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SOLVABILITY OF THE INVERSE PROBLEM FOR THE
PSEUDOHYPERBOLIC EQUATION

This paper investigates the solvability of the inverse problem of finding a solution and an unknown
coefficient in a pseudohyperbolic equation known as the Klein-Gordon equation. A distinctive
feature of the given problem is that the unknown coefficient is a function that depends only
on the time variable. The problem is considered in the cylinder, the conditions of the usual
initial-boundary value problem are set. The integral overdetermination condition is used as an
additional condition. In this paper, the inverse problem is reduced to an equivalent problem for
the loaded nonlinear pseudohyperbolic equation. Such equations belong to the class of partial
differential equations, not resolved with respect to the highest time derivative, and they are also
called composite type equations. The proof uses the Galerkin method and the compactness method
(using the obtained a priori estimates). For the problem under study, the authors prove existence
and uniqueness theorems for the solution in appropriate classes.
Key words: Pseudohyperbolic equation, inverse problem, Klein-Gordon equation, Galerkin
method, compactness method, existence, uniqueness.
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Псевдогиперболалық теңдеу үшiн керi есептiң шешiмдiлiгi

Мақалада Клейн-Гордон теңдеуi деген атпен белгiлi псевдогиперболалық теңдеудiң шешiмiн
және оң жақ коэффициентiн табу керi есебi зерттеледi. Бұл есеп iзделiндi коэффициенттiң
тек уақыттан тәуелдi функция болуымен ерекшеленедi. Есеп цилиндрлiк аймақта қарасты-
рылады, әдеттегiдей бастапқы-шеттiк есептiң шарттары қойылады. Қосымша шарт ретiнде
интегралдық түрдегi артық анықталған шарт берiлген. Бұл жұмыста керi есеп жүктелген
сызықтық емес псевдогиперболалық теңдеу үшiн қойылған эквиваленттi есепке келтiрiледi.
Мұндай теңдеулер уақыт бойынша ең жоғары туындыға қатысты шешiлмеген дербес туын-
дылы дифференциалдық теңдеулер класына жатады және оларды құрама типтi теңдеулер
деп те атайды. Дәлелдеуде Галеркин әдiсi және компакт әдiсi (априорлық бағалаулар алу
арқылы) қолданылады. Жұмыста зерттелiп отырған есептiң сәйкес кластардағы шешiмнiң
бар болу және жалғыздық теоремалары дәлелденедi.
Түйiн сөздер: Псевдогиперболалық теңдеу, керi есеп, Клейн-Гордон теңдеуi, Галеркин әдiсi,
компакт әдiсi, шешiмнiң бар болуы және жалғыздығы.
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Разрешимость обратной задачи для псевдогиперболического уравнения

Исследуется разрешимость обратной задачи нахождения решения и неизвестного коэффи-
циента в псевдогиперболическом уравнении, известного как уравнение Клейна-Гордона. От-
личительной особенностью изучаемой задачи является то, что неизвестный коэффициент
является функцией, зависящей лишь от временной переменной. Задача рассматривается в
цилиндрической области, задаются условия обычной начально-краевой задачи. В качестве
дополнительного условия используется условие интегрального переопределения. В работе
обратная задача сводится к эквивалентной задаче для нагруженного нелинейного псевдо-
гиперболического уравнения. Подобные уравнения относятся к классу дифференциальных
уравнений в частных производных, не разрешенные относительно старшей производной по
времени и они также называются уравнениями составного типа. При доказательстве приме-
няются метод Галеркина и метод компактности (с использованием полученных априорных
оценок). Для изучаемой задачи авторы доказывают теоремы существования и единственно-
сти решения в рассматриваемых классах.
Ключевые слова: Псевдогиперболическое уравнение, обратная задача, уравнение Клейна-
Гордона, метод Галеркина, метод компактности, существование, единственность.

1 Introduction

The work is devoted to the study of the solvability of the inverse problem of reСЃovering an
external influence in the pseudohyperbolic equation known as the Klein-Gordon equation.
Nowadays, inverse problems have become a powerful and rapidly developing field of
knowledge, penetrating almost all areas of mathematics. Similar inverse problems arise
naturally in the mathematical modeling of certain processes occurring in the media with
unknown characteristics. Since it is the characteristics of the medium that determine the
coefficients of the corresponding differential equation or the coefficients of the external
influence. The Klein-Gordon equation plays an important role in mathematical physics. This
equation is used in modeling various phenomena of relativistic quantum mechanics [1] and
nonlinear optics, in studying the behavior of elementary particles and dislocation propagation
in crystals, as well as in studying nonlinear wave equations [2]. For such equations, many
problems have been investigated in different formulations by various methods [3]-[14].

In this paper, the inverse problem under study is reduced to an equivalent problem for
the loaded nonlinear pseudohyperbolic equation. Pseudohyperbolic equations belong to the
class of partial differential equations, not solved with respect to the highest time derivative,
and they are also known as composite type equations. Initial-boundary value problems for
linear and nonlinear pseudohyperbolic equations were studied in various works [15]-[20].
Moreover, it is necessary to note the works [21]-[25], where studied the qualitative properties
of solutions of inverse problems for hyperbolic type equations.

In the cylinder QT = {(x, t) : x ∈ Ω, 0 < t < T} we consider the inverse problem of
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reСЃovering the right-hand side of the Klein-Gordon equation

utt−χ∆ut−
(
a0 + a1 ‖∇u‖2r

2,Ω

)
∆u+|ut|q−2ut = b(x, t)|u|p−2u+f(t)h(x, t), (x, t) ∈ QT , (1)

with initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (2)

the boundary condition

u|S = 0, (3)

and the overdetermination condition∫
Ω

u(x, t)ω(x)dx = ϕ(t), t ∈ (0, T ). (4)

Here Ω ⊂ RN , N ≥ 1 is bounded area, ∂Ω is sufficiently smooth boundary, b(x, t), h(x, t),
u0(x), u1(x), ω(x), ϕ(t) are the given functions, χ, a0, a1, p, q and r are positive constants.
Let the given functions of the problem (1)-(4) satisfy the conditions

ω ∈ L2(Ω)
⋂ 0

W 2
2 (Ω),

h(x, t) ∈ C1(QT ), h1(t) ≡
∫
Ω

h(x, t)ω(x)dx 6= 0, ∀t ∈ [0, T ],
(5)

ϕ(t) ∈ W 2
2 (0, T ),∫

Ω

u0(x)ω(x)dx = ϕ(0),
∫
Ω

u1(x)ω(x)dx = ϕ′(0),

u0 ∈
0

W 2
2 (Ω), u1 ∈

0

W 1
2 (Ω).

(6)

2 Materials and methods

2.1 The Equivalent Problem

Lemma 1. The problem (1)-(4) is equivalent to the next problem for nonlinear
pseudoparabolic equation containing nonlinear nonlocal operator from function u(x, t)

utt−χ∆ut−
(
a0 + a1 ‖∇u‖2r

2,Ω

)
∆u+|ut|q−2ut = b(x, t)|u|p−2u+F (t, u)h(x, t), x ∈ Ω, t > 0,

(7)

u(x, 0) = u0(x), x ∈ Ω, u|S = 0. (8)

Here

F (t, u) = 1
h1(t)

(
ϕ′′(t) + χ

∫
Ω

∇ut∇ωdx+
(
a0 + a1 ‖∇u‖2r

2,Ω

) ∫
Ω

∇u∇ωdx+

+
∫
Ω

|ut|q−2utωdx−
∫
Ω

b(x, t)|u|p−2uωdx

)
.

(9)



6 Solvability of the inverse problem for . . .

Proof. Indeed, it follows from equation (1) that

∫
Ω

(utt − χ∆ut)ωdx−
(
a0 + a1 ‖∇u‖2r

2,Ω

) ∫
Ω

∆uωdx−

−
∫

Ω
b(x, t)|u|p−2uωdx =

∫
Ω

f(t)h(x, t)ωdx,
(10)

next, if conditions (4) and (5) are performed, then

F (t, u) = 1
h1(t)

(
ϕ′′(t) + χ

∫
Ω

∇ut∇ωdx+
(
a0 + a1 ‖∇u‖2r

2,Ω

) ∫
Ω

∇u∇ωdx+

+
∫
Ω

|ut|q−2utωdx−
∫
Ω

b(x, t)|u|p−2uωdx

)
.

(11)

Therefore, the relation (9) is satisfied.
Now let us consider the problem (7)-(8). If the relation (9) is satisfied, then equality (11)

obviously follows from it. Then

F (t, u) = 1
h1(t)

(
ϕ′′(t) + χ

∫
Ω

∇ut∇ωdx+
(
a0 + a1 ‖∇u‖2r

2,Ω

) ∫
Ω

∇u∇ωdx+

+
∫
Ω

|ut|q−2utωdx−
∫
Ω

b(x, t)|u|p−2uωdx

)
=

= 1
h1(t)

(
ϕ′′(t)− χ

∫
Ω

∆utωdx−
(
a0 + a1 ‖∇u‖2r

2,Ω

) ∫
Ω

∆uωdx+

+
∫
Ω

|ut|q−2utωdx−
∫
Ω

b(x, t)|u|p−2uωdx

)
.

By virtue of (10), we obtain that

F (t, u) = 1
h1(t)

(
ϕ′′(t) + χ

∫
Ω

∇ut∇ωdx+
(
a0 + a1 ‖∇u‖2r

2,Ω

) ∫
Ω

∇u∇ωdx−
∫
Ω

b(x, t)|u|p−2uωdx

)
=

= 1
h1(t)

(
ϕ′′(t)− χ

∫
Ω

∆utωdx−
(
a0 + a1 ‖∇u‖2r

2,Ω

) ∫
Ω

∆uωdx−
∫
Ω

b(x, t)|u|p−2uωdx

)
= 1

h1(t)

(
ϕ′′(t)−

∫
Ω

uttωdx+
∫
Ω

b(x, t)|u|p−2uωdx+
∫
Ω

f(t)h(x, t)ωdx−
∫
Ω

b(x, t)|u|p−2uωdx

)
.

ϕ′′(t)−
∫
Ω

uttωdx = 0.

In this way, d2

dt2

(
ϕ(t)−

∫
Ω

uωdx

)
= 0. Denote by v(t) = ϕ(t) −

∫
Ω

uωdx. Then the function

v(t) can be found as a solution of the Cauchy problem: v′′(t) = 0, v(0) = 0, v′(0) = 0.
(v(0) = 0, v′(0) = 0 follows from the matching condition (5)). The unique solution of the
problem is the function v(t) = 0, consequently,

∫
Ω

u(x, t)ω(x)dx = ϕ(t).

User
Карандаш
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3 Existence of the solution. Galerkin approximations

Theorem 1. Let the conditions (5), (6) and 2 ≤ p < 2n−2
n−2

, n ≥ 3, q ≥ 2, r > 1 are
performed. Then there exists the generalized solution ∆u, ∆ut, utt ∈ L2(QT ) of the problem
(7)-(8).

Proof. Let us choose in
0

W 1
2 (Ω) some system of functions {Ψj(x)} forming a basis in the

given space. As a basis, we can take the eigenfunctions of the Sturm-Liouville problem

∆Ψ + λΨ = 0, Ψ|∂Ω = 0.

We will look for an approximate solution of the problem (7)-(8) in the form

um(x, t) =
m∑
k=1

Cmk(t)Ψk(x) (12)

where coefficients Cmk(t) are searched out from the relations

m∑
k=1

C ′′mk(t)
∫
Ω

ΨkΨjdx+ χ
m∑
k=1

C ′mk(t)
∫
Ω

∇Ψk∇Ψjdx+
(
a0 + a1 ‖∇um‖2r

2,Ω

) ∫
Ω

∇um∇Ψjdx+

+
m∑
k=1

C ′mk(t)
∫
Ω

|∂tum|p−2ΨkΨjdx−
∫
Ω

b (x, t) |um|p−2umΨjdx =
∫
Ω

F (t, um)Ψjdx.

(13)

um0 = um(0) =
m∑
k=1

Cmk(0)Ψk =
m∑
k=1

α0kΨk,

um1 = u′m(0) =
m∑
k=1

C ′mk(0)Ψk =
m∑
k=1

α1kΨk

(14)

and besides

um0 → u0 strongly in
0

W 2
2 (Ω) at m→∞

um1 → u1 strongly in
0

W 1
2 (Ω) at m→∞

(15)

Let us introduce denotations

~Cm ≡ {C1m(t), ..., Cmm(t)}T , ~α ≡ {α1, ..., αm}T , akj =

∫
Ω

ΨkΨjdx, bkj = χ

∫
Ω

(∇Ψk,∇Ψj) dx,

fkj = χ
∫
Ω

(∇Ψk,∇Ψj) dx+
(
a0 + a1 ‖∇um‖2r

2,Ω

) ∫
Ω

∇Ψk∇Ψjdx+

+
m∑
k=1

C ′mk(t)
∫
Ω

|∂tum|p−2ΨkΨjdx−
∫
Ω

b (x, t) |um|p−2ΨkΨjdx+
∫
Ω

F (t, um)Ψjdx,

Am

(
~Cm

)
≡
{
ajk

(
~Cm

)}
, ~Fm

(
~Cm, ~C

′
m

)
≡
{
fjk

(
~Cm, ~C

′
m

)}
~Cm.
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Then the system of equations (13) and condition (14) take the matrix form

Am ~C
′′
m ≡ ~Fm

(
~Cm, ~C

′
m

)
,

~Cm(0) = ~α0, ~C
′
m(0) = ~α1.

(16)

Relations (16) represent the Cauchy problem for the system of ordinary differential equations,
which is solvable on the segment [0, Tm]. In order to verify the existence of the solution on
[0, T ], we obtain a priori estimates.

Lemma 2. If u ∈
0

W 1
2 (Ω),1 < σ ≤ 2, then the following inequality is performed

∫
Ω

|um|σdx ≤

∫
Ω

|u|2dx

σ
2

|Ω|
2−σ

2 ≤ C0

∫
Ω

|u|2dx+ χ

∫
Ω

|∇u|2dx

 .

Lemma 3. If u ∈
0

W 1
2 (Ω), 2 < β < 2N

N−2
, N ≥ 3,, then the following inequality is

performed

‖u‖2
β,Ω ≤ C2

0 ‖∇u‖
2α
2,Ω ‖u‖

2(1−α)
2,Ω ≤ χ ‖∇u‖2

2,Ω +
(1− α)α

α
1−αC

2
1−α
0

χ
α

1−α
‖u‖2

2,Ω ,

where C0 =
(

2(N−1)
N−2

)α
, α = (β−2)N

2β
, 0 < α < 1.

We multiply the equality (13) by C ′mj(t) and summarize over j = 1,m. As a result, we
take

1
2
d
dt

∫
Ω

|∂tum(t)|2dx+ χ
∫
Ω

|∂t∇um|2dx+ a0

2
d
dt
‖∇um‖2

2,Ω +

+ a1

2r+2
d
dt
‖∇um‖2r+2

2,Ω +
∫
Ω

|∂tum(t)|qdx =

=
∫
Ω

b(x, t)|um|p−2um∂tumdx+
∫
Ω

F (t, um)h∂tumdx.

(17)

We integrate with respect to τ from 0 to t, then we get the relation

1
2

∫
Ω

|∂tum(t)|2dx+ χ
t∫

0

∫
Ω

|∂τ∇um|2dxdτ + a0

2
‖∇um‖2

2,Ω +

+ a1

2r+2
‖∇um‖2r+2

2,Ω +
t∫

0

∫
Ω

|∂τum|qdxdτ =

= 1
2

∫
Ω

|∂tum(x, 0)|2dx+ a0

2
‖∇um(x, 0)‖2

2,Ω + a1

2r+2
‖∇um(x, 0)‖2r+2

2,Ω +

+
t∫

0

∫
Ω

b(x, τ)|um|p−2um∂τumdxdτ +
t∫

0

∫
Ω

F (t, um)h∂τumdxdτ.

(18)
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Denote by

y(t) =
1

2

∫
Ω

|∂tum(t)|2dx+
a0

2
‖∇um‖2

2,Ω +
a1

2r + 2
‖∇um‖2r+2

2,Ω .

Estimating the right-hand side of (18) using Lemma 2 and 3, as well as the Hölder and Young
inequality, we obtain∣∣∣∣ t∫

0

∫
Ω

b(x, τ)|um|p−2um∂τumdxdτ

∣∣∣∣ ≤ b0

t∫
0

∫
Ω

|um|p−1∂τumdxdτ ≤

≤ ‖∂τum‖2,Qt

(
t∫

0

∫
Ω

|um|
2n
n−2dxdτ

)n−2
2n
(

t∫
0

∫
Ω

|um|(p−2)ndxdτ

) 1
n

≤

≤ ‖∂τum‖2
2,Qt

+ C1 ‖∇um‖
2n
n−2

2,Qt
.

(19)

∣∣∣∣χ t∫
0

∫
Ω

1
h1(τ)

∫
Ω

∂τ∇um∇ωdxh∂τumdxdτ
∣∣∣∣ ≤

≤ χ
t∫

0

1
h1(τ)
‖∂τ∇um‖2,Ω ‖∇ω‖2,Ω ‖h‖2,Ω ‖∂τum‖2,Ω dτ ≤

≤ χ
2

t∫
0

‖∂τ∇um‖2
2,Ω dτ + χ

2
‖∇ω‖2

2,Ω sup
0≤t≤T

‖h(x,t)‖22,Ω
|h1(t)|2

t∫
0

‖∂τum‖2
2,Ω dτ.

∣∣∣∣ t∫
0

∫
Ω

1
h1(τ)

(
a0 + a1 ‖∇um‖2r

2,Ω

) ∫
Ω
∇um∇ωdxh∂τumdxdτ

∣∣∣∣ ≤
≤

t∫
0

1
h1(τ)

(
a0 + a1 ‖∇um‖2r

2,Ω

)
‖∇um‖2,Ω ‖∇ω‖2,Ω ‖h‖2,Ω ‖∂τum‖2,Ω dτ ≤

≤ a0

t∫
0

‖∇um‖2
2,Ω dτ + a0 ‖∇ω‖2

2,Ω

t∫
0

1
h2

1(τ)
‖h‖2

2,Ω ‖∂τum‖
2
2,Ω dτ+

+a1

t∫
0

‖∇um‖2r+2
2,Ω dτ + C2 ‖∇ω‖2r+2

2,Ω sup
0≤t≤T

‖h(x,t)‖2r+2
2,Ω

|h1(t)|2r+2

t∫
0

‖∂τum‖2r+2
2,Ω dτ,

C2 =
a1(2r + 1)2r+1

(2r + 2)2r+2
.∣∣∣∣ t∫

0

∫
Ω

1
h1(τ)

∫
Ω

|∂τum|q−2∂τumωdxh∂τumdxdτ

∣∣∣∣ ≤
≤

t∫
0

1
h1(τ)
‖∂τum‖q−1

q,Ω ‖ω‖q,Ω ‖h‖2,Ω ‖∂τum‖2,Ω dτ ≤

≤ 1
2

t∫
0

‖∂τum‖qq,Ω dτ + C3 ‖ω‖qq,Ω sup
0≤t≤T

‖h(x,t)‖q2,Ω
|h1(t)|q

t∫
0

‖∂τum‖q2,Ω dτ,

C3 =
q − 1

q
(
q
2

) 1
q−1

.
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∣∣∣∣ t∫
0

∫
Ω

1
h1(τ)

∫
Ω

b(x, t)|um|p−2umωdxh∂τumdxdτ

∣∣∣∣ ≤
≤ b0 ‖ω‖p,Ω sup

0≤t≤T

‖h(x,t)‖2,Ω
h1(t)

t∫
0

‖∂τum‖2,Ω ‖um‖
p−1
p,Ω dτ ≤

≤ b0 ‖ω‖p,Ω sup
0≤t≤T

‖h(x,t)‖2,Ω
h1(t)

(
t∫

0

‖um‖pp,Ω dτ +
t∫

0

‖∂τum‖p2,Ω dτ
)
≤

≤ b0 ‖ω‖p,Ω sup
0≤t≤T

‖h(x,t)‖2,Ω
h1(t)

t∫
0

(
‖um‖2

2,Ω + χ ‖∇um‖2
2,Ω

) p
2
dτ+

+b0 ‖ω‖p,Ω sup
0≤t≤T

‖h(x,t)‖2,Ω
h1(t)

t∫
0

‖∂τum‖p2,Ω dτ.

Denote by

y(t) =
1

2

∫
Ω

|∂tum(t)|2dx+
a0

4
C(Ω) ‖um‖2

2,Ω +
a0

4
‖∇um‖2

2,Ω +
a1

2r + 2
‖∇um‖2r+2

2,Ω .

d = max

{
n

n− 2
,
p

2
,
q

2
, r + 1

}
.

Then from the relation (18), we get

y(t) ≤ C4 + C5

t∫
0

[y(τ)]ddτ.

Applying for this the generalized Bihari lemma, then the next inequality is true

y(t) ≤ C4[
1− (d− 1)C5C

d−1
4 t

] 1
d−1

,

i.Рµ.
1
2

∫
Ω

|∂tum(t)|2dx+ a0

4
C(Ω) ‖um‖2

2,Ω + a0

4
‖∇um‖2

2,Ω + a1

2r+2
‖∇um‖2r+2

2,Ω ≤ !4

[1−(d−1)C5C
d−1
4 t]

1
d−1

.

