерімейтіндері де түзілуі мүмкін. Ал полиэлектролиттік кешеннің түзілуін хитозанның амин және желатиннің карбоксил топтарының арасында пайда болатын пептидтік немесе амидтік байланыстың негізінде түсіндіруге болады.

Деректерге сүйене отырып, қышқыл ортада хитозанжелатин үлдірінің беріктік және серпімділік модулі шамаларының азаюын, хитозанның амин топтарының иондану дәрежесінің төмендеуімен байланыстыруға болады. Ал, pH = 6.86 мәнінде жоғары беріктік және серпімділік модулінің артуы карбоксил топтарының иондану дәрежесінің артуынан болуы мүмкін. Яғни, ортада ОН⁻ иондарының жоғарылауынан ортаның иондық күші өсіп, желатиннің макромолекуласының шырмалануына байланысты деуге болады.

Концентрациясы 0,25% лимон қышқылының қатысында үлдірдің беріктік, серпімділік қасиеттерінің pH мәніне тәуелділік қисығын қарастыратын болсақ, жоғарғы серпімділік модулі pH = 6,86 мәнінде, ал жоғарғы беріктік pH = 9,18 мәнінде көрсетілген. Қышқыл орталарда (pH = 1,0; pH = 4,01) серпімділік және беріктік шамасы төмен (3 (ә) сурет). Себебі, біріншіден лимон қышқылының қышқылдығымен байланыстыруға болады. Яғни, ортада H⁺ иондарының көбеюі ортаның иондық күшін көбейтіп, электростатикалық әрекеттесулерді азайтуы мүмкін. Екіншіден, желатин бетіне лимон қышқылының сутектік немесе гидрофобтық әрекеттесулер арқылы адсорбциясы полимер бетінде диссоцияланған карбоксил топтарын көбейтіп, гидрофильділігін күшейтіп, бөлек фазаға шығу мүмкіндігін азайтады, құрылымдануын төмендетеді.

Және 3-ші (б) мен 4-ші суреттерден көрініп тұрғандай экстремалды қисықтарды алдық. Желатин және 0.5% *L*-глутамин қышқылы негізіндегі үлдірдің, желатиннің лимон қышқылы және хитозан қатысында алынған

1 – беріктік; 2 – серпімділік модулі

3-сурет – Желатин – хитозан (а), желатин – лимон қышқылы (ә) және желатин – *L*-глутамин қышқылы (б) негізіндегі үлдірлердің беріктік және серпімділік қасиеттеріне орта рН-ның әсері

үлдірлермен беріктік, серпімділік модулі және деформация қасиеттерімен салыстыратын болсақ, келтірілген қисықтарға қарап өзгеше заңдылықты байқауға болады. *L*-глутамин қышқылы-желатин үлдірінің серпімділік модулі, беріктік және деформация қасиеттері pH = 4,01 мәнінде жоғары шамаларға, ал pH = 6,86; pH = 9,18 мәндерінде төмен шамаларға иеленетіндігі байқалды. Орта pH-ның төмен мәндерінде реологиялық қасиеттерінің артуы, молекулааралық сутектік байланыстардың санының жоғарлауымен, ассоциативтік құрылымдардың түзілуімен байланысты болуы мүмкін.

Желатин негізіндегі үлдірлердің әр түрлі рН мәндеріндегі құрылымдық – механикалық қасиеттерін зерттеу барысында алынған нәтижелер хитозан, лимон қышқылы және *L*-глутамин қышқылдарының желатинмен қоспаларының модельді асқазан ішек жолындағы өзгерістері жайлы мәліметтер береді. Тәжірибе нәтижелерінен *L*-глутамин қышқылының желатинмен қоспасы төмен рН мәндерінде берік құрылым түзіп, асқазанның қышқыл ортасының шарттарына төзетіндігін, ал сілтілік ортада *L*-глутамин қышқылы – желатин қоспасының құрылымдық қасиеттері әлсіреп, ішек фазасында инкапсуляцияланған инсулиннің босап шығуына қолайлы жағдай жасайтындығын көруге болады. Осы құрылымды – механикалық сипаттамалардың нәтижелерін нақтылауда ИҚ спектроскопия әдісі қолданылды.

4-сурет — Желатин — хитозан (1), желатин — лимон қышқылы (2) және желатин — *L*-глутамин қышқылы (3) негізіндегі үлдірлердің деформациясына орта рН-ның әсері

ИҚ спектроскопия әдісімен зерттеу барысында әр түрлі pH мәнінде дайындалған желатин — хитозан, желатин — лимон қышқылы және желатин — *L*-глутамин қышқылы негізіндегі үлдірлер алынды.

Желатин — хитозан негізінде алынған үлдірдің және оған әр түрлі pH мәндерінің (pH = 1.0; 4.01; 6.86; 9.18) әсерін бақылау кезінде алынған үлдірлердің ИҚ спектрлерінде (5-сурет) 3245, 3312, 3318, 3320 см⁻¹ аймақтарында хитозан

1 — желатин — хитозан; 2 — pH = 1.0, желатин — хитозан; 3 — pH = 4.01, желатин - хитозан; 4 — pH = 6.86, желатин — хитозан; 5 — pH = 9.18, желатин — хитозан

5-сурет – Желатин - хитозан негізінде алынған үлдірдің орта рН-ның өзгерісіндегі алынған ИҚ спектрлері

NH, топтарының жолақтары молекуласындағы ОН, байқалды [21]. 2109, 2116, 2147, 2149 см⁻¹ толқын ұзындығына сәйкес келетін жолақтар С-Н тобына жатқызылады [22]. Желатин молекуласының құрылымымен түсіндірілетін С=О тобына сәйкес жолақ 1706 см-1 толқын ұзындығында байқалды. Желатин – хитозан және рН = 4,01 ИҚ спектрлеріндегі 1074, 1089 см⁻¹ аймақтарындағы жолақтар алифатты аминдердің C-N созылуына жатқызылды [23]. рН = 4,01; 9,18 ортасына салынған үлдірлердің ИҚ спектрінде 739, 877 см⁻¹ аймақтарында біріншілік және екіншілік аминдерге сәйкес N-H жолақтары байқалды [22].

Желатин – лимон қышқылы негізінде алынған үлдірдің ИҚ спектрінде (6-сурет) лимон қышқылындағы - ОН тобына сәйкес жолақтар 3609, 3332 см⁻¹ аймақтарында пайда болды. 2869, 2939, 2947 см⁻¹ толқын ұзындығына сәйкес келетін әлсіз жолақтар валентті С-Н тербелістеріне жатқызылады [24]. 2531 см⁻¹ аймағында карбон қышқылының ОН тобы байқалды. Желатин – лимон қышқылы негізінде алынған үлдірге әр түрлі рН мәндерінің әсерін бақылау кезінде алифатты аминдердің С-N созылуына сәйкес келетін жолақтар 1074, 1081, 1236, 1244 см⁻¹ аймақтарында (рН = 1,0; 4,01; 6,86; 9,18 ИҚ спектрлерінде) пайда болды [23]. рН = 4,01; 6,86; 9,18 ИҚ спектрлерінде

1 — желатин — лимон қышқылы; 2 — pH = 1.0, желатин — лимон қышқылы; 3 — pH = 4.01, желатин — лимон қышқылы; 4 — pH = 6.86, желатин — лимон қышқылы; 5 — pH = 9.18, желатин — лимон қышқылы

6-сурет – Желатин – лимон қышқылы негізінде алынған үлдірдің орта pH-ның өзгерісіндегі алынған ИҚ спектрлері

ҚазҰУ хабаршысы. Химия сериясы. – 2022. – № 4

1 – желатин – *L*-глутамин қышқылы; 2 – pH = 1,0, желатин – *L*-глутамин қышқылы; 3 – pH = 4,01, желатин – *L*-глутамин қышқылы; 4 – pH = 6,86, желатин – *L*-глутамин қышқылы; 5 – pH = 9,18, желатин – *L*-глутамин қышқылы

7-сурет – Желатин – *L*-глутамин қышқылы негізінде алынған үлдірдің орта рН-ның өзгерісіндегі алынған ИҚ спектрлері

біріншілік және екіншілік аминдерге сәйкес N-H жолақтары 743, 835, 858, 912 см¹толқын ұзындықтарында көрінді [22].