From this estimate we can conclude that there exists T0 > 0 such that∫
Ω

|∂tum(t)|2dx+ ‖um‖2
2,Ω + ‖∇um‖2

2,Ω +

+ ‖∇um‖2r+2
2,Ω +

T∫
0

∫
Ω

|∂τ∇um|2dxdτ +
T∫
0

∫
Ω

|∂τum|qdxdτ ≤ C6,
(20)

for all t ∈ [0, T ], T < T0, where C6 is constant which does not depend on m ∈ N .
We multiply the relation (13) by λjCmj(t) and C ′′mj(t), then summarize over j = 1,m. As

a result, we get the next relations

− d
dt

∫
Ω

∂tum(t)∆um(t)dx− ‖∂t∇um‖2
2,Ω + χ

2
d
dt
‖∆um‖2

2,Ω +

+
(
a0 + a1 ‖∇um‖2r

2,Ω

)
‖∆um‖2

2,Ω −
∫
Ω

|∂tum(t)|q−2∂tum(t)∆umdx =

= −
∫
Ω

b(x, t)|um|p−2um∆umdx−
∫
Ω

F (t, um)h∆umdx.
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∫
Ω

|∂2
t um(t)|2dx+ χ

2
d
dt

∫
Ω

|∂t∇um|2dx−
(
a0 + a1 ‖∇um‖2r

2,Ω

) ∫
Ω

∆um∂
2
t umdx+

+1
q
d
dt

∫
Ω

|∂tum|qdx =
∫
Ω

b (x, t) |um|p−2um∂
2
t umdx+

∫
Ω

F (t, um)∂2
t umdx.

By integrating these relations from 0 to t, we get

χ
2
‖∆um‖2

2,Ω +
t∫

0

(
a0 + a1 ‖∇um‖2r

2,Ω

)
‖∆um‖2

2,Ω dτ = χ
2
‖∆um(0)‖2

2,Ω +
∫
Ω

∂tum(t)∆um(t)dx−

−
∫
Ω

∂tum(0)∆um(0)dx+
t∫

0

‖∂τ∇um‖2
2,Ω dτ +

t∫
0

∫
Ω

|∂τum(τ)|q−2∂τum(τ)∆umdxdτ−

−
t∫

0

∫
Ω

b(x, τ)|um|p−2um∆umdxdτ −
t∫

0

∫
Ω

F (τ, um)h∆umdxdτ.

(21)

χ
2

∫
Ω

|∂t∇um(t)|2dx+ 1
q

∫
Ω

|∂tum(t)|qdx+
t∫

0

∫
Ω

|∂2
τum(x, τ)|2dxdτ =

=
t∫

0

(
a0 + a1 ‖∇um‖2r

2,Ω

) ∫
Ω

∆um∂
2
τumdxdτ+

+
∫ t

0

∫
Ω

b (x, τ) |um|p−2um∂
2
τumdxdτ +

t∫
0

∫
Ω

F (τ, um)∂2
τumdxdτ.

(22)

Analogically, we estimate the right-hand side of (21) and (22), applying lemmas 2 and 3,
Hölder and Young inequalities, Bihari’s lemma and a priori estimate (20), as a result we
obtain

‖∆um‖2
2,Ω +

T∫
0

(
a0 + a1 ‖∇um‖2r

2,Ω

)
‖∆um‖2

2,Ω dt ≤ C7, for all t ∈ [0, T ], T < T0, (23)

∫
Ω

|∂t∇um(t)|2dx+

∫
Ω

|∂tum(t)|qdx+

T∫
0

∫
Ω

|∂2
τum(x, τ)|2dxdt ≤ C8, for all t ∈ [0, T ], T < T0,

(24)

where C7 and C8 are constants which does not depend on m ∈ N .
From the obtained estimates (20), (23) and (3) follows the estimate

T∫
0

‖∂t∆um‖2
2,Ω dt ≤ C9, for all t ∈ [0, T ], T < T0, m ∈ N. (25)

Then by using (20), (23), (3) and (25), considering the conditions of the theorem, we can
show the existence of the derivative uxx ∈ L2(QT ). In this way, ∆u, ∆ut, utt ∈ L2(QT ).
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4 Uniqueness of the generalized solution

Theorem 2. Let the conditions (5), r > 2, q > 2, 2 < p ≤ 2+ 1
N−2

, N ≥ 3, are performed.
Then the generalized solution of the problem (1)-(3) on the segment (0, T ) is unique.

Proof. Assume that the problem (7)-(8) has two generalized solutions: u1(x, t) and
u2(x, t). Let us put u(x, t) = u1(x, t) − u2(x, t) . Then there are the following equalities

utt − χ∆ut − a0∆u− a1

(
‖∇u1‖2r

2,Ω ∆u1 − ‖∇u2‖2r
2,Ω ∆u2

)
+

+|u1t|q−2u1t − |u2t|q−2u2t = b(x, t) (|u1|p−2u1 − |u2|p−2u2) +
+h(x, t) (F (t, u1)− F (t, u2)) , x ∈ Ω, t > 0,

(26)

u(x, 0) = 0, ut(x, 0) = 0, x ∈ Ω, u|S = 0. (27)

We consider the equality

t∫
0

∫
Ω

[uττ − χ∆uτ − a0∆u − a1

(
‖∇u1‖2r

2,Ω ∆u1 − ‖∇u2‖2r
2,Ω ∆u2

)
+

+|u1τ |q−2u1τ − |u2τ |q−2u2τ ]uτdxdτ =
t∫

0

∫
Ω

[b(x, τ) (|u1|p−2u1 − |u2|p−2u2) +

+h(x, τ) (F (τ, u1)− F (τ, u2))]uτdxdτ.

By applying the next inequalities

||u1|qu1 − |u2|qu2| ≤ (q + 1) (|u1|q + |u2|q) |u1 − u2| at q > 0,

|(|u1|qu1 − |u2|qu2) (u1 − u2)| ≥ |u1 − u2|q+2 at q > 0.

As a result, we obtain the inequality

1
2

∫
Ω

u2
t (t)dx+ χ

t∫
0

∫
Ω

|∇uτ |2dxdτ + a0

2

∫
Ω

|∇u|2dx+
t∫

0

∫
Ω

|uτ |qdxdτ ≤

≤ −a1

t∫
0

(
‖∇u1‖2r

2,Ω

∫
Ω

∇u∇uτdx−
(
‖∇u1‖2r

2,Ω − ‖∇u2‖2r
2,Ω

) ∫
Ω

∇u2∇uτdx
)
dτ+

+
t∫

0

∫
Ω

b(x, τ) (|u1|p−2 + |u2|p−2)uτdxdτ +
t∫

0

∫
Ω

h(x, τ) (F (τ, u1)− F (τ, u2))uτdxdτ.

(28)

We estimate the right-hand side of the inequality (28), applying the Hölder’s inequality∣∣∣∣ t∫
0

∫
Ω

b(x, τ) (|u1|p−2u1 − |u2|p−2u2)uτdxdτ

∣∣∣∣ ≤ b1(p− 1)
t∫

0

∫
Ω

(|u1|p−2 + |u2|p−2)uuτdxdτ ≤

≤ b1(p− 1)

((
t∫

0

∫
Ω

|u1|
2r(p−2)
r−2 dxdτ

) r−2
2r

+

(
t∫

0

∫
Ω

|u2|
2r(p−2)
r−2 dxdτ

) r−2
2r

)
×

×
(

t∫
0

∫
Ω

urdxdτ

) 1
r
(

t∫
0

∫
Ω

u2
τdxdτ

) 1
2

.
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Let us put r = 2N
N−2

, p ≤ 2 + 1
N−2

, N ≥ 3. Then by the Sobolev embedding theorem
H1(Ω) →→ Lr(Ω) and H1(Ω) →→ L2r(p−2)/(r−2)(Ω). In this case, taking into account the
smoothness class of solutions u1(x, t) and u2(x, t), we come to the estimate∣∣∣∣∣∣

t∫
0

∫
Ω

b(x, τ)
(
|u1|p−2u1 − |u2|p−2u2

)
uτdxdτ

∣∣∣∣∣∣ ≤ C1

t∫
0

(
‖uτ‖2

2,Ω + ‖∇u‖2
2,Ω + ‖u‖2

2,Ω

)
dτ. (29)

Let us estimate the first term∣∣∣∣a1

t∫
0

(
‖∇u1‖2r

2,Ω

∫
Ω

∇u∇uτdx−
(
‖∇u1‖2r

2,Ω − ‖∇u2‖2r
2,Ω

) ∫
Ω

∇u2∇uτdx
)
dτ

∣∣∣∣ ≤
≤ a1

t∫
0

‖∇u1‖2r
2,Ω ‖∇u‖2,Ω ‖∇uτ‖2,Ω dτ + a1

t∫
0

(
‖∇u1‖2r−2

2,Ω + ‖∇u2‖2r−2
2,Ω

)
‖∇u2‖2,Ω ‖∇uτ‖2,Ω×

×
∫
Ω

(|∇u1|2 − |∇u2|2) dxdτ ≤ a1

t∫
0

‖∇u1‖2r
2,Ω ‖∇u‖2,Ω ‖∇uτ‖2,Ω dτ+

+a1C
′
2

t∫
0

‖|∇u1|+ |∇u2|‖2,Ω ‖∇u‖2,Ω ‖∇uτ‖2,Ω ≤

≤ χ
4

t∫
0

‖∇uτ‖2
2,Ω dτ + C2

t∫
0

(
‖uτ‖2

2,Ω + ‖∇u‖2
2,Ω + ‖u‖2

2,Ω

)
dτ.

The third term is estimated in a similar way. From the obtained estimates, we get∫
Ω

u2
t (t)dx+ C0

∫
Ω

|u|2dx+ a0

∫
Ω

|∇u|2dx+ χ
t∫

0

∫
Ω

|∇uτ |2dxdτ +
t∫

0

∫
Ω

|uτ |qdxdτ ≤

≤ C4

t∫
0

(
‖uτ‖2

2,Ω + a0 ‖∇u‖2
2,Ω + C0 ‖u‖2

2,Ω

)
dτ + C5

t∫
0

(
‖uτ‖2

2,Ω + a0 ‖∇u‖2
2,Ω + C0 ‖u‖2

2,Ω

)d
dτ,

where d > 1.
From the last inequality follows that∫

Ω

u2
t (t)dx+ C0

∫
Ω

|u|2dx+ a0

∫
Ω

|∇u|2dx ≤ C4

t∫
0

(
‖uτ‖2

2,Ω + a0 ‖∇u‖2
2,Ω + C0 ‖u‖2

2,Ω

)
dτ+

+C5

t∫
0

(
‖uτ‖2

2,Ω + a0 ‖∇u‖2
2,Ω + C0 ‖u‖2

2,Ω

)d
dτ,

where by Bihari’s lemma, implies
∫
Ω

u2
t (t)dx+C0

∫
Ω

|u|2dx+a0

∫
Ω

|∇u|2dx = 0 almost everywhere

on the time interval (0, T ), which means that the generalized solution is unique.

5 Conclusion

In the paper, we investigated the solvability of the inverse problem of determining the
solution of the pseudohyperbolic equation, also an unknown coefficient of a special form
which identifies the external source. The methods used are based on the transition from
the original problem to the equivalent problem for the loaded nonlinear pseudohyperbolic
equation. For this problem we use Galerkin’s method to prove the existence of a strong
generalized solution. The obtained results on the solvability of the inverse problem are new
and can be useful to study another problems in the given area.
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MODIFICATION OF THE PARAMETRIZATION METHOD FOR SOLVING
A BOUNDARY VALUE PROBLEM FOR LOADED DEPCAG

The functional differential equation plays important role in mathematical modeling of biological
problems. In the present research work, we investigate a boundary value problem (BVP) for a
functional differential equation. This equation includes loaded terms and a term with generalized
piecewise constant argument. We apply a modified version of the Dzhumabaev parameterization
method. The method’s goal is to lead the original problem into an equivalent multi-point BVP for
ordinary differential equations with parameters, which is composed of a problem with initial and
additional conditions. The multi-point BVP is leaded to a system of linear algebraic equations
in parameters, which are introduced as the values of the desired solution at the dividing points.
The found parameters are plugged into auxiliary Cauchy problems on the partition subintervals,
whose solutions are the restrictions of the solution to the original problem. The obtained results
are verified by a numerical example. Numerical analysis showed high efficiency of the constructed
modified version of the Dzhumabaev parameterization method.
Key words: load, piecewise-constant argument, two-point boundary value problem,
parametrization method, numerical solution.
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Жалпыланған түрдегi бөлiктi-тұрақты аргументi бар жүктелген дифференциалдық

теңдеу үшiн шеттiк есептi шешудiң параметрлеу әдiсiнiң модификациясы

Функционалдық-дифференциалдық теңдеу биологиялық есептердi математикалық модель-
деуде маңызды рөл атқарады. Осы жұмыста функционалдық-дифференциалдық теңдеу үшiн
шеттiк есеп (ШЕ) қарастырылады. Бұл теңдеу жүктелген мүшелер мен жалпыланған түрде-
гi бөлiктi-тұрақты аргументi бар қосылғыштан тұрады. Жұмабаевтың параметрлеу әдiсiнiң
модификацияланған нұсқасы қолданылады. Әдiстiң мақсаты - берiлген есептi бастапқы және
қосымша шарттардан тұратын эквиваленттi параметрлерi бар жәй дифференциалдық теңде-
улер жүйесi үшiн көп нүктелi ШЕ келтiрiлуi болып табылады. Көп нүктелi ШЕ бөлу нүкте-
лерiнде iзделiндi шешiмнiң мәнi ретiнде енгiзiлетiн параметрлерi бар сызыктық алгебралық
теңдеулер жүйесiне келтiрiледi. Табылған параметрлер бөлiктеудiң iшкi интервалдарындағы
қосымша Коши есептерiне қойылады, олардың шешiмдерi бастапқы шеттiк есептiң шешiм-
дерiнiң сығылуы болып табылады. Алынған нәтижелер сандық мысалмен тексерiледi. Сан-
дық талдау Жұмабаевтың параметрлеу әдiсiнiң құрастырылган модификациясының жоғары
тиiмдiлiгiн көрсеттi.
Түйiн сөздер: жүктеу, бөлiктiтұрақты аргумент, екi нүктелi шеттiк есеп, параметрлеу әдiсi,
сандық шешiм.
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Модификация метода параметризации решения краевой задачи для нагруженных

дифференциальных уравнений с кусочно-постоянным аргументом обобщенного типа

Функционально-дифференциальное уравнение играет важную роль в математическом моде-
лировании биологических задач. В настоящей работе исследуется краевая задача (КЗ) для
функционально-дифференциального уравнения. В это уравнение входят нагруженные чле-
ны и член с обобщенным кусочно-постоянным аргументом. Применим модифицированный
вариант метода параметризации Джумабаева. Цель метода - привести исходную задачу к эк-
вивалентной многоточечной КЗ для обыкновенных дифференциальных уравнений с парамет-
рами, состоящей из задачи с начальными и дополнительными условиями. Многоточечная КЗ
приводится к системе линейных алгебраических уравнений с параметрами, которые вводят-
ся как значения искомого решения в точках деления. Найденные параметры подставляются
во вспомогательные задачи Коши на подинтервалах разбиения, решения которых являются
сужениями решения исходной задачи. Полученные результаты проверяются на численном
примере. Численный анализ показал высокую эффективность построенной модифицирован-
ной версии метода параметризации Джумабаева.
Ключевые слова: нагрузка, кусочно-постоянный аргумент, двухточечная краевая задача,
метод параметризации, численное решение.

1 Introduction and preliminaries

The theory’s creators, K. Cook, J. Wiener and S. Busenberg, suggested using differential
equations with the piecewise constant argument for investigations in [1], [2]. Within the
final four decades, numerous interesting results have been found, and applications have
been realized in this theory. Numerous additional theoretical issues, such as existence and
uniqueness of solutions, oscillations and stability, integral manifolds and periodic solutions, as
well as many more, have been thoroughly discussed. Information about differential equations
with piecewise constant argument of generalized type (DEPCAG) can be found in books [3],
[4] and papers [5], [6].

This article’s basic objective is to broaden the modification of Dzhumabaev
parametrization method [7], [8] to the boundary value problem for the system of loaded
DEPCAG. For this purpose, we have developed computational method solving a boundary-
value problem for the system of loaded DEPCAG.

Loaded differential equations (LDE) were investigated in [9], [10] and the references
therewith. Numerous problems for LDE and methods for solving problems for LDE are
considered in [11]– [16].

We consider the following system of loaded DEPCAG

dx

dt
= A0(t)x+K(t)x(γ(t)) +

m+1∑
i=1

Mi(t)x(θi−1) + f(t), x ∈ Rn, t ∈ (0, T ), (1)

subject to the two-point boundary condition

B0x(0) + C0x(T ) = d, d ∈ Rn, (2)
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whereA0(t),K(t),Mi(t), (i = 1,m+ 1), are of dimensions (n×n) and are continuous on [0, T ],
and the n-vector-function f(t) are piecewise continuous on [0, T ] with possible discontinuities
of the first kind at the points t = θj, (j = 1,m); B0 and C0 are (n × n) constant matrices,
‖x‖ = max

i=1,n
|xi|.

The argument γ(t) is a step function defined as γ(t) = ξi−1 if t ∈ [θi−1, θi), i = 1,m+ 1;
θi−1 < ξi−1 < θi for all i = 1,m+ 1; where 0 = θ0 < θ1 < ... < θm < θm+1 = T .

A function x(t) is called a solution to problem (1) and (2) if:
(i) the x(t) is continuous on [0, T ];
(ii) the x(t) is differentiable on [0, T ] with the possible exception of the θj, j = 0,m, where

the one-sided derivatives exist;
(iii) the x(t) satisfies (1) on each interval (θi−1, θi), i = 1,m+ 1; at the θj, Eq. (1) is

satisfied by the right-hand derivatives of x(t);
(iv) the x(t) satisfies the boundary condition (2).

2 Materials and methods

We employ the approach proposed in [17] to solve the boundary-value problem for the system
of loaded DEPCAG (1) and (2). This approach is based on the algorithms of the modified
version of the Dzhumabaev parameterization method and numerical methods for solving
Cauchy problems.

By using loading points, the interval [0, T ] is split into subintervals: [0, T ) =
m+1⋃
s=1

[θs−1, θs).

C([0, T ], θ,Rn(m+1)) be the space of functions systems x[t] = (x1(t), x2(t), . . . , xm+1(t))
′,

where xs : [θs−1, θs) → Rn are continuous and have finite left-hand side limits lim
t→θs−0

xs(t),

s = 1,m+ 1 with norm ‖x[·]‖2 = max
s=1,m+1

sup
t∈[θs−1,θs)

|xs(t)|.

Denote by xr(t) a restriction of function x(t) on r-th interval [θr−1, θr), i.e.
xr(t) = x(t) for t ∈ [θr−1, θr), r = 1,m+ 1.

Then the function system x[t] = (x1(t), x2(t), . . . , xm+1(t)) ∈ C([0, T ], θ, Rn(m+1)), and
its elements xr(t), r = 1,m+ 1, satisfy the following boundary value problem for system of
loaded DEPCAG

dxr
dt

= A0(t)xr+K(t)xr(ξr−1)+
m+1∑
i=1

Mi(t)xi(θi−1)+f(t), t ∈ [θr−1, θr), r = 1,m+ 1, (3)

B0x1(0) + C0 lim
t→T−0

xm+1(t) = d, (4)

lim
t→θs−0

xs(t) = xs+1(θs), s = 1,m. (5)

Introduce parameters λr = xr(θr−1) and µr = xr(ξr−1) for all r = 1,m+ 1. The following
problem with parameters is obtained by substituting vr(t) = xr(t)−λr on every r-th interval
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[θr−1, θr):

dvr
dt

= A0(t)(vr + λr) +K(t)µr +
m+1∑
i=1

Mi(t)λi + f(t), t ∈ [θr−1, θr), (6)

vr(θr−1) = 0, r = 1,m+ 1, (7)

B0λ1 + C0λm+1 + C0 lim
t→T−0

vm+1(t) = d, (8)

λs + lim
t→θs−0

vs(t) = λs+1, s = 1,m, (9)

µr = vr(ξr−1) + λr, r = 1,m+ 1. (10)

A solution to problem (6)–(10) is a triple (λ∗, µ∗, v∗[t]), with elements λ∗ =
(λ∗1, λ

∗
2, . . . , λ

∗
m+1), µ

∗ = (µ∗1, µ
∗
2, . . . , µ

∗
m+1), v

∗[t] =
(
v∗1(t), v∗2(t), . . . , v∗m+1(t)

)
, where v∗r(t)

are continuously differentiable on [θr−1, θr), r = 1,m+ 1, and satisfying the system (6),
conditions (7)- (10) at the λr = λ∗r, µr = µ∗r, j = 1,m+ 1.

The original problem (1), (2) and problem with parameters (6)–(10) are equivalent.

Let consider Φr(t) a fundamental matrix of the differential equation
dxr
dt

= A0(t)xr(t) on

[θr−1, θr], r = 1,m+ 1.
Consequently, the solution to the Cauchy problem (6), (7) may be expressed as follows

vr(t) = Φr(t)

t∫
θr−1

Φ−1r (τ)
[
A0(τ)λr +K(τ)µr +

m+1∑
i=1

Mi(τ)λi

]
dτ+

+ Φr(t)

t∫
θr−1

Φ−1r (τ)f(τ)dτ, t ∈ [θr−1, θr), r = 1,m+ 1. (11)

Consider the Cauchy problems for ordinary differential equations on the subintervals

dy

dt
= A0(t)y +D(t), y(θr−1) = 0, t ∈ [θr−1, θr], r = 1,m+ 1, (12)

where P (t) is a (n × n)-matrix or a n-vector, piecewise continuous on [0, T ] with possible
discontinuities of the first kind at the t = θj, (j = 1,m). On each r-th interval, denote by
Pr(D, t) a unique solution to the Cauchy problem (12). The uniqueness of the solution to the
Cauchy problem yields

Pr(D, t) = Φr(t)

t∫
θr−1

Φ−1r (τ)D(τ)dτ, t ∈ [θr−1, θr], r = 1,m+ 1. (13)
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The following system of linear algebraic equations is get by substituting the right-hand
side of (11) using (13) into conditions (8)-(10):

B0λ1 + C0λm+1 + C0Pm+1(A0, T )λm+1 + C0Pm+1(K,T )µm+1+

+ C0

m+1∑
i=1

Pi(Mi, T )λi = d − C0Pm+1(f, T ), (14)

λs + Ps(A0, θs)λs + Ps(K, θs)µs +
m+1∑
i=1

Pi(Mi, θs)λi − λs+1 = −Ps(f, θs), s = 1,m, (15)

µr − Pr(K, ξr−1)µr − Pr(A0, ξr−1)λr − λr−

−
m+1∑
i=1

Pi(Mi, ξr−1)λi = Pr(f, ξr−1), r = 1,m+ 1. (16)

Symbolized by Q(θ) -
(

2n(m + 1) × 2n(m + 1)
)
matrix corresponding to the system’s left

side (14) - (16) and write the system as

Q(θ)(λ, µ) = F (θ), λ ∈ Rn(m+1), µ ∈ Rn(m+1), (17)

where (λ, µ) =
(
λ1, λ2, ..., λm+1, µ1, µ2, ..., µm+1

)′,
F (θ) =

(
d− C0Pm+1(f, T ),−P1(f, θ1),−P2(f, θ2), . . . ,−Pm(f, θm), P1(f, ξ0), P2(f, ξ1), . . . ,

Pm+1(f, ξm)
)
∈ R2n(m+1).

It is simple to establish that the solvability of the boundary value problem (1) and (2) is
equivalent to the solvability of the system (17). The solution of the system (17) is a pair of

vectors (λ, µ) =
(
λ1, λ2, . . . , λm+1, µ1, µ2, ..., µm+1

)′
∈ R2n(m+1) consists of the values of the

solutions of the problem (1) and (2), i.e. λr = x(θr−1), µr = x(ξr−1), r = 1,m+ 1.

3 The Main results

We offer the following formulation of an algorithm for solving problem (1) and (2) based on
the solving of Cauchy problems.

Step 1. Split up each r-th interval [θr−1, θr], r = 1,m+ 1, into Nr parts. Determine the
approximate values of coefficients and system’s right side (17) of via solutions to the following
Cauchy matrix and vector problems obtained using the fourth-order Runge-Kutta method
with step hr = (θr − θr−1)/Nr, r = 1,m+ 1:

dy

dt
= A0(t)y + A0(t), y(θr−1) = 0, t ∈ [θr−1, θr], r = 1,m+ 1,

dy

dt
= A0(t)y +K(t), y(θr−1) = 0, t ∈ [θr−1, θr], r = 1,m+ 1,
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dy

dt
= A0(t)y +Mi(t), y(θr−1) = 0, t ∈ [θr−1, θr], i = 1,m+ 1, r = 1,m+ 1,

dy

dt
= A0(t)y + f(t), y(θr−1) = 0, t ∈ [θr−1, θr], r = 1,m+ 1.

Step 2. Then we have the approximate system of algebraic equations with respect to
parameters λ and µ:

Q∗(θ)(λ
∗, µ∗) = F∗(θ), λ∗ ∈ Rn(m+1), µ∗ ∈ Rn(m+1). (18)

Solve the system (18) and we find (λ∗, µ∗) = (λ∗1, λ
∗
2, . . . , λ

∗
m+1, µ

∗
1, µ

∗
2, . . . , µ

∗
m+1)

′ ∈ R2n(m+1).
Note that the elements of λ∗ and µ∗ are the values of the solution to problem (1) and (2):
λ∗r = x∗(θr−1), µ∗r = x∗(ξr−1), r = 1,m+ 1.

Step 3. Solve the following Cauchy problems

dy

dt
= A0(t)y +K(t)µ∗r +

m+1∑
i=1

Mi(t)λ
∗
i + f(t),

y(θr−1) = λ∗r, t ∈ [θr−1, θr), r = 1,m+ 1,

and determine the values of the solution x∗(t) at the remaining points of the subintervals.
Hence, the offered algorithm provides us with the numerical solution to the problem for

the system of loaded DEPCAG (1) and (2).
Consider the following example to demonstrate the proposed approach of the numerical

solving of problem (1) and (2) based on the modification of Dzhumabaev parametrization
method.

4 Example

We consider the problem for the system of loaded DEPCAG:

dx

dt
=

(
t t2

4t3 4

)
x+

(
t3 t+ 3
2 t2

)
x(γ(t))+

+

(
2 t− 4
t3 3t

)
x(θ0) +

(
6t2 3
−6t 1

)
x(θ1) + f(t), x ∈ R2, t ∈ (0, T ), (19)

(
2 5
−7 1

)
x(0) +

(
−7 1
1 9

)
x(T ) =

(
−36
−29

)
, (20)

where θ0 = 0, θ1 =
1

2
, θ2 = T = 1,

γ(t) = ζ0 =
1

4
, f(t) =

(
57
8
t3 − 9t4 + 18t2 − 129

16
t+ 97

16

16t5 − 32t6 − 5t3 − 49
16
t2 + 24t− 4

)
, t ∈

[
0,

1

2

)
,

γ(t) = ζ1 =
3

4
, f(t) =

(
47
8
t3 − 9t4 + 18t2 − 105

16
t+ 169

16

16t5 − 32t6 − 5t3 − 25
16
t2 + 24t− 13

2

)
, t ∈

[1

2
, 1
)
.
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Here we have two subintervals:
[
0,

1

2

)
,
[1

2
, 1
)
. Applying the scheme of the modification

of Dzhumabaev parametrization method, introduce parameters λ1 = x1(0), λ2 = x2

(1

2

)
,

µ1 = x1

(1

4

)
, µ2 = x2

(3

4

)
. Making the substitution

v1(t) = x1(t)− λ1, t ∈
[
0,

1

2

)
, v2(t) = x2(t)− λ2, t ∈

[1

2
, 1
)
,

we get the boundary value problem with parameters:

dv1
dt

=

(
t t2

4t3 4

)
(v1 + λ1) +

(
t3 t+ 3
2 t2

)
µ1 +

(
2 t− 4
t3 3t

)
λ1 +

(
6t2 3
−6t 1

)
λ2+

+

(
57
8
t3 − 9t4 + 18t2 − 129

16
t+ 97

16

16t5 − 32t6 − 5t3 − 49
16
t2 + 24t− 4

)
, t ∈

[
0,

1

2

)
, (21)

v1(0) = 0, (22)

dv2
dt

=

(
t t2

4t3 4

)
(v2 + λ2) +

(
t3 t+ 3
2 t2

)
µ2 +

(
2 t− 4
t3 3t

)
λ1 +

(
6t2 3
−6t 1

)
λ2+

+

(
47
8
t3 − 9t4 + 18t2 − 105

16
t+ 169

16

16t5 − 32t6 − 5t3 − 25
16
t2 + 24t− 13

2

)
, t ∈

[1

2
, 1
)
, (23)

v2

(1

2

)
= 0, (24)

(
2 5
−7 1

)
λ1 +

(
−7 1
1 9

)
λ2 +

(
7 1
1 9

)
lim
t→1−0

v2(t) =

(
−36
−29

)
, (25)

λ1 + lim
t→θ1−0

v1(t) = λ2, (26)

µ1 = v1

(1

4

)
+ λ1, µ2 = v2

(3

4

)
+ λ2. (27)

By dividing the subintervals
[
0,

1

2

)
,
[1

2
, 1
)
, with step h = 0.05 we give the results of the

numerical implementation of algorithm
Using equivalent problem (21)-(27) and solving the relevant system of linear algebraic

equations (18) we get

λ∗1 =

(
−0.999996216
0.000001946

)
, λ∗2 =

(
0.999995267
−1.749996275

)
,
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Таблица 1: Comparison of exact and numerical solutions to problem (19), (20)
t |x∗1(t)− x̃1(t)| |x∗2(t)− x̃2(t)| t |x∗1(t)− x̃1(t)| |x∗2(t)− x̃2(t)|
0 0.000003784 0.000001946 0.5 0.000004733 0.000003725
0.05 0.000003775 0.000001785 0.55 0.000003786 0.000004755
0.1 0.000003772 0.000001679 0.6 0.000002852 0.00000587
0.15 0.00000378 0.000001638 0.65 0.000001937 0.000007011
0.2 0.000003807 0.000001674 0.7 0.000001054 0.000008079
0.25 0.000003858 0.000001796 0.75 0.00000023 0.000008925
0.3 0.000003941 0.000002011 0.8 0.000000489 0.000009324
0.35 0.000004063 0.000002324 0.85 0.000001025 0.000008942
0.4 0.00000423 0.000002728 0.9 0.000001251 0.000007283
0.45 0.000004451 0.000003207 0.95 0.000000967 0.000003617
0.5 0.000004733 0.000003725 1 0.00000014 0.000003144

µ∗1 =

(
0.874996142
−0.937498204

)
, µ∗2 =

(
2.12499977
−2.437491075

)
.

Then, using the found values λ∗1, λ∗2, µ∗1, µ∗2, we solve the Cauchy problems by the fourth-
order Runge-Kutta method

dx̃1
dt

=

(
t t2

4t3 4

)
x̃1 +

(
t3 t+ 3
2 t2

)
·
(

0.874996142
−0.937498204

)
+

+

(
2 t− 4
t3 3t

)
·
(
−0.999996216
0.000001946

)
+

(
6t2 3
−6t 1

)
·
(

0.999995267
−1.749996275

)
+

+

(
57
8
t3 − 9t4 + 18t2 − 129

16
t+ 97

16

16t5 − 32t6 − 5t3 − 49
16
t2 + 24t− 4

)
, x̃1(0) =

(
−0.999996216
0.000001946

)
, t ∈

[
0,

1

2

)
,

dx̃2
dt

=

(
t t2

4t3 4

)
x̃2 +

(
t3 t+ 3
2 t2

)
·
(

2.12499977
−2.437491075

)
+

+

(
2 t− 4
t3 3t

)
·
(
−0.999996216
0.000001946

)
+

(
6t2 3
−6t 1

)
·
(

0.999995267
−1.749996275

)
+

+

(
47
8
t3 − 9t4 + 18t2 − 105

16
t+ 169

16

16t5 − 32t6 − 5t3 − 25
16
t2 + 24t− 13

2

)
, x̃2

(1

2

)
=

(
0.999995267
−1.749996275

)
, t ∈

[1

2
, 1
)
.

and we find numerical solution of the problem (19) and (20).

Exact solution of the (19) and (20) is x∗(t) =

(
8t3 − 4t2 + 1

t2 − 4t

)
.

In Table 1, difference between the exact solution x∗(tk) and numerical solution x̃(tk),
k = 0, 20, are shown.
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SMOOTHNESS OF SOLUTIONS (SEPARABILITY) OF THE NONLINEAR
STATIONARY SCHRÖDINGER EQUATION

The equation of motion of a microparticle in various force fields is the Schrödinger wave equation.
Many questions of quantum mechanics, in particular the thermal radiation of electromagnetic
waves, lead to the problem of separability of singular differential operators. One such operator is
the above Schrödinger operator. In this paper, the named operator is studied by the methods of
functional analysis. Found sufficient conditions for the existence of a solution and the separability
of an operator in a Hilbert space. All theorems were originally proved for the model Sturm-Liouville
equation and extended to a more general case.
In §1-2, for the nonlinear Sturm-Liouville equation, sufficient conditions are found that ensure
the existence of an estimate for coercivity, and estimates of weight norms are obtained for the
first derivative of the solution. In Sections 3-4 the results of Sections 1-2 are generalized for the
Schrödinger equation in the case m = 3.
Key words: Nonlinear equations, continuous operator, equivalence, potential function.
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Шредингер теңдеуiнiң сызықты емес стационарлық теңдеуiнiң шешiмдерiнiң тегiстiлiгi
(бөлiмдiлiгi)

Микробөлшектердiң әртүрлi күш өрiстерiндегi қозғалыс теңдеуi Шредингер толқынының
теңдеуi болып табылады. Кванттық механиканың көптеген сұрақтары, атап айтқанда элек-
тромагниттiк толқындардың жылулық сәулеленуi сингулярлы дифференциалдық оператор-
лардың бөлiну мәселесiне әкеледi. Осындай операторлардың бiрi жоғарыдағы Шредингер
операторы болып табылады. Бұл жұмыста аталған оператор функционалдық талдау әдiстерi-
мен зерттеледi. Шешiмнiң болуы және Гильберт кеңiстiгiндегi оператордың бөлiнуi үшiн жет-
кiлiктi шарттар табылды. Барлық теоремалар бастапқыда Штурм-Лиувилл теңдеуiнiң үлгiсi
үшiн дәлелдендi және жалпы жағдайға дейiн кеңейтiлдi.
§1-2-де сызықты емес Штурм-Лиувилл теңдеуi үшiн коэрцивтiлiк бағасының болуын қамта-
масыз ететiн жеткiлiктi шарттар табылды және шешiмнiң бiрiншi туындысы үшiн салмақ
нормаларының бағалаулары алынды. 3-4 бөлiмдерде 1-2 бөлiмдердiң нәтижелерi m = 3 жағ-
дайындағы Шредингер теңдеуi үшiн жалпыланған.
Түйiн сөздер: Сызықты емес теңдеулер, үздiксiз оператор, эквиваленттiлiк, потенциалдық
функция.
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Уравнением движения микрочастицы в различных силовых полях является волновое урав-
нение Шредингера. Многие вопросы квантовой механики в частности тепловое излучение
электромагнитных волн приводят к задаче разделимости сингулярных дифференциальных
операторов. Одним из таких операторов является вышеуказанный оператор Шредингера.
Данной работе исследуется названный оператор методами функционального анализа. Най-
денный достаточные условия существовании решении и разделимости оператора в Гильбербо-
вом пространстве. Все теоремы первоначально доказаны для модельного уравнение Штурма
-Лиувилля и распространено на более общий случай.
В §1-2 для нелинейного уравнения Штурма-Лиувилля найдены достаточные условия, обес-
печивающие наличие оценки коэрцитивности, а для первой производной решения получены
оценки весовых норм. В §3-4 обобщены результаты §1-2 для уравнения Шредингера в случае
m = 3.
Ключевые слова: Нелинейные уравнения, непрерывный оператор, эквивалентность, потен-
циальная функция.

1 Introduction

In this paper, the smoothness of solutions to the nonlinear equation is considered

Lu = −∆u+ q(x, u)u = f(x) ∈ L2(Rm)

In [1,2] for the nonlinear Sturm-Liouville equation, sufficient conditions are found that
ensure the existence of an estimate for the coecitivity, and for the first derivative of the
solution, estimates for the weight norms were obtained. In [1,2] generalized the results of §1-2
for the Schrödinger equation in the case m = 3.

2 Materials and methods

For simplicity, we present one result for the Sturm-Liouville equation.

Theorem 1 Let the following conditions are satisfied:
a) q(x, y) ≥ δ〉0;
b) q(x, y) is a continuous function on the set of variables in R2;

с) sup
[x−η)≤1

sup
|C0−C1|≤A |C0|≤A

q(x,C0)

q(x,C1)
< ∞, where is any finite value. Then for any

f(x) ∈ L2(Rm) there is a solution (x) to the equation

Ly = −y′′(x) + q(x, y)y = f,

which has quadratically summable second derivative, i.е. y′′(x) ∈ L2(Rm).

The proof of this theorem belongs to Muratbekov M.B. [3]. Unfortunately, in the work [8]
the author was incorrectly specified. Please apologize for inaccuracy. As we will see later (in
Section 2.4), such results hold for a wide class of nonlinear operators. For linear operators of
similar work was considered in [1-3, 5-7, 9, 11, 12, 13]

Let us enter the following designations: Rm is Euclidean m-dimensional real space of
points x = (x1, x2, . . . , xm). Ω̄ is a closure of Ω where Ω is an open set in Rm, ‖ · ‖p,Ω. is a
norm of the element Lρ(Ω). Instead of ‖ · ‖p,Ω at Ω = Rm we will write ‖ · ‖ρ, if p = 2 in
designations ‖ · ‖ρ,Ω and ‖ · ‖p we will omit ρ.
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Dα
u =

∂|α|u

∂xα1
1 . . . ∂xαm

m

,

α = (α1, . . . , αm) – multiindex, |α| = α1 +α2 + . . .+αm. C1, C2, . . . are various constants
constants, the exact value of which does not interest us.

2.1 Existence of the solution

In the given section the following equation is considered

Ly = −y′′(x) + q(x, y)y = f(x) ∈ L2(R), (1)

where R = (−∞,∞).
The function y ∈ L2(R) is called the weak solution of equation (1), if there is a sequence

{yn} ⊂ W 1
2 (R)

⋂
W 2

2,l>c(R) such that

‖yn − y‖α2,loc(R)
→ 0, ‖Lyn − f‖L2,loc(R)

→ 0, n→∞.

It is said that the sequence {ηn}∞n=1 of basic functions from C∞0 (Rm) converges to (1) in
Rm, if:

а) for any compact K ⊂ Rm there will be such a number N, that ηn(x) = 1 at all x ∈ K
and n ≥ N

b) functions {ηn} uniformly limited in Rm, |ηn(x)| ≤ 1, x ∈ Rm, n = 1, 2, . . . [8].

Lemma 1 Let q(x, y) ≥ δ < 0 and is continuous on both arguments in R2, then for any
f ∈ L2(R) there is a weak solution of the equation (1) in the space W 1

2 (R).

Proof. Since, according to the assumption, the function q(x, y) is limited from below,
then, without losing the generality of reasoning, we can assume that the condition q(x, y) ≥ 1
is hold.

First, we will be engaged in proving the existence of a solution to the first boundary value
problem

Lnεynε = −y′′nε
+ ynε +

(q(x, ynε)− 1)ynε

(1 + ε(q)(x, ynε)− 1) + ε‖b(x, ynε)‖2,(−an,an)

= fηn, (2)

ynε(+a) = ynε(a) = 0, (3)

where [−an, an] − sup pηn, and b(x, yne) = (q(x, ynε) − 1)ynε in the space W 2
2,0[−an, an];

W 2
2,0[−an, an] – is space of functions z ∈ W 2

2 и z(−an) = z(an) = 0.
We will reduce problem (2) – (3) to an equivalent integral equation, to which we then

apply the Schauder principle [9].
Let us denote by L0 the operator defined on W 2

2,0[−an, an] with the equality

L0y = −y′′(x) + y(x).

Due to the known theorems for the Sturm-Liouville operator there is a completely
continuous inverse operator L−1

0 , defined all over space L2[−an, an]. We need Lemma.
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Lemma 2 The problem (2) – (3) is equivalent to the integral equation

znε =
(q(x, L−1

0 znε)− 1)L−1
0 znε

1 + ε(q(x, L−1
0 znε)− 1) + ε‖b(x, L−1

0 znε)‖2
2

+ fηn,

znε , fηn ∈ L2[−an, an].

(4)

The proof is obvious.
Let us denote by A the operator which acts on the following formula:

A(z) =
(q(x, L−1

0 z)− 1)L−1
0 z

1 + ε(q(x, L−1
0 z)− 1) + ε‖b(x, L−1

0 z)‖2
2,[−an,an]

+ fηn.

Further we denote

S(0;N) =

{
ϑ ∈ L2(−an, an) : ‖ϑ‖2 ≤ N =

1√
ε

}
,

where ϑ = z − fηn. Consider the operator on this ball

A(ϑ) = A(z)− fηn = A(ϑ+ fηn)− fηn =

=
(q(x, L−1

0 (ϑ+ fηn))− 1)L−1
0 (ϑ+ fηn)

1 + ε(q(x, L−1
0 (ϑ+ fηn))− 1) + ε‖b(x, L−1

0 (ϑ+ fηn))‖2
2,(−an,an)

.