Желатин - *L*-глутамин қышқылы негізінде алынған үлдірдің ИҚ спектрінде (7-сурет) 3001, 3170 см⁻¹ толқын ұзындықтарындағы жолақтар ОН, NH₂ топтарына сәйкес келеді, бұл *L*-глутамин қышқылының екі негізді амин қышқылы екендігімен түсіндіріледі. 2708, 2769, 2831 см⁻¹ аймақтарындағы жолақтар асимметриялық және симметриялық СН валенттілік тербелістеріне сәйкес келеді [25]. Желатин - *L*-глутамин қышқылы негізінде алынған үлдірдің ИҚ спектрінде де 1074, 1081, 1220 см⁻¹ толқын ұзындықтарында рН = 1,0; 4,01 ИҚ спектрлерінде алифатты аминдердің С-N созылуына сәйкес келетін жолақтар байқалды. рН = 1,0; 4,01; 6,86 және желатин - *L*-глутамин қышқылы үлдірінің ИҚ спектрлерінде 874, 881, 927, 997 см⁻¹ аймақтарындағы жолақтар біріншілік және екіншілік аминдердің N-H тербелісіне сәйкес келеді.

ИҚ спектроскопия бойынша алынған мәліметтердің нәтижелерін салыстыратын болсақ, желатин – хитозан, желатин – лимон қышқылы және желатин – *L*-глутамин қышқылы жүйелерінің негізінде алынған үлдірлерге әр түрлі pH мәндерінің (pH = 1,0; 4,01; 6,86; 9,18) әсерін бақылау кезінде үш жүйеде де C-N созылуына сәйкес келетін және біріншілік, екіншілік аминдердің N-H тербелісіне сәйкес келетін жаңа жолақтардың пайда болғандығын көруге болады. ИҚ спектрлердегі бұндай өзгерістер үлдірлерді әр түрлі pH орталарына салу барысында C-H, C-OH, C=O, C-N, N-H, CH(NH₂), CH₂OH байланыс сандарының өзгерісімен байланысты болуы мүмкін.

4. Қорытынды

Корыта келгенде желатиннің композициялык үлдірлерінің тұрақтылығына асқазан ішек жолы рН мәндерінің әсері реологиялық сипаттамалар мен ИҚ спектроскопия әдістерімен зерттелінді. Әсіресе желатиннің *L*-глутамин қышқылы негізінде алынған үлдірдің pH = 4,01 мәнінде берік құрылымдануы асқазанның қышқыл ортасындағы төзімділігін арттырады. Ал сілтілік ортада жүйенің реологиялық сипаттамаларының төмендеуі дәрілік заттың ағзаның ішек жолдарында тасымалдануына оңтайлы жағдай туғызады. Үлдірдің құрылымдық – механикалық сипаттамаларының мына орта (рН = 1,0; 4,01; 6,86; 9,18) мәндерінде орын алған өзгерістері ИҚ спектроскопия нәтижелерімен айқындалады. Үлдірлерге әр түрлі рН орталарының әсерін бақылау кезінде С-Н, C-OH, C=O, C-N, N-H, CH(NH₂), CH₂OH топтарының артуы молекулааралық сутектік байланыстардың санының жоғарылауымен және ассоциативтік құрылымдардың түзілүімен байланысты болуы мүмкін.

Алғыс білдіру

Ерлан Гүлжан Қазақстан Республикасы Ғылым және жоғары білім Министрлігінің Ph.D. бағдарламасының шәкіртақысына алғыс білдіреді. Бұл зерттеу жұмысы Әл-Фараби атындағы Қазақ ұлттық университетінде «Полисахарид гельдеріне инсулинді иммобилизациялау» диссертация тақырыбы бойынша жүргізілді.