It is obvious that, if ϑ0 – is a fixed point of operator m, then ϑ0 + fηn – is a fixed point
of operator . Therefore, in the future instead of operator A, it is enough to consider A0.

Let us prove that 0 reflects the ball S(0;N) ∈ L2[−an, an] in itself. Let ϑ ∈ S(0;N). We
will consider two cases:

1.
‖(q(x, L−1

0 (ϑ+ fηn))− 1)L−1
0 (ϑ+ fηn)‖2

2,(−an,an) ≤ N =
1√
ε
.

Then

‖A0(ϑ)‖2 =

∥∥∥∥ (q(x, L−1
0 z)− 1)L−1

0 z

1 + ε(q(x, L−1
0 z)− 1) + ε‖b(x, L−1

0 z)‖2
2

∥∥∥∥
2,(−an,an)

≤

≤ ‖(q(x, L−1
0 (ϑ+ fηn))− 1)L−1

0 (ϑ+ fηn)‖ ≤ N =
1√
ε

2.
(q(x, L−1

0 (ϑ+ fηn))− 1)L−1
0 )(ϑ+ fηn)‖ ≥ N.

Then

A0(ϑ)2 ≤
‖(q(x, L−1

0 (ϑ+ fηn))− 1)L−1
0 (ϑ+ fηn)‖2,(−an,an)

ε‖(q(x, L−1
0 (ϑ+ fηn))− 1)L−1

0 (ϑ+ fηn)‖2
2,(−an,an)

=

=
1

ε‖(q(x, L−1
0 (ϑ+ fηn))− 1)L−1

0 (ϑ+ fηn)‖2,(−an,an)

≤ 1

εN
=

1√
ε
.

Therefore,

‖A(ϑ)‖2,(−an,an) ≤ N, ∀ϑ ∈ S(0;N). (5)
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Now we will show that m – is completely continuous operator at S(0;N). Continuity is
obvious. Further, by virtue of Riesz theorem, it is enough to prove that the set of functions
{A0ϑ : ϑ ∈ S(0;N)} is uniformly limited and the relation is performed

lim
h→0
‖(A0(ϑ))(x+ h) + (A0(ϑ))(x)‖2,(−an,an) = 0

uniformly on ϑ ∈ S.
Due to estimate (5) the set of functions {A0(ϑ) : ϑ ∈ S(0;N)} is uniformly bounded.
Due to the continuity of q(x, y) on combination of variables and properties of the operator

L−1
0 , the relation q(x, y)

‖(A0(ϑ)(x+ h)− A0(ϑ))(x)‖2
2,(−an,an) → 0

uniformly at h→ 0 on ϑ ∈ S(0;N).
Thus, the operator Am is completely continuous and reflects S(0;N) in itself. Therefore,

according to the Schauder principle; integral equation (4) has at least one solution in the ball
S(0;N). Hence, by virtue of Lemma 2, it follows that there exists a solution to problem (2)
– (3) belonging to the space W 2

2 .
Further ‖ynε‖W 1

2 [−an,an] is estimated from above by constant independent of n, ε.
To prove this fact, let us take the linear operator

`nεy = y′′(x) + (1 +
q̃(x)− 1

1 + ε(q̃(x)− 1) + ε‖(q(x, ynε)− 1)ynε‖2
2

)y(x),

Defined on a set W 2
2,0(−an, an), where q̃(x) = q(x, ynε), and ynε – is a solution of the problem

(2) – (3) with the right side fηn. Let us construct a scalar product 〈`nε, ynε , ynε〉. Integrating
in parts and taking into account that non-integral members disappear due to (3), we obtain

‖ynε‖W 1
2 [−an,an] ≤ 21/2

 ∞∫
−∞

|f |2dx

1/2

.

Assume that C = 21/2

( ∞∫
−∞
|f |2dx

)1/2

, then

‖ynε‖W 1
2 [−an,an] ≤ C. (6)

Let us choose some sequence {ynεk
} of solutions belonging to a bounded set {ynε}, so that

‖ynεk
‖W 1

2 [−an,an] ≤ C, (7)

where εk → 0 at k →∞.
By virtue of (7) from the sequence {ynεk

} we can select subsequence, denote it again by
{ynεk

}, so that
ynεk
→ yn weakly in W 1

2 (−an, an),
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ynεk
→ yn weakly in L2(−an, an).

From (7) we have ‖yn‖W 1
2 (−an,an) ≤ C, and it is not difficult to see that yn satisfies the

equation
Lnyn = −y′′n(x) + q(x, yn)yn = fηn and yn(−an) = yn(an) = 0.

Next, each yn we continue with zero outside of [−an, an], continuation denote by ỹn.
With this continuation, we obtain elements W 1

2 (R), norms of which are limited:

‖ỹnε‖W 1
2 (R) ≤ C.

Therefore, from the sequence, we can select a subsequence ỹnk
, such that

ỹnk
→ y weakly in W 1

2 (R) (8)

ỹnk
→ y weakly in L2,` oc(R), (9)

and besides

‖y‖W 1
2 (R) ≤ C. (10)

Let [α, β] is any fixed segment in R. Then for any ε〉0 there exists such number N, that
at k = N(α, β) ∈ sup pỹnk

and by virtue (8)

‖Lỹnk
− f‖2,(α,β)〈ε.

From here and (9) we get that y(x) is a weal solution of the equation (1). Lemma is
proved.

2.2 Smoothness of the solution

In this section we will show that all solutions from W 1
2 (R) will be elements from W 2

2 (R), as
soon as a potential function known in it has some properties.

Theorem 2 Let the following conditions hold;
a) q(x, y) ≥ δ〉0;
b) q(x, y) is continuous function on a set of variables in R2;

c) sup
|x−η|≤1

sup
|C1−C2|≤A |C1|≤A

q(x,C1)

q(x,C2)
<∞,

where A is any finite value. Then for any f ∈ L2(R) there exists the solution y(x) ∈ L2(R)
of the equation (1), such that y′′(x) ∈ L2(R).

Theorem 3 Let the conditions hold:
a) q(x, y) ≥ δ〉0;
b) q(x, y) are continuous on a set of variables in R2;

c) sup
x∈R

sup
|C1−C2|≤A |C2|≤A

q(x, c1)

θ2(x, c2)
<∞, where

θ(x,C1) = inf
d〉0|x−t|≤10

(d−1 +

∫
|t−h|≤d

q(η, C2)dη),
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A is any finite value. Then for any f ∈ L2(R) there exists the solution y(x) ∈ L2(R) of
the equation (1) such that y′′(x) ∈ L2(R).

Theorem 4 Let the conditions а)-c) of theorem 2 are held and r(x) is a continuous, such

that sup
|x−y|≤1

r(y)

r(x)
<∞.

If for any k > 0 the value

B = sup
x∈R

sup
|C1|≤K

sup
0<η≤m−1(x,C1)

η−p ∫
|t−x|≤η

|r(t)|0dt


1/θ

is finite, then for any f ∈ L2(R) function

r(x)
d

dx
y(x) ∈ L2(R), (2 ≤ θ <∞, p = −θ

2
,m(x,C1) = (q(x,C1))1/q),

here y(x) is the solution of the equation (1) from L2(R).

Proof of Theorems 2-4. At any function f ∈ L2(R) by virtue of Lemma 1 for the
equation there exists a solution y(x) such that y(x) ∈ W 1

2 (R). Therefore, by Sobolev’s
embedding theorem [10] y(x) ∈ C(R). Then according to the condition b)

q(x, y(x)) ∈ C`oc(R). (11)

Let y0(x) is a weak solution of the equation (1) with the right side f0 ∈ L2(R). Since
y0(x) ∈ W 1

2 (R), then

y0(t)− y0(η) =

t∫
η

dy0

dx
dx.

By the Bunyakovsky inequality and by (10), we have

|y0(t)− y0(η)| ≤ (|t− η|)1/2‖f‖2,R. (12)

Assume that q̃(x) = q(x, y0(x)) and denote by L̃ closure in norm of L2 operator, given on
C∞0 (R) by equality L0y = −y′′(x) + q̃(x)y.

Lemma 3 Operator L̃ is self adjoint and positive defined.

Proof. The positive definiteness of L̃ follows from condition а) of Theorem 2. Self-
adjointness follows from (2) and from the results of [2]. The lemma is proved.

Now, assuming that y0(t) = C2, y0(η) = C1, A = 2‖f‖2 ≥
√
Aη‖f‖2, from (12) we obtain

|C2−C1| ≤ A. From here, due to conditions а)-c) of Theorem 2, for operator L̃ all conditions
of the Theorem 3, 4 are satisfied. Therefore, the operator L is separable, i.e.

‖y′′‖2 + ‖q̃(x)y‖2 ≤ C(‖L̃y‖+ ‖y‖2),

where does not depend on y ∈ D(L̃), where D(·) is the definition area, and ‖ · ‖ is the norm
in L2(D).
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It remains for us to show that y0(x) ∈ D(L̃). Suppose the contrary, that y0(x) 6∈ D(L̃).
By virtue of Lemma 2, there exists y1(x) ∈ W 1

2 (R) such that y1(x) = L̃−1f0. So, it is assumed
that y0(x) ∈ W 1

2 (R) is a solution of equation (1) with the right side of fo(x), then

L̃y2 = 0, y2 = y1 − y0 ∈ L2(R).

To complete the proof of the theorem, we need a lemma.

Lemma 4 Let the conditions a) and b) of theorem 2 be satisfied. Then the equation L̃y = 0
does not have a solution y(x) ∈ L2(R).

Proof. It is well known that if q̃(x) ≥ δ > 0, then the solution of the equation y′′(x) =
q(x)y exponentially grows both at x→ −∞, and at x→ +∞. Therefore, this solution cannot
belong to L2(R). The Lemma is proved.

From this lemma we obtain that y0(x) = y1(x). We get a contradiction. The theorem 2.
is completely proved.

Theorems 3, 4 are proved in the same way.

2.3 Nonlinear Schrödinger-type operator in L2(R
3)

Now let us consider the equation

−∆u+ q(x, u)u = f(x) (13)

in the space L2(R3).

Lemma 5 Let q(x, u) ≥ δ > 0 and is continuous on both arguments in R2, then for each
f ∈ L3(R3) there is a weak solution to equation (13) in space W 1

2 (R3).

This lemma is proved in the same way as the lemma 1.

Lemma 6 Let q(x, u) ≥ δ > 0 and is continuous on both arguments in R2, then for each
f ∈ L2(R3) there is a weak solution to equation (13) and the following inequality holds

‖u‖L∞(R3) + ‖u‖W 1
2 (R3) ≤ C‖f‖L2(R3), (14)

Where the constant C does not depend on u and f.

Proof. Let

qN(x, u) =

{
q(x, u), if q(x, u) ≤ N,

N, if q(x, u) ≥ N

The existence of a solution to the equation

−∆u+ qN(x, u)u = fN (15)

follows from lemma 5.
Let ux ∈ W 1

2 (R3)is a solution to equation (15). Let us consider the equation

Lu = fN , (16)
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where L = −∆ + q̃N(x),

Since qN(x, uN) are limited and q̃N(x), then on the theorem (3), [see 11] operator L is
self-adjoint and the equation (16) has a unique solution that coincides with uN .

It is known, if q1(x) ≤ q2(x), then Q1(x, y) ≥ 0 and Q2(x, y) ≥ 0, and Q1(x, y) ≥ Q2(x, y),
where Q1(x, y) and Ñ2(x, y) are Green functions of operators −∆ + q1(x), −∆ + q2(x).

Let QN(x, y)is the Green function of the operator L, then it follows from the above fact
that

QN(x, y) ≤ Q0(x, y), (17)

where Q0(x, y) is Green function of the operator −∆ + 1. It follows from this and (17) that

|ux(x)| =

∣∣∣∣∣∣
∫
R3

QN(x, y)f(y)dy

∣∣∣∣∣∣ ≤
∫
R3

QN(x, y)f(y)dy ≤
∫
R3

Q0(x, y)|f(y)|dy.

It is known that the operator

(Qf)(x) = u0(x) =

∫
R3

Q0(x, y)|f(y)|dy (18)

acts from L2(R3) in W 2
2 (R3). Therefore, by virtue of the Sobolev embedding theorems [10],

we have

‖uN(x)‖L∞(R3) ≤ C0‖f‖L2(R3), (19)

where C0 does not depend on N and f.
On the other hand, here is an estimation

‖uN(x)‖W 1
2 (R3) ≤ C1‖f‖L2(R3), (20)

where C1 does not depend on N and f.
Indeed, we will compose a scalar product 〈LuN , uN〉. Integrating in parts, we obtain (20).
From (19) and (20) we will have

‖uN(x)‖L∞(R3) + ‖uN‖W 1
2 (R3) ≤ C2‖f‖, (21)

where C2 = max(C1, C2).

Moving to limit at N →∞ we get

‖u(x)‖L∞(R3) + ‖u(x)‖W 1
2 (R3) ≤ C2‖f‖L2(R3).

It is not difficult to check that u(x) is the weak solution to equation (13) (see lemma 2).
The lemma is proved.
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2.4 Smoothness of the solution

Theorem 5 Let the following conditions be satisfied: а) q(x, y) ≥ δ > 0; b) q(x, y) is a
continuous function on a set of variables in R2 and

sup
|x−y|≤1

sup
|C1−C2|≤A|C1|≤A

q(x,C1)

q(y, C2)
<∞,

where A is any finite value. Then: а) for any right side of f ∈ L2(R3) there exists a solution
u(x) of the equation (13) such that ∆u ∈ L2(R3); b) let r(x) is continuous function in R3, if
for any k〉0 the value

B = sup
x∈R

sup
|C1|≤K

sup
0<η≤m−1(x,C1)

η−p ∫
|t−x|<η

|r(t)|θdt


1/θ

Is finite, then
r(x)D2u(x) = Lθ(R

3),

(2 ≤ θ <∞, p = −θ
2
, m(x,C1) = (q(x,C1))1/2.

Let us enter the function

q∗ε(t, C0) = inf

d−1; d ≥ inf
e∈F (ε)

d (t)

∫
θd(t)|e

q(x,C0)dx

 ,

where F (ε)
d (t) is a set of all compact subsets of cube θd(t), satisfying the following inequality

mese ≤ εdn, ε ∈ (0, 1).

Theorem 6 Let the conditions а), b) of the theorem 5 be satisfied and

sup
|x−y|≤1

sup
|C0−C1|≤A

q∗ε(x,C0)

q∗ε(x,C1)
<∞,

Let us denote m(x,C0) = q∗ε(x,C0), and by Ap(x,C0) – the function which is defined with the
equality

Ap(x,C0) = m−1−β(x,C0) sup
|C1|≤K

sup
0<η<m−1(x,C1)

η−β
∫

|x−t|<η

q(t, C1)dt,

where к is any value, β = 2(
3

p
− 1), p – is any number from the interval (1,2). Then, if at

some p ∈ (1, 2) the value
Ap = sup

|C0|≤K
sup
x∈R3

Ap(x,C0)

Is finite, then for any f(x) ∈ L2(R3) there exists a solution u(x) ∈ L2(R3) of the equation
(13), such that ∆u ∈ L2(R3).

Theorems 5, 6 are proved in the same way as theorems 2-4, based on results of work [7].



A.B. Birgebaev, M.B. Muratbekov 35

3 Discussion

For differential equations one of the important questions is finding solutions in function
spaces. In this paper, using operator methods, a sufficient condition for the existence of
solutions to the nonlinear Sturm-Liouville and Schrodinger equations is found. Research
methods and results can be used in the study of other nonlinear differential equations.

4 Conclusion

The issues of separability of operators and coercive estimates, and also the existence of a
solution to differential equations, are solved in combination. The results of this work are new
and generalize previously published works.
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ON A BOUNDARY VALUE PROBLEM FOR A BOUSSINESQ-TYPE
EQUATION IN A TRIANGLE

Earlier, we considered an initial-boundary value problem for a one-dimensional Boussinesq-type
equation in a domain that is a trapezoid, in which the theorems on its unique weak solvability
in Sobolev classes were established by the methods of the theory of monotone operators. In this
article, we continue research in this direction and study the issues of correct formulation of the
boundary value problem for a one-dimensional Boussinesq-type equation in a degenerate domain,
which is a triangle. A scalar product is proposed with the help of which the monotonicity of the
main operators is shown, and uniform a priori estimates are obtained. Further, using the methods of
the theory of monotone operators and a priori estimates, theorems on its unique weak solvability
in Sobolev classes are established. A theorem on increasing the smoothness of a weak solution
is established. In proving the smoothness enhancement theorem, we use a generalization of the
classical result on compactness in Banach spaces proved by Yu.I. Dubinsky ("Weak convergence
in nonlinear elliptic and parabolic equations Sbornik: Mathematics, 67 (109): 4 (1965)) in the
presence of a bounded set from a semi-normed space instead of a normed one. It is also shown
that the solution may have a singularity at the point of degeneracy of the domain. The order of
this feature is determined, and the corresponding theorem is proved.
Key words: Boussinesq equation, degenerating domain, a priori estimates, Sobolev space.
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Үшбұрыштағы Буссинеск типтес теңдеуiне қойылған шекаралық есеп

Осыған дейiн бiз трапециялы облыстағы бiрөлшемдi Буссинеск типтес теңдеуi үшiн қойы-
лған бастапқы-шекаралық есептi қарастырдық. Есептiң соболев кеңiстiктерiндегi бiрмәндi
әлсiз шешiмдiлiгi туралы теоремалар монотонды операторлар теориясы әдiсiмен дәлелдендi.
Осы мақалада бiз осы бағыттағы зерттеулердi жалғастырып, азғындалатын үшбұрышты об-
лыстағы бiрөлшемдi Буссинеск типтес теңдеуi үшiн қойылған шекаралық есептiң қисынды
қойылуын қарастырамыз. Негiзгi операторлардың монотондылығын көрсету кезiнде қолда-
нылған скалярлы көбейтiндi ұсынылып, бiрқалыпты априорлы бағалаулар алынды. Әрi қарай
монотонды операторлар теориясы және априорлы бағалаулар көмегiмен есептiң соболев кла-
старындағы бiрмәндi әлсiз шешiмдiлiгi туралы теоремалар дәлелдендi. Әлсiз шешiмнiң диф-
ференциалдық қасиеттерiн жақсартатын теорема дәлелдендi. Шешiмнiң дифференциалдық
қасиеттерiн жақсартатын теореманы дәлелдеу кезiнде бiз банах кеңiстiктерiндегi компак-
тылық туралы классикалық нәтиженiң нормаланған кеңiстiкттiң орнына полунормаланған
кеңiстiктегi шенелген жиын бар болу жағдайының Ю.И. Дубинский ("Weak convergence in
nonlinear elliptic and parabolic equations Sbornik: Mathematics, 67 (109): 4 (1965)) дәлелдеген
жалпылауын пайдаландық. Бұған қоса облыстың азғындалу нүктесiнде шешiмнiң ерекшiгi
бар екендiгi көрсетiлген. Осы ерекшелiктiң ретi анықталып, сәйкес теорема дәлелдендi.
Түйiн сөздер: Буссинеск теңдеуi, азғындалатын облыс, априорлы бағалаулар, Соболев
кеңiстiгi.
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Граничная задача для уравнения типа Буссинеска в треугольнике

Ранее нами была рассмотрена начально-граничная задача для одномерного уравнения
типа Буссинеска в области, представляющей собой трапецию, в которой методами теории
монотонных операторов установлены теоремы об её однозначной слабой разрешимости в
соболевских классах. В этой статье мы продолжаем исследования в данном направлении и
изучаем вопросы корректной постановки граничной задачи для одномерного уравнения типа
Буссинеска в вырождающейся области, представляющей собой треугольник. Предложено
скалярное произведение с помощью которого показана монотонность основных операторов, и
получены равномерные априорные оценки. Далее методами теории монотонных операторов
и априорных оценок установлены теоремы об её однозначной слабой разрешимости в
соболевских классах. Установлена теорема о повышении гладкости слабого решения. При
доказательстве теоремы о повышении гладкости мы используем обобщение классического
результата о компактности в банаховых пространствах, доказанного Ю.И. Дубинским
("Weak convergence in nonlinear elliptic and parabolic equations Sbornik: Mathematics, 67 (109):
4 (1965)) при наличии ограниченного множества из полунормированного пространства
вместо нормированного. Также показано, что решение может иметь особенность в точке
вырождения области. Порядок данной особенности определен, и доказана соответствующая
теорема.

Ключевые слова: уравнение Буссинеска, вырождающаяся область, априорные оценки, про-
странство Соболева.

Introduction

The theory of Boussinesq equations and its modifications always attracts the attention
of both mathematicians and applied scientists. The Boussinesq equation, as well as their
modifications, occupy an important place in describing the motion of liquid and gas, including
in the theory of non-stationary filtration in porous media [1]– [13]. Additionally, here we note
only the works [14]– [19]. In recent years, boundary value problems for these equations have
been actively studied, since they model processes in porous media. These problems acquire
particular importance for deep understanding and comprehension in the tasks of exploration
and effective development of oil and gas fields.