Әдебиеттер

1 International Diabetes Federation. – Diabetes Atlas. 10th edition, 2021.

2 American diabetes association. Nutrition Recommendations and Interventions for Diabetes-2006: A position statement of the American Diabetes Association // Diabetes Care. – 2006. – Vol.29. – Is.9. – P.2140-2157.

3 Sheeja VS et al. Insulin therapy in diabetes management // International Journal of Pharmaceutical Sciences Review and Research. – 2010. – Vol.2, Is.2. – P.98-105.

4 van Belle T.L., Coppieters K.T., von Herrath M.G. Type 1 diabetes: etiology, immunology, and therapeutic strategies // Physiological Reviews. – 2011. – Vol.91. – P.79-118.

5 Peyrot M., Barnett A.H., Meneghini L.F., Schumm-Draeger P.M. Factors associated with injection omission/non–adherence in the Global attitudes of patients and physicians in insulin therapy study // Diabetes, Obesity and Metabolism. – 2012. – Vol.14, Is.12. – P.1081-1087.

6 Brange J., Langkjaer L. Insulin Formulation and Delivery. – New York: Plenum Press, 1997. – P.343-410.

7 Sajeesh S., Sharma C.P. Cyclodextrin–insulin complex encapsulated polymethacrylic acid–based nanoparticles for oral insulin delivery // International Journal of Pharmaceutics. – 2006. – Vol.325, Is.1-2. – P.147-154.

8 Singh S., Patel D., Patel N.R., Kumar K., Kumar Gautam M. Insulin oral delivery may be possible // International Journal of Pharma Professional's Research. – 2010. – Vol.1. – P.46-51.

9 Sarmento B., Ribeiro A., Veiga F., Sampaio P., Neufeld R., Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery // Pharmaceutical Research. – 2007. – Vol.24. – №12. – P.2198–2206.

10 Almeida H., Amaral M.H., Lobao P. Temperature and pH stimuli–responsive polymers and their applications in controlled and selfregulated drug delivery // Journal of Applied Pharmaceutical Science. – 2012. – Vol.2, Is.6. – P.01-10.

11 Reis C.P., Ribeiro AJ, Neufeld RJ, Veiga F Alginate microparticles as novel carrier for oral insulin delivery // Biotechnology and Bioengineering. – 2007. – Vol.96, Is.5. – P.977-989.

12 Dai C., Wang B., Zhao H., Li B., Wang J. Preparation and characterization of liposomes–in–alginate (LIA) for protein delivery system // Colloids and Surfaces B: Biointerfaces. – 2006. – Vol.47, Is.2. – P.205-210.

Dang J., Leong K. Natural polymers for gene delivery and tissue engineering // Advanced Drug Delivery Reviews. – 2006.
 Vol.58. – P.487-499.

14 Wei Y., Sun C., Dai L., Zhan X., Gao Y. Structure, physicochemical stability and in vitro simulated gastrointestinal digestion properties of β -carotene loaded zein-propylene glycol alginate composite nanoparticles fabricated by emulsification-evaporation method // Food Hydrocolloids. – 2018. – Vol.81. – P.149-158.

15 Ciriminna R., Meneguzzo F., Delisi R., Pagliaro M. Citric acid: emerging applications of key biotechnology industrial product // Chemistry Central Journal. – 2017. – Vol.11. – ID22.

16 Korithoski B., Krastel K., Cvitkovitch D.G. Transport and metabolism of citrate by Streptococcus mutans // Journal of Bacteriology. – 2005. – Vol.187, Is.13. – P.4451-4456.

17 Long B., Li J., Song Y., Du J. Temperature Dependent Solubility of r–Form L–Glutamic Acid in Selected Organic Solvents: Measurements and Thermodynamic Modeling // Industrial & Engineering Chemistry Research. – 2011. – Vol.50, Is.13. – P.8354-8360.