In this paper, we study questions of the correct formulation of boundary value problems
for a one-dimensional Boussinesq-type equation in a degenerating domain. The domain is
represented by a triangle. Using the method of monotone operators, we prove theorems on
the unique weak solvability of the considered boundary value problems, and also establish a
theorem on improving the smoothness of a weak solution.

1 Statement of the boundary value problem and the main result

Let Ωt = {0 < x < t} and ∂Ωt be the boundary of the Ωt, 0 < t < T < ∞. In the domain
Qxt = {x, t|x ∈ Ωt, t ∈ (0, T )}, which is a triangle, we consider the following boundary value
problem for a Boussinesq-type equation

∂tu− ∂x (|u|∂xu) = f, {x, t} ∈ Qxt, (1)
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with boundary conditions

u = 0, {x, t} ∈ Σxt = ∂Ωt × (0, T ), (2)

where f(x, t) is a given function.
It can be directly shown that the nonlinear operator A0(v) = −∂x (|v|∂xv) of boundary

value problem (1)–(2) has the following properties:

A0(v) : L3(Ωt)→ L3/2(Ωt) is a hemicontinuous operator, (3)

‖A0(v)‖L3/2(Ωt) ≤ c‖v‖2
L3(Ωt), c > 0, ∀ v ∈ L3(Ωt), (4)

〈A0(v), v〉 ≥ α‖v‖3
L3(Ωt), α > 0, ∀ v ∈ L3(Ωt). (5)

We have established the following theorems.

Theorem 1 (Main result) Let

f ∈ L3/2((0, T );W−1
3/2(Ωt)). (6)

Then boundary value problem (1)–(2) has a unique solution

u ∈ L3((0, T );L3(Ωt)) ∩ L∞((0, T );H−1(Ωt)), (7)

moreover, at x→ 0+, x→ t− 0, t→ 0+ we have{
u(x, t) = O

(
x−α0(t− x)−α+α0t−β

)
,

0 < α < 1
3
, β > 0, α + β < 2

3
, 0 ≤ α0 ≤ α.

(8)

Theorem 2 (On smoothness) Let

f ∈ L3/2((0, T );L3/2(Ωt)). (9)

Then the solution of boundary value problem (1)–(2) admits additional smoothness, i.e.,

u ∈ L∞((0, T );L2(Ωt)), (10)

|u|1/2u ∈ L2((0, T );H1
0 (Ωt)), (11)

∂ tu ∈ L3/2((0, T );W−1
3/2(Ωt)). (12)
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2 Auxiliary initial boundary value problems in trapezoids

To prove Theorem 1, we first consider auxiliary initial boundary value problems. Let Ωt =
{0 < x < t} and ∂Ωt be the domain of the Ωt, εm < t < T < ∞, ε1 > ε2 > ... >
εm > ..., εm → 0 at m → ∞. In the domain Qm

xt = {x, t|x ∈ Ωt, t ∈ (εm, T )}, which is a
trapezoid, we consider the following boundary value problems for a Boussinesq-type equation

∂ tum − ∂x (|um|∂xum) = fm, {x, t} ∈ Qm
xt, (13)

with boundary

um = 0, {x, t} ∈ Σm
xt = ∂Ωt × (εm, T ), (14)

and initial conditions

um = 0, x ∈ Ωεm = (0, εm), (15)

where fm(x, t) are the narrowing of function f(x, t) (6), which is given in the triangle Qxt,
into trapezoids Qm

xt.
Earlier, in [1]– [2], we established the following theorems.

Theorem 3 Let

fm ∈ L3/2((εm, T );W−1
3/2(Ωt)). (16)

Then initial boundary value problem (13)–(15) has a unique solution

um ∈ L3((εm, T );L3(Ωt)) ∩ L∞((εm, T );H−1(Ωt)). (17)

Theorem 4 Let

fm ∈ L3/2((εm, T );L3/2(Ωt)). (18)

Then the solution of initial boundary value problem (13)–(15) admits additional smoothness,
i.e.,

um ∈ L∞((εm, T );L2(Ωt)), (19)

|um|1/2um ∈ L2((εm, T );H1
0 (Ωt)), (20)

∂ tum ∈ L2((εm, T );W−1
3/2(Ωt)). (21)

Note that results similar to Theorem 4 for cylindrical domains are also available in [21]–
[22].
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3 Proof of Theorem 1. Existence

First of all, for each m and the corresponding given function fm(x, t), according to the
statement of Theorem 3, we have established the existence of a unique solution um(x, t) of
initial boundary value problem (13)–(15).

We continue functions um(x, t), fm(x, t) from the trapezoid Qm
xt by zero to the entire

triangle Qxt and denote them by ũm(x, t), f̃m(x, t). These functions will satisfy equations

∂ tũm − ∂x (|ũm|∂xũm) = f̃m, {x, t} ∈ Qxt, (22)

with boundary conditions

ũm = 0, {x, t} ∈ Σxt. (23)

From (22) we obtain

〈∂ tũm(t), v〉+ a0(t, ũm(t), v) = 〈f̃m(t), v〉, ∀ v ∈ H−1(Ωt), t ∈ (0, T ), (24)

where a0(t, ũm, v) = 〈A0(t, ũm), v〉, A0(t, ũm) = −∂x (|ũm|∂xũm) and 〈·, ·〉 is the scalar product
defined by formula

〈ϕ, ψ〉 =

∫
Ωt

ϕ
[(
−d 2

x

)−1
ψ
]
dx, ∀ϕ, ψ ∈ H−1(Ωt), t ∈ (εm, T ), (25)

where d 2
x = d2

dx2
, ψ̃ =

(
−d 2

x

)−1
ψ : −d 2

xψ̃ = ψ, ψ̃(0) = ψ̃(t) = 0,∀ψ ∈ H−1(Ωt).
Note that concepts close to scalar product (25) have already been used in works [21], [22].
The operator A0(t, ũm) has the monotonicity property in accordance with scalar product

(25). For solutions {ũm(t)}∞m=1, we establish a priori estimates that are uniform in the index
m. From (22)–(25) we will have:

1

2
‖ũm(t)‖2

H−1(Ωt)
+ α

∫ t

0

‖ũm(τ)‖3
L3(Ωt)dτ ≤

∫ t

0

‖f̃m(τ)‖L3/2(Ωt)‖ũm(τ)‖L3(Ωt)dτ ≤

≤ 2

3

√
2

3α

∫ t

0

‖f̃m(τ)‖3/2
L3/2(Ωt)

dτ +
α

2

∫ t

0

‖ũm(τ)‖3
L3(Ωt)dτ ≤

≤ 2

3

√
2

3α

∫ T

0

‖f(t)‖3/2
L3/2(Ωt)

dt+
α

2

∫ t

0

‖ũm(τ)‖3
L3(Ωt)dτ. (26)

From here we get

‖ũm(t)‖2
H−1(Ωt)

+ α

∫ t

0

‖ũm(τ)‖3
L3(Ωt)dτ ≤

4

3

√
2

3α
‖f(t)‖3/2

L3/2(Qxt)
, t ∈ (0, T ]. (27)

In (26) we used the following relations

1

2

d

dt
‖ũm(t)‖2

H−1(Ωt)
= 〈ũ′m(t), ũm(t)〉, since ũm(t) ≡ 0 on Σxt,
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f̃m(t)‖L3/2(Ωt) ≤ ‖f(t)‖L3/2(Ωt),

as well as Young’s inequality (p−1 + q−1 = 1) :

|DE| =
∣∣∣∣(d1/pD

)(
d1/qE

d

)∣∣∣∣ ≤ d

p
|D|p +

d

qdq
|E|q ,

where

D = ‖wm(t)‖L3/2(Ω) , E = ‖wm(t)‖L3(Ω) , d =

√
2

3α
, p = 3/2, q = 3.

Finally, the relations

ũµ → u ?−weak in L∞((0, T );H−1(Ωt)), (28)

ũµ → u weak in L3(Qxt), (29)

ũµ(T )→ η weak in H−1(ΩT ), (30)

A0(t, ũµ)→ h(t) weak in L3/2((0, T );L3/2(Ωt). (31)

follow from (27) and inequality

‖A0(t, ũµ)‖L3/2(Ωt) ≤ c‖ũµ‖2
L3(Ωt).

Now we continue functions ũm(t), A0(t, ũm(t)), ..., from domain Qxt by zero to the infinite
domain Q̄xt, where

Q̄xt =


x = 0, t ≤ 0,
x ∈ Ωt, t ∈ (0, T ],
x ∈ ΩT , t > T ;

and denote these continuations by ¯̃um(t), Ā0(t, ¯̃um(t)), ..., i.e.,

¯̃um(t) =


0, t ≤ 0,
ũm(t) ∈ H−1(Ωt), t ∈ (0, T ],
0, t > T ;

v̄(t) =


0, t ≤ 0,
v(t) ∈ H−1(Ωt), t ∈ (0, T ],
0, t > T.

(32)

As a result, for continuations (32) we will have:

〈¯̃u′m(t), v̄(t)〉+ 〈Ā0(t, ¯̃um(t)), v̄(t)〉 = 〈 ¯̃fm(t), v̄(t)〉 − 〈ũm(T ), v̄(t)〉δ(t− T ), t ∈ R1. (33)

Further, choosing from {¯̃um(t)}∞m=1 a weakly convergent subsequence {¯̃uµ(t)}∞µ=1 and passing
to the limit at µ→∞, we obtain

〈ū′(t), v̄(t)〉+ 〈h̄(t), v̄(t)〉 = 〈f̄(t), v̄(t)〉 − 〈η, v̄(t)〉δ(t− T ), t ∈ R1,
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where ū(t), h̄(t) and f̄(t) are continuations of functions u(t) (28), h(t) (31) and f(t) to R1,
that is, from here we get

ū′(t) + h̄(t) = f̄(t)− ηδ(t− T ), t ∈ R1. (34)

Now, narrowing equality (34) to the time interval (0, T ), we obtain

u′(t) + h(t) = f(t), t ∈ (0, T ), (35)

u′(t) ∈ L3/2((0, T );L3/2(Ωt)). (36)

Further, on the one hand, from the monotonicity condition of the operator A0(t, v) we
will have

Yµ ≡
∫ T

0

〈A0(t, ũµ(t))− A0(t, v(t)), ũµ(t)− v(t)〉 dt ≥ 0 ∀ v ∈ L3((0, T );L3(Ωt)), (37)

on the other hand, from (24) we get∫ T

0

〈A0(t, ũµ(t)), ũµ(t)〉 dt =

∫ T

0

〈f̃µ(t)), ũµ(t)〉 dt− 1

2
‖ũµ(T )‖2

H−1(ΩT ). (38)

Thus, it follows from relations (37)–(38) that

Yµ ≡
∫ T

0

〈f̃µ(t), ũµ(t)〉 dt− 1

2
‖ũµ(T )‖2

H−1(ΩT ) −
∫ T

0

〈A0(t, ũµ(t)), v(t)〉 dt−

−
∫ T

0

〈A0(t, v(t)), ũµ(t)− v(t)〉 dt ∀ v ∈ L3((0, T );L3(Ωt)). (39)

Now, using the property of weak lower semicontinuity of the norm in a Banach space

lim inf ‖ũµ(T )‖2
H−1(ΩT ) ≥ ‖ũ(T )‖2

H−1(ΩT ),

we have

0 ≤ lim supYµ ≤
∫ T

0

〈f(t), u(t)〉 dt− 1

2
‖u(T )‖2

H−1(ΩT ) −
∫ T

0

〈h(t), v(t)〉 dt−

−
∫ T

0

〈A0(t, v(t)), u(t)− v(t)〉 dt ∀ v ∈ L3((0, T );L3(Ωt)). (40)

In turn, from (35) we get∫ T

0

〈f(t), u(t)〉 dt =

∫ T

0

〈h(t), u(t)〉 dt+
1

2
‖u(T )‖2

H−1(ΩT ). (41)
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Substituting the expression for
∫ T

0
〈f(t), u(t)〉 dt from (41) into inequality (40), we establish

the following inequality∫ T

0

〈h(t)− A0(t, v(t)), u(t)− v(t)〉 dt ≥ 0 ∀ v(t) ∈ L3((0, T );L3(Ωt)). (42)

Now, to complete the proof of Theorem 1, i.e. the existence of a solution to boundary
value problem (1)–(2), our goal is: to show the validity of the following equality

h(t) = A0(u(t)). (43)

We use the property of hemicontinuity of the operator A0(t, v) (3). Replacing v(t) =
u(t)− λw(t), λ > 0, w ∈ L3(Qxt) in (42), we obtain∫ T

0

〈h(t)− A0(t, u(t)− λw(t)), w(t)〉 dt ≥ 0 ∀w(t) ∈ L3(Qxt).

Hence, at λ → 0+, we obtain the required equality (43). The existence part of the solution
in Theorem 1 is proved.

4 Proof of the Theorem 1. Uniqueness

Let us show that the operator A0(t, u) in problem (1)–(2) will have the property of
monotonicity if the scalar product is introduced in an appropriate way. For this purpose,
we take as the scalar product

〈ϕ, ψ〉 =

∫
Ωt

ϕ
[(
−d 2

x

)−1
ψ
]
dy, ∀ϕ, ψ ∈ H−1(Ωt), ∀ t ∈ (0, T ), (44)

where d 2
x = d2

dx2
, ψ̃ =

(
−d 2

x

)−1
ψ : −d 2

xψ̃ = ψ, ψ̃(0) = ψ̃(t) = 0,∀ψ ∈ H−1(Ωt), ∀ t ∈
(0, T ).

The following lemma is valid.

Lemma 1 Operator A0(t, u) is monotone in the sense of scalar product (44) in space
H−1(Ωt), i.e. the following inequality is valid:

〈A0(t, u1)− A0(t, u2), u1 − u2〉 ≥ 0, ∀u1, u2 ∈ D(Ωt), ∀ t ∈ (0, T ). (45)

To the proof of Lemma 1 For each t ∈ (0, T ), operator A0(t, u) = −∂x (|u|∂xu) is
monotonic and condition (45) is satisfied (according to [20], chap. 2, s. 3.1). Indeed, on the
one hand, we have

〈A0(t, ϕ)− A0(t, ψ), ϕ− ψ〉 =
1

2

∫
Ωt

(
−d2

x

)
(|ϕ|ϕ− |ψ|ψ)

(
−d2

x

)−1
(ϕ− ψ) d x =

=
1

2

∫
Ωt

(|ϕ|ϕ− |ψ|ψ)(ϕ− ψ) d x, ∀ϕ, ψ ∈ D(Ωt), ∀ t ∈ (t0, T ).
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On the other hand, from the convexity condition of the functional J(t, ϕ) =
1
3

∫
Ωt
|ϕ(x)|3 d x, ϕ ∈ D(Ωt), ∀ t ∈ (0, T ), it follows

〈J ′(t, ϕ)− J ′(t, ψ), ϕ− ψ〉 ≥ 0, ∀ϕ, ψ ∈ D(Ωt), ∀ t ∈ (0, T ).

Thus, we get ∫
Ωt

(|ϕ|ϕ− |ψ|ψ)(ϕ− ψ) d x ≥ 0, ∀ϕ, ψ ∈ D(Ωt), ∀ t ∈ (0, T ),

that is, inequality (45) is established. Lemma 1 is proved.
Now we are ready to show the uniqueness of the solution in problem (1)–(2). Let u1(t)

and u2(t) be two solutions to problem (1)–(2). Then their difference u(t) = u1(t) − u2(t)
satisfies the homogeneous problem:

u′(t) + A0(t, u1(t))− A0(t, u2(t)) = 0,

〈u′(t), u(t)〉+ 〈(A0(t, u1(t))− A0(t, u2(t)), u1(t)− u2(t)〉 = 0

and, due to the monotonicity property of the operator A0(t, u), we have:

〈u′(t), u(t)〉 =
d

2 dt
‖u(t)‖2

H−1(Ωt)
≤ 0, i.e. u(t) ≡ 0.

The uniqueness of the solution to problem (1)–(2) is proved.

5 Proof of Theorem 1. Singularity of the solution

We show that the solution u(x, t) of boundary value problem (1)–(2) having a singularity of
the order specified in (8) will belong to the space L3(Qt0

xt), where Q
t0
xt = {x, t| 0 < x < t, 0 <

t < t0 � T}. For this purpose, it suffices to show that the following integral is bounded when
t0 → 0+:∫

Q
t0
xt

x−3α0(t− x)−3α+3α0t−3β dx dt. (46)

We have ∫ t0

0

t−3β

∫ t

0

x−3α0(t− x)−3α+3α0 dx dt =

∥∥∥∥∥∥
x = t sin2 θ
0 < θ < π/2
dx = 2 sin θ cos θ dθ

∥∥∥∥∥∥ =

= 2

∫ t0

0

t1−3α−3β

∫ π/2

0

sin1−6α0 θ cos1−6α+6α0 θ dθ dt.

It is not difficult to verify that under the conditions of Theorem 1 in the last expression, the
inner integral takes a finite value. Calculating the outer integral, we have∫ t0

0

t1−3α−3β dt =
1

2− 3(α + β)
t
2−3(α+β)
0 ,

which, under the conditions of Theorem 1, is also bounded from above.
Note that if the order of the singularity of solution u(x, t) is higher than in (8), then this

function is no longer an element of space L3(Qt0
xt).

This completes the proof of Theorem 1.
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6 Proof of Theorem 2

It suffice for us to show the existence of a solution, and the uniqueness follows from Theorem
1.

First of all, for each m and the corresponding given function fm(x, t), according to the
statement of Theorem 4 we have established the existence of a smoother (than in Theorem
3) unique solution um(x, t) of initial boundary value problem (13)–(15) for the corresponding
trapezoid Qm

xt.
We continue functions um(x, t), fm(x, t) from the trapezoid Qm

xt by zero to the entire
triangle Qxt and denote them by ũm(x, t), f̃m(x, t). These functions will satisfy equations

∂ tũm − ∂x (|ũm|∂xũm) = f̃m, {x, t} ∈ Qxt, (47)

with boundary conditions

ũm = 0, {x, t} ∈ Σxt. (48)

From (47) we obtain

〈∂ tũm(t), v〉+ a0(t, ũm(t), v) = 〈f̃m(t), v〉, ∀ v ∈ H−1(Ωt), t ∈ (0, T ), (49)

where a0(t, ũm, v) = 〈A0(t, ũm), v〉, A0(t, ũm) = −∂x (|ũm|∂xũm) and 〈·, ·〉 is a scalar product

〈ϕ, ψ〉 =

∫
Ωt

ϕ
[(
−d 2

x

)−1
ψ
]
dx, ∀ϕ, ψ ∈ H−1(Ωt), t ∈ (εm, T ),

where d 2
x = d2

dx2
, ψ̃ =

(
−d 2

x

)−1
ψ : −d 2

xψ̃ = ψ, ψ̃(0) = ψ̃(t) = 0,∀ψ ∈ H−1(Ωt).
Let us rewrite equation (49) in the form(

∂ tũm(t),
(
−∂ 2

x

)−1
v
)

+
1

2
(|ũm(t)| ũm(t), v) =

(
f̃m(t),

(
−∂ 2

x

)−1
v
)
, ∀ v ∈ H1

0,∆(Ωt), t ∈ (0, T ),

where H1
0,∆(Ωt) = {ϕ|ϕ, ∂ 2

xϕ ∈ H1
0 (Ωt)}, or

(∂ tũm(t), ṽ)+
1

2
(|ũm(t)| ũm(t), v) =

(
f̃m(t), ṽ

)
, ∀ ṽ =

(
−∂ 2

x

)−1
v ∈ H1

0 (Ωt), t ∈ (0, T ). (50)

Further, from (50) we obtain the following equality

〈∂ tũm(t), ũm(t)〉+
1

2

(
|ũm(t)| ũm(t),−∂2

xũm(t)
)

= 〈f̃m(t), ũm(t)〉, t ∈ (0, T ), (51)

and from (51), therefore, we will have

1

2

d

dt
‖ũm(t)‖2

L2(Ωt) +
4

9

∫
Ωt

[
∂x
(
|ũm(t)|1/2 ũm(t)

)]2
dx = 〈f̃m(t), ũm(t)〉, t ∈ (0, T ),

or

1

2
‖ũm(t)‖2

L2(Ωt)+
4

9

∫ t

0

∫
Ωτ

[
∂x
(
|ũm(τ)|1/2 ũm(τ)

)]2
dx dτ =

∫ t

0

〈f̃m(τ), ũm(τ)〉 dτ, t ∈ (0, T ).
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(52)

Here we use the following equality

−1

2

∫
Ωt

|ũm(t)|ũm(t)∂2
xũm(t) dx =

4

9

∫
Ωt

[
∂x
(
|ũm(t)|1/2ũm(t)

)]2
dx, t ∈ (0, T ). (53)

Let us show its justice. First, we transform the left side of equality (53). Let us show that
equality

−1

2

∫
Ωt

|ũm(t)|ũm(t)∂2
xũm(t) dx =

∫
Ωt

|ũm(t)| [∂xũm(t)]2 dx, (54)

holds. Indeed, we have:

|ũm|ũm =


[ũm]2, at ũm > 0,

0, at ũm(t) = 0,

−[−ũm]2, at ũm < 0,

∂x (|ũm|ũm) =


2 ũm∂xũm, at ũm > 0,

0, at ũm(t) = 0,

2 [−ũm]∂xũm, at ũm < 0.

Thus, from here we obtain: ∂x (|ũm(t)|ũm(t)) = 2 |ũm(t)|∂xũm(t), i.e. equality (54).
The same holds for the right side of equality (53). We get

|ũm|1/2ũm =


[ũm]3/2, at ũm > 0,

0, at ũm = 0,

−[−ũm]3/2, at ũm < 0,

∂x
(
|ũm|1/2ũm

)
=


3
2
[ũm]1/2∂xũm, at ũm > 0,

0, at ũm = 0,

3
2
[−ũm]1/2∂xũm, at ũm < 0.

Thus, from here we get: ∂x
(
|ũm(t)|1/2ũm(t)

)
= 3

2
|ũm(t)|1/2∂xũm(t), that is, the following

equality is true:

4

9

∫
Ωt

[
∂x
(
|ũm(t)|1/2ũm(t)

)]2
dx =

∫
Ωt

|ũm(t)| [∂xũm(t)]2 dx.

Thus, we have shown the validity of equality (53).
Since from Theorem 3 we have that the functions ũm(t) are bounded in L3(Qxt), therefore

the right part of (52) is bounded when condition (6) of Theorem 1 is fulfilled. Hence from
(52) we deduce that

ũm are bounded in L∞((0, T );L2(Ωt)), (55)

∂x (|ũm| ũm) are bounded in L2(Qxt), i.e. |ũm|1/2 ũm ∈ L2((0, T );H1
0 (Ωt)). (56)

From relations (55)–(56), equation (47) and conditions (4), (18) we establish an estimate for
the time derivative t

∂ tũm are bounded in L3/2((0, T );W−1
3/2(Ωt)). (57)
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Hence, we can write

ũm → u weakly in L∞((0, T );L2(Ωt)), (58)

|ũm|1/2ũm → χ weakly in L2((0, T );H1
0 (Ωt)). (59)

Thus, on the basis of relations (57)–(59) we establish

ũm → u strongly in L3((0, T );L3(Ωt)) and almost everywhere,

and, further, using (56) and applying Theorem 12.1 and Proposition 12.1 from ( [20], chapter
1, 12.2), as well as Lemma 1.3 from ( [20], chapter 1, 1.4), as a result we have

|ũm|1/2ũm → |u|1/2u weakly in L2((0, T );H1
0 (Ωt)), i.e. χ = |u|1/2u. (60)

Lemma 1.3 ( [20], chapter 1, 1.4). Let O is a bounded domain in Rn
x × R1

t , gµ and g are
functions from Lq(O), 1 < q <∞, such that

‖gµ‖Lq(O) ≤ C, gµ → g a.e. in O.

Then gµ → g weakly in Lq(O).

From (57), (59) and (60) we obtain the required statement (10)–(12). Theorem 2 is
completely proved.

Conclusion

In this paper, we study boundary problems for a one-dimensional Boussinesq-type equation
in a domain that is a triangle. Using the methods of the theory of monotone operators and
a priori estimates, we prove theorems on their unique weak solvability in Sobolev classes, as
well as theorems on improving the smoothness of a weak solution.
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ON QUASI-IDENTITIES OF FINITE MODULAR LATTICES

In 1970 R. McKenzie proved that any finite lattice has a finite basis of identities. However the
similar result for quasi-identities is not true. That is, there is a finite lattice that has no finite
basis of quasi-identities. The problem "Which finite lattices have finite bases of quasi-identities?"
was suggested by V.A. Gorbunov and D.M. Smirnov. In 1984 V.I. Tumanov found a sufficient
condition consisting of two parts under which a locally finite quasivariety of lattices has no finite
(independent) basis of quasi-identities. Also he conjectured that a finite (modular) lattice has a
finite basis of quasi-identities if and only if a quasivariety generated by this lattice is a variety.
In general, the conjecture is not true. W. Dziobiak found a finite lattice that generates a finitely
axiomatizable proper quasivariety. Tumanov’s problem is still unsolved for modular lattices. We
construct a finite modular lattice that does not satisfy one of Tumanov’s conditions but the
quasivariety generated by this lattice is not finitely based.
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Соңғы модулярлық торлардың квази-сәйкестiктерi туралы

1970 жылы Р. Маккензи кез-келген соңғы тордың түпкiлiктi сәйкестендiру негiзi бар
екенiн дәлелдедi. Алайда, квази-сәйкестендiру үшiн ұқсас нәтиже дұрыс емес. Яғни, квази-
сәйкестендiрудiң түпкiлiктi негiзi жоқ соңғы тор бар. Мәселе "Квази-сәйкестендiрудiң соңғы
негiздерi қандай соңғы торларға ие?" В.А. Горбунов және Д.М. Смирнов ұсынды.
1984 жылы В.И. Туманов екi бөлiктен тұратын жеткiлiктi жағдайды тапты: жергiлiктi түр-
де, соңғы квазикөпбейне торларда квази-сәйкестендiрудiң соңғы (тәуелсiз) негiзi жоқ.
Сондай-ақ, ол ақырғы (модулярлық) тордың квази-сәйкестендiрудiң соңғы негiзi бар деп
ұсынды содан кейiн және тек осы тордан пайда болған квазикөпбейне бұл көпбейне. Жалпы
жағдайда гипотеза дұрыс емес. В. Дзебяк ақырлы торды тапты, ол аксиоматизацияланатын
өзiндiк квазикөпбейненi тудырады. Тумановтың мәселесi әлi де модулярлық торлар үшiн ше-
шiлген жоқ. Бiз Тумановтың бiр жағдайын қанағаттандырмайтын соңғы модулярлық торды
саламыз, бiрақ осы тордан пайда болған квазикөпбейненiң түпкi негiзi жоқ.
Түйiн сөздер: Тор, квазикөпбейне, квази-сәйкестiктердiң соңғы базисi.
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О квазитождествах конечных модулярных решеток

В 1970 году Р. Маккензи доказал, что любая конечная решетка имеет конечный базис
тождеств. Однако аналогичный результат для квазитождеств неверен. То есть существует
конечная решетка, которая не имеет конечного базиса квазитождеств. Проблема "Какие
конечные решетки имеют конечные базисы квазитождеств?" была предложена В.А. Горбу-
новым и Д.М. Смирновым.
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В 1984 году В.И. Туманов нашел достаточное условие, состоящее из двух частей, при ко-
тором локально конечное квазимногообразие решеток не имеет конечного (независимого)
базиса квазитождеств. Также он предположил, что конечная (модулярная) решетка имеет
конечный базис квазитождеств тогда и только тогда, когда квазимногообразие, порожденное
этой решеткой, является многообразием. В общем случае гипотеза неверна. В. Дзебяк нашел
конечную решетку, которая порождает конечно аксиоматизируемое собственное квазимного-
образие. Проблема Туманова до сих пор не решена для модулярных решеток. Мы строим
конечную модулярную решетку, которая не удовлетворяет одному из условий Туманова, но
квазимногообразие, порожденное этой решеткой, не является конечно базируемым.
Ключевые слова: Решетка, квазимногообразие, конечный базис квазитождеств.

1 Introduction

Questions concerning finite basability are among the most researched and relevant topics in
universal algebra. It is well known that the finite based results begin with R.C. Lyndon,
who in 1951 proved that the algebras on a two-element universe are always finitely based.
R. McKenzie [1] in 1970 established that every finite lattice is finitely based, and generalizing
this result, K.A. Baker in 1976 proved that every finite algebra generating a congruence-
distributive variety is finitely based. There are two major directions in which Baker’s theorem
was generalized. In congruence-modular direction there was a series of results by R. Freese and
R. McKenzie, the final result by McKenzie published in 1987 states that every finite algebra
generating a congruence-modular residually finite variety is finitely based. In congruence
meet-semidistributive direction, R. Willard in 2000 proved that every finite algebra generating
a congruence meet-semidistributive residually strictly finite variety is finitely based.

Thus, according to R. McKenzie, any finite lattice has a finite basis of identities. The
similar result for quasi-identities is not true, that was established by V.P. Belkin [2]. In 1979
he proved that there is a finite lattice that has no finite basis of quasi-identities. In particular,
the smallest lattice that does not have a finite basis of quasi-identities is the ten-element
modular lattice M3−3. In this regard, the following question naturally arises. Which finite
lattices have finite bases of quasi-identities? This problem was suggested by V.A. Gorbunov
and D.M. Smirnov [3] in 1979. V.I. Tumanov [4] in 1984 found sufficient condition consisting
of two parts under which the locally finite quasivariety of lattices has no finite (independent)
basis for quasi-identities. Also he conjectured that a finite (modular) lattice has a finite
basis of quasi-identities if and only if a quasivariety generated by this lattice is a variety.
In general, the conjecture is not true. W. Dziobiak [5] found a finite lattice that generates
finitely axiomatizable proper quasivariety. Also we would like to point out that Tumanov’s
problem is still unsolved for modular lattices.

The main goal of the paper is to present a finite modular lattice that does not satisfy one
of Tumanov’s conditions but the quasivariety generated by this lattice is not finitely based
(has no finite basis of quasi-identities).

2 Material and methods

We recall some basic definitions and results for quasivarieties that we will refer to. For more
information on the basic notions of general algebra introduced below and used throughout
this paper, we refer to [6] and [7].
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A quasivariety is a class of lattices that is closed with respect to subalgebras, direct
products, and ultraproducts. Equivalently, a quasivariety is the same thing as a class of
lattices axiomatized by a set of quasi-identities. A quasi-identity means a universal Horn
sentence with the non-empty positive part, that is of the form

(∀x̄)[p1(x̄) ≈ q1(x̄) ∧ · · · ∧ pn(x̄) ≈ qn(x̄)→ p(x̄) ≈ q(x̄)]

where p, q, p1, q1, . . . , pn, qn are lattice’s terms. A variety is a quasivariety which is closed
under homomorphisms. According to Birkhoff theorem [8], a variety is a class of similar
algebras axiomatized by a set of identities, where by an identity we mean a sentence of the
form (∀x̄)[s(x̄) ≈ t(x̄)] for some terms s(x̄) and t(x̄).

By Q(K) (V(K)) we denote the smallest quasivariety (variety) containing a class K. If
K is a finite family of finite algebras then Q(K) is called finitely generated. In case when
K = {A} we write Q(A) instead of Q({A}).

Let K be a quasivariety. A congruence α on algebra A is called a K-congruence or relative
congruence provided A/α ∈ K. The set ConKA of all K-congruences of A forms an algebraic
lattice with respect to inclusion ⊆ which is called a relative congruence lattice.

The least K-congruence θK(a, b) on algebra A ∈ K containing pair (a, b) ∈ A × A is
called a principal K-congruence or a relative principal congruence. In case when K is a
variety, relative congruence θK(a, b) is usual principal congruence that we denote by θ(a, b).

An algebra A belonging to a quasivariety K is (finitely) subdirectly irreducible relative to
K, or (finitely) subdirectly K-irreducible, if intersection of any (finite) number of nontrivial
K-congruences is again nontrivial; in other words, the trivial congruence 0A is a (meet-
irreducible) completely meet-irreducible element of ConKA.

Let (a] = {x ∈ L | x ≤ a} ([a) = {x ∈ L | x ≥ a}) be a principal ideal (coideal) of a lattice
L. A pair (a, b) ∈ L × L is called dividing (semi-dividing) if L = (a] ∪ [b) and (a] ∩ [b) = ∅
(L = (a] ∪ [b) and (a] ∩ [b) 6= ∅).

For any semi-dividing pair (a, b) of a latticeM we define a lattice

Ma−b = 〈{(x, 0), (y, 1) ∈M × 2 | x ∈ (a], y ∈ [b)};∨,∧〉 ≤sM× 2,

where 2 = 〈{0, 1};∨,∧〉 is a two element lattice.

Theorem 1 (Tumanov’s theorem [4]) Let M, N (N ⊂M) be locally finite quasivarieties
of lattices satisfying the following conditions:

a) in any finitely subdirectly M-irreducible latticeM∈M\N there is a semi-dividing pair
(a, b) such thatMa−b ∈ N;

b) there exists a finite simple lattice P ∈ N which is not a proper homomorphic image of
any subdirectly N-irreducible lattice.

Then the quasivariety N has no coverings in the lattice of subquasivarieties of M. In
particular, N has no finite basis of quasi-identities provided M is finitely axiomatizable.

In the next section, the algebra L and its carrier (its main set) L will be identified and
denoted by the same way, namely L.
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3 Results and discussion

Let T be a modular lattice displayed in Figure 1. And let N = Q(T ) and M = V(T ) be the
quasivariety and variety generated by T , respectively. Since every subdirectly N-irreducible
lattice is a sublattice of T , we have that a class Nsi of all subdirectly N-irreducible lattices
consists of the lattices 2, M3, M3−3 and T (see Figures 1 and 2). It easy to see that M3 is
a unique simple lattice in Nsi and is a homomorphic image of T . Thus, the condition a) of
Tumanov’s theorem is not valid for quasivarieties N ⊂M. We show

Theorem 2 Quasivariety Q(T ) generated by the lattice T is not finitely based.

To prove the theorem we modify the proof of the second part of Theorem 3.4 from [9].

T

Figure 1: Lattice T

M3

M3,3 M3−3

Figure 2: Lattices M3, M3,3 and M3−3

Let S be a non-empty subset of a lattice L. Denote by 〈S〉 the sublattice of L generated
by S.
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We define a modular lattice Ln by induction:
n = 1. L1

∼= M3−3 and L1 = 〈{a1, b1, c1, e, d}〉 (see Figure 3);
n = 2. L2 is a modular lattice generated by L1 ∪ {a2, b2, c2, d} such that b1 = c2,

〈{a2, b2, c2, e, b1}〉 ∼= M3, and a2 ∨ b2 = e ∧ d1, d ∨ b1 = d1, and b2 < d (see Figure 3).
n > 2. Ln is a modular lattice generated by the set {ai, bi, ci | i ≤ n}∪ {e, d} such that ai

is not comparable with aj and bk for all j 6= i and k ≤ n, bi−1 = ci, 〈{ai, bi, ci}〉 ∼= M3 for all
i < n, bi ∨ d = di for all i < n, and bn < d (see Figure 4).

One can see that Ln is a subdirect product of the lattices Ln−1 and M3 for any n > 2.

e d

c1 a1 b1

L1
∼= M3−3

e d1

d

c1 a1
b1 = c2 a2 b2

L2

Figure 3: Lattices L1, L2

Let L−n be a sublattice of Ln generated by the set {ai, bi, ci | i ≤ n}.

Lemma 1 For any n > 1 and a non-trivial congruence θ ∈ ConLn there is 1 < m < n such
that Ln/θ ∼= Lm or Ln/θ ∼= M3,3 provided (a1, b1) /∈ θ, otherwise Ln/θ ∼= L−m.

Proof of Lemma 1.
We prove by induction on n > 2. One can check that it is true for n = 3 because of

L3/θ ∼= L2 or L3/θ ∼= M3,3 if (a1, b1) /∈ θ and L3/θ ∼= L−2 or L3/θ ∼= M3 for any non-trivial
congruence θ ∈ ConL3.

Let n > 3. And let u cover v in Ln and θ(u, v) ⊆ θ. By construction of Ln, we have
Ln/θ(u, v) ∼= Ln−1 or Ln/θ(u, v) ∼= L−n−1.

Assume (a1, b1) /∈ θ. Since for every non-trivial congruence θ ∈ ConLn there are u, v ∈ Ln

such that u covers v and θ(u, v) ⊆ θ, we get

Ln/θ ∼= (Ln/θ(u, v))/(θ/θ(u, v)).

Since Ln/θ(u, v) ∼= Ln−1 we obtain

Ln/θ ∼= (Ln/θ(u, v))/(θ/θ(u, v)) ∼= Ln−1/θ
′,

for some θ′ ∈ Con(Ln−1). And, by induction, Ln−1/θ
′ ∼= Lm or Ln−1/θ

′ ∼= M3,3 for some
m > 0. Thus Ln/θ ∼= Lm or Ln/θ ∼= M3,3.
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e d1

d2

d

an bnbn−1 cnc1 a1 b1 c2 a2 b2 c3

Figure 4: Lattice Ln, n ≥ 2

Now assume (a1, b1) ∈ θ. Then θ(a1, b1) = θ(u, v) and Ln/θ(u, v) ∼= L−n . Hence

Ln/θ ∼= (Ln/θ(u, v))/(θ/θ(u, v)) ∼= L−n /θ
′,

for some θ′ ∈ Con(L−n ). It is not difficult to check that L−n /θ′ ∼= L−m for some m > 0 (see
Lemma 3.1 [9]). Thus Ln/θ ∼= Lm or Ln/θ ∼= L−m.

Corollary 1 For all n > 1, there is no proper homomorphism from Ln to M3−3 and T .

Proof of Corollary 1.
We provide the proof for a proper homomorphism from Ln into M3−3. It is not difficult

to check that the same arguments hold for a proper homomorphism from Ln into T .
Assume h : Ln → M3−3, n > 1, is a proper homomorphism. Hence kerh is not a trivial

congruence on Ln. By Lemma 1, Ln/ kerh ∼= Lm or Ln/θ ∼= M3,3 or Ln/ kerh ∼= L−m for
some m > 1. Thus Lm = h(Ln) ≤ M3−3. It is impossible because, by definition of Lm,
|Lm| > |M3−3| for all m > 1, hence Ln is not a sublattice of M3−3. Obviously, M3,3 and L−M
are not sublattices of M3−3. Thus there is no such homomorphism h.

Lemma 2 For every n > 2, a lattice Ln has the following properties:
i) Ln ≤s Ln−1 × Ln−1;
ii) Ln ∈ V(M3,3) = V(T );
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iii) Ln /∈ Q(T );
iv) Every proper subalgebra of Ln belongs to Q(T ).

Proof of Lemma 2.
i). One can check that Ln/θ(ai, bi) ∼= Ln−1 for all 1 < i ≤ n. Since n > 2 then

θ(a2, b2), θ(a3, b3) ∈ ConLn and θ(a2, b2)∩θ(a3, b3) = ∆. This means that Ln ≤s Ln−1×Ln−1.
ii). One can see that T is a subdirect product of M3 and M3,3. Hence T ∈ V(M3,3). On

the other hand, by Jonsson lemma [10], every subdirectly irreducible lattice in V(T ) is a
homomorphic image of some sublattice of T . Hence M3,3 ∈ V(T ). Thus V(M3,3) = V(T ),
and, by i) and induction on n, we get Ln ∈ V(T ).

iii). Suppose Ln ∈ Q(T ) for some n > 1. Then Ln is a subdirect product of subdirectly
Q(T )-irreducible algebras. Since every subdirectly Q(T )-irreducible algebra is a subalgebra
of T , we get that Ln is a subdirect product of subalgebras of T . By Lemma 1, there is no
proper homomorphism from Ln onto T or M3−3. Hence Ln ∈ Q(M3) for all n > 1. It is
impossible because M3−3 ≤ Ln and M3−3 /∈ Q(M3).

iv). We prove by induction on n. It is true for n ≤ 2 by manual checking. Let n > 2 and
let S be a maximal sublattice of Ln. Since the lattice Ln is generated by the set of double
irreducible elements {a1, . . . , an, c1, e, d}, there is 0 < i ≤ n such that ai 6∈ S or c1 /∈ S or
e /∈ S or d /∈ S.

Suppose c1 /∈ S. One can see that 〈S〉 ≤s 2 ×M3 × L−n−1. Since Ln−1 ≤s M
n−1
3 we get

〈S〉 ∈ Q(M3) ⊂ Q(T ).
Suppose e /∈ S. Then 〈S〉 ≤s 2× L−n ≤s 2×Mn

3 ∈ Q(M3) ⊂ Q(T ).
Suppose d /∈ S. Put Sm = {{a1, . . . , am, c1, e}, m < n, and Tm = 〈Sm〉. One can see that

Tm/θ(ai, bi) ∼= Tm−1 for all 1 < i < m. And Tm/θ(a1, b1) ∼= L−m−1. Since θ(a1, b1) ∩ θ(ai, bi) =
∆, by distributivity of ConTm, we have θ(a1, b1) ∩ (

∨
{θ(ai, bi) | 1 < i < m}) = ∆. Since

Tm/(
∨
{θ(ai, bi) | 1 < i < m}) ∼= T we obtain 〈Sm〉 ≤s T × L−n−1 ≤s T ×Mn−1

3 ∈ Q(T ).
Suppose ai /∈ S. Since n > 1 and S is a maximal sublattice, then there are i 6= k 6= l 6= i

such that θ(bk, ck), θ(bl, cl) ∈ ConLn,

θ(bk, ck) ∩ θ(bl, cl) = ∆.

and

Ln/θ(bk, ck) ∼= Ln/θ(bl, cl) ∼= Ln−1 or {Ln/θ(bk, ck), Ln/θ(bl, cl)} = {Ln−1, L
−
n−1}.