18 Nisar S., Pandit A.H., Nadeem M., Pandit A.H., Rizvi M.M.A., Rattan S. γ -Radiation induced L-glutamic acid grafted highly porous, pH-responsive chitosan hydrogel beads: A smart and biocompatible vehicle for controlled anti-cancer drug delivery // International Journal of Biological Macromolecules. Elsevier B.V., 2021. – Vol.182. – P.37-50.

19 Дякина Т.А., Деркач С.Р., Левачев С.М. Концентрированные эмульсии на основе смесей желатины с лецитином: реологические свойства // Вестник Московского университета. – 2004. – Т.45, №1. – С.452-456.

20 Матвеенко В.Н., Кирсанов Е.А., Ремизов С.В. Реология структурированных дисперсных систем // Вестник Московского университета. – 2006. – Т.47, №6. – С.393-397.

21 Maji K., Dasgupta S. Characterization and in vitro evaluation of gelatin–chitosan scaffold reinforced with bioceramic nanoparticles for bone tissue engineering // Journal of Materials Research. – 2019. – Vol.34, Is.16. – P.2807-2818.

22 Tolstoy VP., Chernyshova IV., Skryshevsky VA. Handbook of Infrared Spectroscopy of Ultrathin Films. Hoboken, New Jersey: John Wiley & Sons, Inc. Publication, 2003. – P.445-506.

23 Stuart B.H. Infrared Spectroscopy: Fundamentals and Applications. – John Wiley & Sons, Ltd, Chichester, UK, 2004. – P.80-84.

24 Rousi Z., Malhiac C., Fatouros D.G., Paraskevopoulou A. Complex coacervates formation between gelatin and gum Arabic with different arabinogalactan protein fraction content and their characterization // Food Hydrocolloids. – 2019. – Vol.96. – P.577-588.

25 Rohman A., Man Y.B.C. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil // Food Research International. – 2010. – Vol.43, Is.3. – P.886-892.

References

International Diabetes Federation. Diabetes Atlas 2021.
 10th edition. ISBN 978-2-930229-98-0

2 American diabetes association (2006) Diabetes Care 29:2140-2157. http://doi.org/10.2337/dc06-9914

3 Sheeja VS, Reddy MH, Joseph J, Reddy D (2010) International Journal of Pharmaceutical Sciences Review and Research 2:98-105.

4 van Belle TL, Coppieters KT, von Herrath MG (2011) Physiol Rev 91:79-118. http://doi.org/10.1152/physrev.00003.2010

5 Peyrot M, Barnett AH, Meneghini LF, Schumm-Draeger PM (2012) Diabetes, Obesity and Metabolism 14:1081-1087. http:// doi.org/10.1111/j.1463-1326.2012.01636.x 6 Brange J, Langkjaer L (1997) Insulin Formulation and Delivery. Plenum Press, New York, USA. P.343-410

7 Sajeesh S, Sharma CP (2006) Int J Pharm 325:147-154. http://doi.org/10.1016/j.ijpharm.2006.06.019

8 Singh S, Patel D, Patel NR, Kumar K, Kumar Gautam M (2010) International Journal Of Pharma Professional's Research 1:46-51.

9 Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007) Pharm Res 24:2198-2206. *http://doi.org/10.1007/s11095-007-9367-4*

10 Almeida H, Amaral MH, Lobão P (2012) Journal of Applied Pharmaceutical Science 2:01–10. *http://doi.org/10.7324/ JAPS.2012.2609*

11 Reis CP, Ribeiro AJ, Neufeld RJ, Veiga F (2007) Biotechnol Bioeng 96:977-989. http://doi.org/10.1002/bit.21164

12 Dai C, Wang B, Zhao H, Li B, Wang J (2006) Colloid Surface B 47:205-210. http://doi.org/10.1016/j.colsurfb.2005.07.013

13 Dang J, Leong K (2006) Adv Drug Deliver Rev 58:487-499. http://doi.org/10.1016/j.addr.2006.03.001

14 Wei Y, Sun C, Dai L, Zhan X, Gao Y (2018) Food Hydrocolloids 81:149-158. http://doi.org/10.1016/j.foodhyd.2018.02.042

15 Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M (2017) Chem Cent J 11:22. *http://doi.org/10.1186/s13065-017-0251-y*

16 Korithoski B, Krastel K, Cvitkovitch DG (2005) J Bacteriol 187:4451-4456. http://doi.org/10.1128/JB.187.13.4451-4456.2005 17 Long B, Li J, Song Y, Du J (2011) Ind Eng Chem Res 50:8354-8360. http://doi.org/10.1021/ie200351b

18 Nisar S, Pandit AH, Nadeem M, Pandit AH, Rizvi MMA, Rattan S (2021) Int J Biol Macromol 182:37-50. http://doi. org/10.1016/j.ijbiomac.2021.03.134

19 Dyakina TA, Derkatch SR, Levachev SM (2004) Bulletin of Moscow University [Vestnik Moskovskogo universiteta] 45:452-456. (In Russian)

20 Matveyenko VN, Kirsanov YeA, Remizov SV (2006) Bulletin of Moscow University [Vestnik Moskovskogo universiteta] 47:393-397. (In Russian)

21 Maji K, Dasgupta S (2019) J Mater Res 34:2807-2818. http://doi.org/10.1557/jmr.2019.170

22 Tolstoy VP, Chernyshova IV, Skryshevsky VA (2003) Handbook of Infrared Spectroscopy of Ultrathin Films. John Wiley & Sons, Inc. Publication, Hoboken, New Jersey, USA. http://doi.org/10.1002/047123432X

23 Stuart BH (2004) Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd, Chichester, UK. http:// doi.org/10.1002/0470011149

24 Rousi Z, Malhiac C, Fatouros DG, Paraskevopoulou A (2019) Food Hydrocolloids 96:577-588. http://doi.org/10.1016/j. foodhyd.2019.06.009

25 Rohman A, Man YBC (2010) Food Res Int 43:886-892. http://doi.org/10.1016/j.foodres.2009.12.006

МАЗМҰНЫ – СОДЕРЖАНИЕ

B.N. Kenessov, A.A. Kapar	
Optimization of headspace solid-phase microextraction of volatile organic compounds	
from dry soil samples by porous coatings using COMSOL Multiphysics	4-12
E.M. Yergaliyeva, K.B. Bazhykova, S.B.Abeuova, V.V. Vazhev, P. Langer	
In silico drug-likeness, biological activity and toxicity prediction of new	
3,5-bis(hydroxymethyl)tetrahydro-4H-pyran-4-one derivatives	
Н. Мерхатулы, А.Н. Искандеров, С.К. Жокижанова, Б.Б. Ерниязова	
Синтез донорно-акцепторных соединений на основе азулена	
Г.Е. Ерлан, Б.Б. Тюсюпова, С.М. Тажибаева, К.Б. Мусабеков, Н.Г. Балабушевич	
Желатиннің композициялық үлдірлерінің құрылымдық-механикалық қасиеттері	

CONTENTS

.N. Kenessov, A.A. Kapar	
ptimization of headspace solid-phase microextraction of volatile organic compounds	
rom dry soil samples by porous coatings using COMSOL Multiphysics	2
.M. Yergaliyeva, K.B. Bazhykova, S.B.Abeuova, V.V. Vazhev, P. Langer	
n silico drug-likeness, biological activity and toxicity prediction of new	
,5-bis(hydroxymethyl)tetrahydro-4H-pyran-4-one derivatives14-2	0
I. Merkhatuly, A.N. Iskanderov, S.K. Zhokizhanova, B.B. Yerniyazova	
ynthesis of donor-acceptor compounds based on azulene 22-2	8
Ye. Yerlan, B.B. Tyussyupova, S.M. Tazhibayeva, K.B. Musabekov, N.G. Balabushevich	
tructural and mechanical properties of gelatin composite films	9