We provide the proof for the first case, Ln/θ(bk, ck) ∼= Ln/θ(bl, cl) ∼= Ln−1. These
isomorphisms mean that Ln ≤s Ln−1 × Ln−1 and S ≤ Ln−1 × Ln−1. Let hk : Ln → Ln−1
and hl : Ln → Ln−1 are homomorphisms such that kerhk = θ(bk, ck) and kerhl = θ(bl, cl).
Since (ai, bi) /∈ θ(bk, ck) ∪ θ(bl, cl) then hk(S), hl(S) are proper sublattices of Ln−1. And,
by induction, hk(S), hl(S) ∈ Q(T ). As bk, ck, bl, cl ∈ S, the restrictions of congruences
θ(bk, ck)|S and θ(bl, cl)|S on the algebra S are not trivial congruences on S. Moreover
θ(bk, ck)|S ∩ θ(bl, cl)|S = ∆. It means S ≤s hk(S) × hl(S). Hence S ∈ Q(T ). Since every
maximal proper subalgebra of Ln belongs toQ(T ) then every proper subalgebra of Ln belongs
to Q(T ).

It is not difficult to check that for {Ln/θ(bk, ck), Ln/θ(bl, cl)} = {Ln−1, L
−
n−1} the same

arguments hold.



56 On quasi-identities of finite modular lattices

Now we prove the main result, Theorem 2.
We use the following folklore fact which provides non-finite axiomatizability: A locally

finite quasivariety K is not finitely axiomatizable if for any positive integer n ∈ N there is a
finite algebra Ln such that Ln 6∈ K and every n-generated subalgebra of Ln belongs to K.

We show that for quasivariety Q(T ), the lattice Ln satisfies the conditions of this fact.
Indeed, by Lemma 2(iii), Ln /∈ Q(T ) for all n > 1. Since Ln is generated by at least n + 1
double irreducible elements then every n-generated subalgebra of Ln is a proper subalgebra.
By Lemma 2(iv), every n-generated subalgebra of Ln belongs to Q(T ). Hence Q(T ) has no
finite basis of quasi-identities.

We note that there is an infinite number of lattices similar to the lattice T .
The proof of Theorem 2 give us more general result:

Theorem 3 Suppose L is a finite lattice such that M3,3 6≤ L, T ≤ L and Ln 6≤ L for all
n > 1. Then the quasivariety Q(L) is not finitely based.

4 Conclusion

There are three measures of the highest complexity of the structure of quasivariety lattices:
Q-universality, property (N) or non-computability of the set of finite sublattices, and an
existence of continuum of quasivarieties without covers in a given quasivariety lattice. The
presence in the quasivariety lattices of a continuum of elements that do not have coverings
indicates the complexity of the structure of these lattices; in this case, there is a continuum
of subquasivarieties of a given quasivariety K that do not have an independent basis of
quasi-identities with respect to K. In [11] a sufficient condition for a quasivariety K to be
Q-universal, to have continuum many subclasses with the property (N), continuum many
Q-universal subquasivarieties and continuum many subquasivarieties with no upper covers in
the lattice Lq(K) was provided. In [12] a sufficient condition for a class K to have continuum
many subclasses with the property (N) but which are not Q-universal was established. In [13]
it was proved that almost all known Q-universal quasivarieties contain classes having property
(N).

In this paper we construct a finite modular lattice that does not satisfy one of Tumanov’s
conditions but the quasivariety generated by this lattice is not finitely based. It has no finite
basis of quasi-identities.
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MULTI-TERM TIME-FRACTIONAL DERIVATIVE HEAT EQUATION FOR
ONE-DIMENSIONAL DUNKL OPERATOR

In this paper, we investigate the well-posedness for Cauchy problem for multi-term time-fractional
heat equation associated with Dunkl operator. The equation under consideration includes a
linear combination of Caputo derivatives in time with decreasing orders in (0, 1) and positive
constant coefficients and one-dimensional Dunkl operator. To show solvability of this problem we
use several important properties of multinomial Mittag-Leffler functions and Dunkl transforms,
since various estimates follow from the explicit solutions in form of these special functions
and transforms. Then we prove the uniqueness and existence results. To achieve our goals, we
use methods corresponding to the different areas of mathematics such as the theory of partial
differential equations, mathematical physics, hypoelliptic operators theory and functional analysis.
In particular, we use the direct and inverse Dunkl transform to establish the existence and
uniqueness of solutions to this problem on the abstract Hilbert space. The generalized solutions
of this problem are studied.
Key words: Dunkl operator, heat equation, Cauchy problem, Caputo fractional derivative.
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Бiр өлшемдi Данкл операторы үшiн уақыт бойынша көпмүшелiк бөлшек туындысы бар

жылу өткiзгiштiк теңдеуi

Бұл мақалада бiз Данкл операторымен байланысты уақыт бойынша көпмүшелiк бөлшек
туындысы бар жылу өткiзгiштiк теңдеуi үшiн Коши есебiнiң қисынды екенiн зерттеймiз.
Қарастырылып отырған теңдеу уақыт бойынша Капуто туындыларының сызықтық комби-
нациясы (0, 1) оң коэффициенттерiмен және де бiр өлшемдi Данкл операторынан туындаған.
Бұл есептiң шешiмдiлiгiн көрсету үшiн бiз Миттаг-Леффлер көпмүшелiк арнайы функцияла-
ры және Данкл түрлендiруiнiң маңызды қасиеттерiн қолданамыз, өйткенi әртүрлi бағалаулар
осы арнайы функциялармен түрлендiрулер түрiндегi нақты шешiмдерден туындайды. Содан
кейiн бiз осы есептiң шешiмi бар және жалғыз екенiн дәлелдеймiз. Осы айтылғанды дәлел-
деу үшiн бiз математиканың әртүрлi салаларына сәйкес келетiн әдiстердi қолданамыз, атап
айтқанда дербес туындылы дифференциалдық теңдеулер теориясы, математикалық физика
теңдеулерi, гипоэллиптикалық операторлар теориясы және функционалдық талдау. Қарас-
тырып отырған есептiң шешiмi бар және жалғыз болатынын абстрактты Гильберт кеңiстi-
гiнде дәлелдеймiз, ол үшiн бiз негiзгi әдiс ретiнде тура және керi Данкл түрлендiруiн қолда-
намыз. Бұл есепте жалпылама шешiм қарастырылады.
Түйiн сөздер: Данкл операторы, жылу өткiзгiштiк теңдеуi, Коши есебi, Капуто бөлшек
туындысы.
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В этой статье мы исследуем корректность задачи Коши для уравнения теплопроводности
с многочленным дробным производным по временем связанного с оператором Данкла.
Рассматриваемое уравнение включает линейную комбинацию производных Капуто по вре-
мени с убывающими порядками в (0, 1) и положительными коэффициентами и одномерным
оператором Данкла. Чтобы показать разрешимость этой задачи, мы используем несколько
важных свойств многочленных функций Миттага-Леффлера и преобразований Данкла,
поскольку из явных решений в виде этих специальных функций и преобразований вытекают
различные оценки. Затем мы докажем единственность и существования решения этой
задачи. Для достижения наших цель мы используем методы, соответствующие различным
областям математики, таким как теория дифференциальных уравнений в частных произ-
водных, математическая физика, теория гипоэллиптических операторов и функциональный
анализ. В частности, мы используем прямое и обратное преобразование Данкла, чтобы уста-
новить существование и единственность решений этой задачи в абстрактном Гильбертовом
пространстве. Изучаются обобщенные решения этой задачи.

Ключевые слова: Оператор Данкла, уравнение теплопроводности, задача Коши, дробная
производная Капуто.

1 Introduction

Let γ be 0 < γ < 1. For a fixed positive integer m, aj ∈ R and γj (j = 1, ...,m) be constants
such that 1 > γ > γ1 >, ..., > γm > 0. We consider the following equation

∂γt u(t, x)−
m∑
j=1

aj∂
γj
t u(t, x)− Λ2

α,xu(t, x) = f(t, x) (1)

in the domain (t, x) ∈ QT , under the initial condition

u(0, x) = g(x), x ∈ R, (2)

where f and g are sufficiently smooth functions.
Here ∂αjt denotes the Caputo derivative defined by

∂
αj
t u(t) :=

1

Γ(1− αj)

∫ t

0

u′(s)

(t− s)αj
ds,

where Γ(·) is a usual Gamma function. For various properties of the Caputo derivative, we
refer to Kilbas et al. [9], Podlubny [10].

The operator Λα is called the Dunkl operator which was introduced in 1989 by C. Dunkl
[2], where α ≥ 1/2. The Dunkl operator is associated with the reflection group Z2 on R.
The Dunkl operators are very important in pure mathematics and physics. Solution of the
spectral problem generated by the Dunkl operator is called the Dunkl kernel Eα(ixλ) which
is used to define the Dunkl transform Fα [4]. Main properties of the Dunkl transform is given
by M.F.E. de Jeu in 1993 [5]. For more information about harmonic analysis associated with
the operator Λα, we refer the readers to the papers [1, 3, 5, 6].

A general solution of problem (1)–(2) is the function u ∈ Cα([0, T ], L2(R, µα)) ∩
C([0, T ],W 2,2

α (R, µα)) satisfying the equation (1). Let us denote that by Dγt := ∂γt −∑m
j=1 aj∂

γj
t .
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2 Auxiliary materials

In this section we introduce the Dunkl operator and it’s necessary properties to our research.

2.1 The Dunkl operator and the Dunkl transform

The first-order singular differential-difference operator Λα, α ≥ −1/2, given by

Λαy(x) =
d

dx
y(x) +

2α + 1

x

(
y(x)− y(−x)

2

)
, y ∈ C1(R)

called the Dunkl operator, associated with the reflexion group Z2 on R. If α = −1/2, the
Dunkl operator turns into the ordinary differential operator Λ−1/2 = d

dx
.

For α ≥ −1/2 and λ ∈ R the spectral problem associated with Dunkl operator{
Λαy(x)− (iλ)y(x) = 0,

y(0) = 1.

has a unique solution y(x) = Dα(ixλ) called Dunkl kernel given by

Dα(ixλ) = jα(ixλ) +
ixλ

2(α + 1)
jα+1(ixλ), x ∈ R,

where

jα(ixλ) = Γ(α + 1)
+∞∑
k=0

1

k!

(ixλ/2)2k

Γ(k + α + 1)

is the normalized Bessel function of order α.

Замечание 1 For α = −1
2
, we have{

d
dx
y(x)− (iλ)y(x) = 0,

y(0) = 1.

The solution of this problem is
D−1/2(ixλ) = eixλ.

Definition 1 We denote by Lp(R, µα), 1 ≤ p ≤ +∞, the space of measurable functions h on
R such that

‖h‖p,α =

(∫
R
|h(x)|pdµα(x)

) 1
p

< +∞, 1 ≤ p < +∞,

‖h‖∞ = sup
x∈R
|h(x)| < +∞.

Here µα is the measure defined on R by

dµα(x) =
|x|2α+1

2α+1Γ(α + 1)
dx, α ≥ −1/2.
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For h ∈ L1(R, µα) the Dunkl transform is defined by

Fα(h)(λ) = ĥ(λ) :=

∫
R
h(x)Dα(−ixλ)dµα(x), λ ∈ R. (3)

This transform has the following properties ( [5]):
i) For all h ∈ S(R), we have

Fα(Λαh)(λ) = iλFα(h)(λ), λ ∈ R. (4)

ii) For all h ∈ L1(R, µα), the Dunkl transform Fα is a continuous function on R satisfying

‖Fα(h)‖∞ ≤ ‖h‖1,α.

iii) (L1-inversion) For all h ∈ L1(R, µα) with Fα(h) ∈ L1(R, µα), we have

h(x) =

∫
R
Fα(h)(λ)Dα(ixλ)dµα(λ). (5)

iv) Fα is a topological isomorphism on S(R) which extends to a topological isomorphism on
S ′(R).
v) (Plancherel theorem) The Dunkl transform Fα is an isometric isomorphism of L2(R, µα).
In particular,

‖Fα(h)‖2,α = ‖h‖2,α. (6)

Notation. ( [6, p. 22]) For s ∈ R we denote by

W s,2
α (R, µα) := {h ∈ S ′(R) : ‖h‖2

W s,2
α (R,µα)

=

∫
R
(1 + λ2)s|Fα(h)(λ)|2dµα(λ) <∞}

the usual Sobolev space on R.

3 Main results and methods

Theorem 1 Let g ∈ W 2,2
α (R, µα), f ∈ C([0, T ],W 2,2

α (R, µα)) and 0 < γ < 1. Then there
exists a unique solution of problem (1)–(2). Moreover, it is given by the expression

u(t, x) =

∫
R

∫
R
g(y)

(
1− λ2tγEγ+1 (t)

)
Dα(ixλ)Dα(−iyλ)dµα(y)dµα(λ)

+

∫
R

∫
R

∫ t

0

d

dτ
{τ γE1+γ(τ)}f(t− τ, y)Dα(ixλ)Dα(−iyλ)dτdµα(y)dµα(λ),

where

Eγ+1(t) = E(γ−γ1,...,γ−γm,γ),1+γ(a1t
γ−γ1 , ..., amt

γ−γm ,−λ2tγ).

Here

E(γ1,...,γm+1),β(z1,...,zm+1) =
∞∑
k=0

∑
l1+l2+···+lm+1=k,
l1≥0,...,lm+1≥0

k!

l1!...lm+1!

∏m+1
j=1 z

lj
j

Γ
(
β +

∑m+1
j=1 γjlj

) (7)

is the multivariate Mittag-Leffler function [7].
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Existence of the solution. Now to show that there is a generalised solution to problem
(1)–(2), we apply the Dunkl transform Fα to the equation (1) and the initial condition (2).
It gives us

∂γt û(t, λ)−
m∑
j=1

aj∂
γj
t û(t, λ) + λ2û(t, λ) = f̂(t, λ), (8)

and

û(0, λ) = ĝ(λ), (9)

for all λ ∈ R, where û(·, λ) is an unknown function. Then by solving the equation (14) under
the initial condition (15) (see [7]), we get

û(t, λ) = ĝ(λ)
(
1− λ2tγEγ+1 (t)

)
+

∫ t

0

τ γ−1Eγ (τ) f̂(t− τ, λ)dτ.
(10)

Lemma 1 [8] Let 0 < γ < 1. Then

d

dt
{tγE1+γ(t)} = tγ−1Eγ(t), t > 0.

Using Lemma 1 we can rewrite the formula (10) in the form:

û(t, λ) = ĝ(λ)
(
1− λ2tγEγ+1 (t)

)
+

∫ t

0

d

dτ
{τ γE1+γ(τ)}f̂(t− τ, λ)dτ.

(11)

Consequently, by using the inverse Dunkl transform (5) to (11), one obtains the solution
of problem (1)–(2)

u(t, x) =

∫
R

∫
R
g(y)

(
1− λ2tγEγ+1 (t)

)
Dα(ixλ)Dα(−iyλ)dµα(y)dµα(λ)

+

∫
R

∫
R

∫ t

0

d

dτ
{τ γE1+γ(τ)}f(t− τ, y)Dα(ixλ)Dα(−iyλ)dτdµα(y)dµα(λ).

(12)

Here, we prove convergence of the obtained solution (12) and it’s derivatives
Dγt u(t, x), Λ2

αu(t, x). To prove the convergence of these, we use the estimate for the
multivariate Mittag–Leffler function (7), obtained in [8], of the form

|E(γ−γ1,...,γ−γm,γ),1+γ(a1t
γ−γ1 , ..., amt

γ−γm ,−λ2tγ)| ≤ C

1 + λ2tγ
.

Let us to show absolute convergence the first term of (11):

ĝ(λ)
(
1− λ2tγEγ+1 (t)

)
≤ C|ĝ(λ)|.
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Let us to show the convergence of the integral term of (11):∣∣∣∣∫ t

0

d

dτ
{τ γE1+γ(τ)}f̂(t− τ, λ)dτ

∣∣∣∣
≤ max

0≤τ≤t
|f̂(t− τ, λ)|tγ−1Eγ(t)

≤ max
0≤t≤T

|f̂(t, λ)|T γ−1Eγ(T ) ≤ C‖f̂(·, λ)‖C([0,T ]).

(13)

Now using obtained above inequalities and in view of Plancherel theorem we have

‖u(t, ·)‖22,α = ‖û(t, ·)‖22,α =

∫
R
|û(t, λ)|2dµα(λ)

≤ C‖g‖22,α + C‖f‖2C([0,T ];L2(R,µα)).

This implies u(t, x) ∈ C([0, T ];L2(R, µα)). Similarly we can obtain

‖Λ2
αu(t, ·)‖22,α = ‖λ2û(t, ·)‖22,α =

∫
R
|λ2û(t, λ)|2dµα(λ)

≤ C‖g‖2
W 2,2
α (R,µα)

+ C‖f‖2
C([0,T ];W 2,2

α (R,µα))
.

This implies immediately Λ2
αu(t, x) ∈ C([0, T ];L2(R, µα)). Finally, we have

‖Dγt u(t, ·)‖22,α = ‖Dγt û(t, ·)‖22,α = ‖f̂(t, ·)− λ2û(t, ·)‖22,α
≤ C‖f̂(t, ·)‖22,α + C‖λ2û(t, ·)‖22,α
≤ C‖g‖2

W 2,2
α (R,µα)

+ C‖f‖2
C([0,T ];W 2,2

α (R,µα))
.

This is Dγt u(t, x) ∈ C([0, T ];L2(R, µα)). So we finally proved existence of the generalized
solution of the problem (1)–(2) and it belongs to the class u(t, x) ∈ Cα([0, T ], L2(R, µα)) ∩
C([0, T ],W 2,2

α (R, µα)).
Now, we are in a position to show the uniqueness of the solutions. Suppose that there are

two solutions u1 and u2 of the problem (1)–(2). Denote

u(t, x) = u1(t, x)− u2(t, x).

Then the function u satisfies the equation

∂γt u(t, x)−
m∑
j=1

aj∂
γj
t u(t, x)− Λ2

α,xu(t, x) = 0, (14)

with homogeneous condition

u(0, x) = 0. (15)

Then by applying the Dunkl transform Fα to the problem (14)–(15) one obtains

Dγ0+,tû(t, λ) + λ2û(t, λ) = f̂(t, λ), û(0, λ) = 0.

Then we have the trivial solution, i.e. û(t, λ) ≡ 0. Then by acting inverse Dunkl transform to
this trivial solution we see that the solution u of the problem (14)–(15) is equal to zero. This
means u1 ≡ u2. It contradicts to the our assumption, so the solution of the problem (1)–(2)
is unique.
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4 Conclusion

In this paper we showed existence and uniqueness of the solution to the (1)–(2) by using
direct and inverse Dunkl transforms and using property of the multivariate Mittag-Leffler
function. Further investigation problems will be application this technique for other type of
equations such as Multi-term time-fractional derivative wave equation for Dunkl operator.
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STUDY OF BOREHOLE HEAT EXCHANGER HEAT TRANSFER
ENHANCEMENT PARAMETERS

This paper discusses the study of parameters for improving the heat transfer of a borehole heat
exchanger for a ground source heat pump application. The study of efficiency parameters was
carried out based on an experimental prototype of a ground source heat pump developed by the
authors. A mathematical model has been developed for calculating the efficiency of a ground
heat exchanger based on three-dimensional equations of heat and mass transfer in a porous
medium. The numerical solution was carried out using the COMSOL Multiphysics software.
The numerical calculation algorithm was verified by comparison with experimental data from
the created prototype. Calculations were made of the efficiency of a borehole heat exchanger with
various geometric configurations of the pipes in the well. With an increase in the tube diameter,
the heat transfer increases. With a tube diameter of 40 mm, the thermal efficiency of the heat
exchanger was 42.4 W/m in the heat charging mode, which is 24% more with a diameter of
20 mm. With increasing well depth, the heat transfer efficiency increases. The influence of the
thermal conductivity coefficients of the pipe material, grout material and various types of ground
on the heat transfer efficiency was also studied. It was shown that with an increase in the thermal
conductivity coefficients of grout and ground, the heat flux increases, but above 6.0 W/m K, the
heat flux practically does not change. When the coefficient of thermal conductivity of the pipe
material is higher than 1.0 W/m K, the heat fluxes almost do not change. In general, materials
containing plastics are used for piping of ground heat exchangers, the thermal conductivity
coefficients of which vary between 0.24-0.42 W/m K.
Key words: borehole heat exchanger, ground source heat pump, thermal efficiency, heat and mass
transfer in porous media, thermal conductivity, heat exchanger geometry, mathematical model,
numerical solver.
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Жерасты ұңғымалы жылу алмастырғыштың жылу беруiн жақсарту параметрлерiн
зерттеу

Бұл жұмыста жер жылу сорғысында пайдалану үшiн жерасты ұңғымалы жылу алма-
стырғышының жылу беруiн жақсарту параметрлерiн зерттеу қарастырылады. Тиiмдiлiк
параметрлерiн зерттеу авторлар әзiрлеген жер жылу сорғысының тәжiрибелiк прототипi
негiзiнде жүргiзiлдi. Кеуектi ортадағы жылу мен масса алмасудың үш өлшемдi теңдеулерi
негiзiнде жерасты жылу алмастырғыш өнiмдiлiгiн есептеудiң математикалық моделi
жасалды. Сандық шешiм COMSOL Multiphysics бағдарламалық жасақтамасы арқылы
жүзеге асырылды. Сандық есептеу алгоритмi жасалған прототиптiң тәжiрибелiк деректерi-
мен салыстыру арқылы тексерiлдi. ұңғымадағы құбыршалардың әртүрлi геометриялық
конфигурациялары бар жерасты ұңғымалы жылу алмастырғышының өнiмдiлгi есептеулерi
жүргiзiлдi. Құбыршаның диаметрi ұлғайан сайын жылу беру артады.
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Құбырша диаметрi 40 мм, жылу алмастырғыштың жылу өнiмдiлiгi жылу айдау режимiнде
42,4 Вт/м құрады, бұл диаметрi 20 мм болғандағы жағдайға қарағанда 24 % артық. Ұңғы-
маның тереңдiгi артқан сайын жылу беру тиiмдiлiгi артады. Құбырша материалының, грут
материалының және әр түрлi жерасты материалдар (топырақ) түрлерiнiң жылу өткiзгiштiк
коэффициенттерiнiң жылу беру өнiмдiлiгiне әсерi зерттелдi. Жерасты бетон мен топырақ
жылу өткiзгiштiк коэффициенттерiнiң жоғарылауымен жылу ағыны артады, алайда 6,0
Вт/м К-ден жоғары жылу ағыны айтарлықтай өзгермейдi. Құбырша материалының жылу
өткiзгiштiк коэффициентi 1,0 Вт/м К жоғары болғанда, жылу ағындары айтарлықтай
өзгермейдi. Жалпы, жылу өткiзгiштiк коэффициенттерi 0,24-0,42 Вт/м К аралығында
өзгеретiн жерасты жылу алмастырғыштардың түтiктерi үшiн қңрамында пластмасса бар
материалдар қолданылады.

Түйiн сөздер: жерасты ұңғымалы жылуалмастрығыш, жер жылу сорғысы, жылу өнiм-
дiлiгi, кеуектi ортадағы жылу және масса тасымалы, жылуөткiзгiштiк, жылуалмастырғыш
геометриясы, математикалық модель, сандық шешiм.
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Исследование параметров улучшения теплопередачи скважинного грунтового
теплообменника

В данной работе рассматривается исследование параметров улучшения теплопередачи
скважинного теплообменника для применения в грунтовом тепловом насосе. Исследование
параметров эффективности проведено на основе разработанного авторами эксперимен-
тального прототипа грунтового теплового насоса. Разработана математическая модель
расчета эффективности грунтового теплообменника на основе трехмерных уравнений
тепломассопереноса в пористой среде. Численное решение было осуществлено на ПО
COMSOL Multiphysics. Численный алгоритм расчета был верифицирован путем сравнения с
экспериментальными данными из созданного прототипа. Проведены расчеты эффективности
грунтового скважинного теплообменника с различными геометрическими конфигурациями
расположения трубок в скважине. С увеличением диаметра трубки теплообмен увеличива-
ется. При диаметре трубки 40 мм тепловая эффективность теплообменника составила 42,4
W/m в режиме закачки тепла, что на 24 % больше при диаметре 20 мм. С увеличением
глубины скважины увеличивается эффективность теплопередачи. Исследовано влияние
коэффициентов теплопроводности материала трубки, материала грута и различных типов
грунта на эффективность теплообмена. С увеличением коэффициентов теплопроводности
грута и грунта, увеличивается тепловой поток, однако выше 6,0 Вт/м К тепловой поток
практически не меняется. При коэффициенте теплопроводности материала трубки выше
1,0 Вт/м К тепловые потоки практически не меняются. В основном для трубок грунтовых
теплообменников используются материалы, содержащие пластик, коэффициенты теплопро-
водности которых варьируются между 0,24-0,42 Вт/м К.

Ключевые слова: грунтовый скважинный теплообменник, грунтовый тепловой насос, теп-
ловая производительность, тепломассоперенос в пористой среде, теплопроводность, геомет-
рия теплообменников, математическая модель, численный решатель.

1 Introduction

A heat pump system is more efficient when connected to a ground heat exchanger (GHE) than
a conventional air source heat exchanger based heat pump. This is because the ground has a
relatively more stable temperature and is generally warmer in winter and cooler in summer
than the fluctuating ambient air temperatures. As a result, GHE as part of a ground source
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heat pump (GSHP) system is a critical element that determines its overall performance.
GHEs are mainly classified as either horizontal or vertical according to their configurations.
Vertical downhole GHEs, which also the so-called borehole heat exchangers (BHE), are more
widely used comparing to other GHEs. Since BHEs can provide high heat transfer capacity on
a limited surface area [1] and less influenced by ambient air temperature. On the other hand,
when there is enough land and digging trenches is not difficult [2], horizontal GHE could be
economically attractive since vertically well drilling is avoided. For climate conditions with a
predominance of the heating season, horizontal GHEs are less suitable, because the influence
of atmospheric air on such heat exchangers is significant. From this point of view, BHEs are
more versatile. The most used BHEs are single U-shaped (one loop per well) and double
U-shaped (two loops per well) heat pipes, which are used as part of a heat pump for heating
and cooling [3].

Three main models for predicting the BHE heat transfer efficiency are widely available in
the literature: analytical, numerical, and semi-analytical models. Compared to numerical
models, analytical models are easier to implement. However, for simulations with small
time intervals, discrete numerical models are most suitable. This is applicable for example
for hourly energy analysis and optimal control of the GSHP depending on the local
meteorological and hydrogeological conditions. Also, with the help of a computational tool, it
is possible, for example, to simulate complex physical processes of heat and mass transfer in a
porous medium. On the other hand, such calculations require large computational resources,
especially for time variable year-round modeling and BHE life cycle modeling [4].

Analytical approaches include the line-source (LS) model [5] and the cylindrical-source
(CS) model [6]. In general, the LS and CS models give a rough estimate of the actual heat
transfer in the BHE; they are easy to implement and provide quick solutions. However,
these models are limited to only radial conductive heat transfer and neglect heat transfer in
the other coordinate direction. In addition, the BHE internal thermal resistance and heat
capacity are neglected, which restricted wellbore thermal resistance prediction in short-
term time interval. As a result, these models later improved by various researchers, for
example in [7] non-uniform heat flow in a well was considered. As another approach, in
[8] to estimate borehole wall temperature g-function dimensionless temperature response
coefficient was proposed. The g-function provides the response of a single BHE to a single
thermal step to predict the long-term performance of the GSHP. In [9] a more accurate two-
dimensional soil heat transfer model, which is called a finite line-source (FLS) model was
developed. As an improvement of basic analytical models, two-dimensional analytical (semi-
analytical) models have been developed. Although they are still not suitable as a numerical
simulation tool. For example, in [10] a robust two-dimensional analytical model considering U-
shaped BHEs thermal interactions have been developed. In [10] by combining analytical and
numerical approaches borehole thermal energy storage simulation model have been developed.
Combination of analytical and numerical models for the double U-shaped BHE inner and
outer regions have been studied in [11]. However, the BHE internal heat capacity was not
considered, so the model cannot be applied to predict non-stationary heat transfer inside the
BHE. In the recent decade, there have been research works on the study of heat transfer
in single and double U-shaped GHEs. Few studies have been devoted to the study of heat
transfer for more complex BHE geometries that consider the influence of thermal properties
of the ground, heat exchanger material, grout, and other BHE parameters.
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In [12] a detailed overview of the design aspects of various GHEs with an emphasis
on improving performance and overall manufacturing costs. According to this research the
most important factors influencing the GHE design are pipes geometrical configuration, GHE
location, the wellbore and pipes length and diameter, pipe connections (serial or parallel),
ground and grout properties, experimental methodology and mathematical modeling tool.
In [13] the CFD tool was used to study the effect of linear spacing on the BHEs thermal
performance with a shallow wellbore. It was reported that the temperature drop is the
smallest at a small pitch and the maximum at the largest pitch of the shank. The authors
also shoed that with increasing liner spacing the improvement in thermal performance
decreases significantly. However, in their study, there is no effect of wellbore spacing on
BHE performance with a large well depth, as well as a combined increase in the thermal
conductivity of the cement slurry with other parameters. A simple analytical model for
calculation of the average fluid temperature and hence improving the BHE thermal resistance
estimation accuracy for a single U-shaped heat exchanger-based wellbore was proposed in [14].
The authors investigated the effect of well depth and volumetric flow rate on the estimation
of RMS distribution between well thermal resistivity and efficient well thermal resistivity.
Additionally, the relative deviation between the two resistances for the specific flow rate was
estimated. However, a comprehensive sensitivity analysis regarding the combined effects of
wellbore spacing, cement slurry thermal conductivity, well depth, wellbore and pipe diameters
on the wellbore thermal resistance estimate has not been performed. As discussed above,
most of the factors affecting BHE performance have been investigated. However, most of
these research papers are not detailed as they deal with the influence of only one or a
few parameters. A comprehensive analysis of all major influencing parameters along with
a comparative performance analysis of single and double U-shaped BHEs using the same
simulation model is lacking in the literature. A detailed analysis of the influencing factors,
combined with a comparison of the thermal performance of single- and double-pipe BHEs
in terms of thermal efficiency, heat transfer per unit wellbore depth, and wellbore thermal
resistance under various conditions, is missing from the previous reports.

Therefore, in this research, a numerical analysis of the thermal performance of BHEs
was carried out based on a verified mathematical and numerical model of heat transfer. The
combined effect of borehole diameter, borehole depth, pipe diameter, grout/ground/pipe
material thermal conductivity on the thermal performance of BHE was studied, including
with various geometric configurations of the piping arrangement. Geometric configurations
include single U-shaped, double U-shaped and spiral types of heat exchangers. The analysis
was carried out and conclusions were drawn on the influence of these parameters on the
efficiency of heat transfer between BHE and the surrounding ground both heat charging and
discharging modes.

2 Physical formulation

Heat flow in a geothermal system includes heat conduction and convection occurring in
well heat exchangers and the surrounding soil mass. Thermal conductivity in the soil mass
occurs as a result of the transfer of thermal energy due to temperature gradients between the
bottom layers of the earth, air and borehole heat exchangers. Thermal convection occurs as
a result of diffusion and advection of heat due to the flow of groundwater. Temperatures and
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temperature gradients in geothermal systems are relatively low, on the order of 5-30◦C. In the
presence of groundwater, the soil mass is considered as a saturated two-phase porous material
consisting of solid particles and water. Dry soil is considered as a single-phase material.

The borehole heat exchanger is one of the most important components of a ground source
heat pump system. Due to the complex nature of heat transfer in BHE, an efficient thermal
design that meets the required requirements is a challenge. When designing a BHE, thermal
performance is an important parameter that determines the effective transfer of heat between
the ground and the system. Moreover, the thermal performance of the BHE also determines
the operational efficiency and operating costs of the system integrated in the BHE. In this
regard, a comprehensive study of BHE is needed, especially from the point of view of the
complex impact of factors affecting its thermal performance. In addition to the thermal
performance of the BHE, the wellbore thermal resistance, which is an important parameter
in the design and analysis of BHE heat transfer, will also be analyzed for the single U-tube
BHE; and a comparative analysis will be carried out between different types of BHE in terms
of heat transfer, efficiency and thermal resistance of the wellbore. The thermal performance
of a BHE is influenced by various factors: geometric, thermal, geological and operational
parameters. This article will discuss the combined effect of the main parameters that affect
the performance of a BHE single U-tube heat exchanger.

In this work, a new model was described for simulating downhole heat exchangers
consisting of a single U-tube. In the first part, the theory of building a finite element of
a downhole heat exchanger was presented. The work begins with the definition of the general
equation for the balance of flow and heat transfer within each element of the heat exchanger.
The generated numerical model is for single U exchangers. It can also be adapted for two-
or multi-pipe BHEs as shown in the results of this article. The downhole heat exchanger is
modeled as a one-dimensional finite element with many degrees of freedom. It is necessary to
take into account the heat exchange between the individual sections of the heat exchanger. To
obtain a more accurate model, the division of the region into three subregions was introduced.
The first area is the pipe, which we model as a line, the second area is the cement, which we
model as a solid, and the third, the soil, which we model as a solid with porosity.

3 General equations

The nonisothermal pipe flow is used to compute the temperature, velocity, and pressure
fields in pipes and channels of different shapes. It approximates the pipe flow profile by 1D
assumptions in curve segments, or lines. These lines drawn in 3D and represent simplifications
of hollow tubes.

The heat equation to model nonisothermal pipe flow:

∂ρf
∂t

+∇(ρfu) = 0, , (1)

ρf
∂u

∂t
= −∇p− 1

2
fD
ρf
dh
|u|u+ F, (2)

where ρf - density of fluid (kg/m3),u−velocity(m/s),p−pressure(Pa),fD - Darcy friction
factor, F - volume force (H), dh - parametric value (m).
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The heat equation to model nonisothermal pipe heat transfer:

ρfcp,f
∂Tf
∂t

+ ρfcp,fu∇Tf = ∇(kf∇Tf ) +
1

2
fD

ρ

dh
|u|u2 +Qw, (3)

where cp,f - specific heat capacity of fluid (J/(kg K)), kf - thermal conductivity of fluid
(W/(m K)), Tf - temperature of fluid (K), Qw - wall heat source (J).

In this work the wall heat transfer node to set up heat exchange across the pipe wall was
used for define the external temperature and the nature of the heat transfer.

Qw = (hZ)eff (Text − Tf ), (4)

where (hZ)eff is an effective value of the heat transfer coefficient h (W/(m2 K)) times
the wall perimeter Z (m) of the pipe. Text (K) the external temperature outside of the pipe.
Qwall appears as a source term in the pipe heat transfer equation.

(hZ)eff =
2π

1
r0hint

+ 1
rNhext

+ Σ(
ln( rn

rn−1
)

kwall,n
)
, (5)

where rn is the outer radius of wall (m), r0 - inner radius (m), Z - is the outer perimeter
of wall (m), hint and hext are the film heat transfer coefficients on the inside and outside of
the tube, respectively (W/(m2K)).

The heat transfer in solids is used to model heat transfer in solids by conduction,
convection, and radiation. The temperature equation defined in solid domains corresponds to
the differential form of the Fourier’s law that may contain additional contributions like heat
sources.

The heat equation to model heat transfer in solids:

ρscp,s
∂Ts
∂t

+ ρscp,su∇Ts = ∇(ks∇Ts), (6)

where ρs - density of solid (kg/m3),cp,s - specific heat capacity of solid (J/(kg K)), ks -
thermal conductivity of solid (W/(m K)), Ts - temperature of solid (K), u - velocity (m/s).

The heat transfer in porous media is used to model heat transfer by conduction,
convection, and radiation in porous media. The temperature equation defined in porous media
domains corresponds to the convection-diffusion equation with thermodynamic properties
averaging models to account for both solid matrix and fluid properties. This equation is valid
when the temperatures into the porous matrix and the fluid are in equilibrium. The heat
equation to model heat transfer in porous media:

(ρcp)eff
∂Tp
∂t

+ (ρcp)effu∇Tp = ∇(keff∇Tp), (7)

(ρcp)eff = θρscp,s + (1− θ)ρfcp,f , (8)

keff = θks + (1− θ)kf , (9)

where Tp - temperature of porous media (K), θ - porosity, ρs - density of solid (kg/m3),cp,s
- specific heat capacity of solid (J/(kg K)), ks - thermal conductivity of solid (W/(m K)), cp,f
- specific heat capacity of fluid (J/(kg K)), kf - thermal conductivity of fluid (W/(m K)), ρf
- density of fluid (kg/m3).
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3.1 Initial and boundary condition

Two modes of operation are considered: ground charging and discharging. Ground charging
is understood as heat transfer to the ground, where the working fluid inlet temperature is
set as 45 ◦C. Ground discharging is understood as heat transfer from the ground, i.e., heat
extraction. In discharging mode working fluid inlet temperature is set as 5 ◦C.

As an initial condition for the ground temperature constant undisturbed soil temperature
is assumed. The undisturbed soil temperature is equal to 15 ◦C for both charging and
discharging cases.

At the boundaries of the computational domain constant temperature is assumed because
there is no influence of temperature boundary condition on the BHE temperature distribution.

4 Results and discussion

The numerical implementation of the indicated mathematical model with the corresponding
initial and boundary conditions was carried out on the COMSOL Multiphysics software. To
verify this numerical tool, a comparison was made with the experimental data of the thermal
response test [15]. Figure 1 shows this comparison. According to Figure 1, the comparison
was carried out according to the working fluid temperature Tout. The relative error does not
exceed 2-3%, which indicates a very good agreement between the results.

Figure 1: Verification of the numerical calculation algorithm

To study the efficiency of various heat exchanger configurations, 4 types were selected:
(1) single U - shaped (U), (2) - double U-shaped cross (dU-x), (3) - double U-shaped
parallel (dU-u), and (4) spiral (Spiral). Figure 2 shows these geometrical configurations.
These configurations have been proposed to increase BHE thermal efficiency. Of course, the
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most common is the single U-configuration, whereas more complex versions are costly and
laborious to install. However, with the use of more complex configurations, it is possible to
save on the depth of drilling a well.

Wellbore depth is one of the important BHE geometrical parameters that affects the total
amount of heat supplied (in cooling mode) and removed (in heating mode) to/from the well.
Hence, it is very important to investigate its impact on BHE performance. In order to obtain
the result of thermal performance in response to a change in well depth, the input parameters
of the numerical model, which were fixed, are specified as: distance between inlet and outlet
pipes within one BHE, Xc = 0.05 m, well radius rb = 0.017 m, soil thermal conductivity
ks = 1.2 W/m.K, working fluid inlet temperature Tf,in = 45 ◦C , 5 ◦C for charging and
discharging modes, flow rate ṁ= 0.6 m3/h, pipe thermal conductivity kp = 0.4 W/m.K.
Figure 3 illustrates the effect of well depth on the overall heat transfer rate and thermal
efficiency of the BHE. With the increasing well depth, the heat transfer per unit length of
the well tends to decrease, while thermal efficiency improves significantly. The deeper the well
depth, the smaller the temperature difference between the working fluid and the surrounding
soil, and this leads to a decrease in the heat transfer rate per unit depth of the well. The
increase in thermal performance may be since as the well depth increases, more heat enters
the well (in cooling mode); consequently, the outlet liquid temperature decreases. This, in
turn, increases the difference between the inlet and outlet temperature of the working fluid,
which leads to an increase in the thermal efficiency of the BHE. However, with a deep depth
of the well, it is not economically feasible. This is due to an increase in drilling cost (which
depends on geological conditions) and installation cost, as well as the cost of materials. As
a result, when designing with a large well depth, a trade-off must be found between thermal
performance and total cost. In addition, a BHE with a large well depth requires more pump
power to circulate the working fluid and therefore requires more electricity consumption,
which again leads to increased costs.

Pipe diameter is another factor to consider when investigating the impact of pipe
parameters on BHE performance. The effect of pipe diameter on BHE thermal performance
is briefly discussed here. Conventional pipe outer diameters (from 15 mm to 40 mm) were
taken to evaluate the effect of pipe diameter on heat transfer rate, thermal efficiency and
thermal resistance of the wellbore. The effect of pipe diameter on the overall heat transfer
coefficient per unit depth of the well and the thermal efficiency of the BHE is shown in Figure
4. Heat transfer rates and efficiency increase with larger BHE pipe diameters, especially in
high thermal conductivity grounds. BHE with pipe diameter 40 mm has the highest heat
transfer rate and thermal efficiency than BHE with pipe diameter 25 mm and 32 mm. The
average heat transfer coefficient per unit of well depth and thermal efficiency of BHE with
40 mm pipe is 42.4 W/m (charging mode), which is higher than that of BHE with 25 mm
pipe diameter. Thus, according to Figure 4, BHEs with a larger diameter pipe are more
efficient and improve the transfer of more heat. This can be explained by a change in the
heat transfer area of the BHE with a well configuration and a change in the pipe diameter.
Therefore, convective heat transfer improves as the heat exchange surface area increases.

BHE consists of a U-shaped pipe, grout material, and, accordingly, the BHE surrounding
ground. Since pipe and grout materials are considered solid, the influence of their
thermal conductivity coefficient on the BHE thermal efficiency should be considered. Since
surrounding ground is a porous medium with predominantly conductive heat transfer
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Figure 2: BHE geometrical configurations

Figure 3: Influence of well depth on heat fluxes in BHE

mechanism, then influence of the ground thermal conductivity is also interesting to test.
Since the surrounding ground is a porous medium with a predominantly conductive heat
transfer mechanism, the influence of the ground’s thermal conductivity is also interesting to
test. Figure 5 shows the influence of mentioned thermal conductivity coefficients on the BHE
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Figure 4: Influence of pipe diameter on heat fluxes in BHE

heat fluxes. A high-density polyethylene (HDPE), polyvinyl chloride (PVC), polyethylene,
polyamide, steel, and copper are some of the common piping materials. Grout material is
the cement slurry, which is in the ratio of 70% - water, 24% - cement, and 6% - bentonite.
Underground materials could be unconsolidated ground type (clay/silt, sand, gravel/stones,
till/loam), sedimentary rocks (clay/silt stones, limestones, dolomitic rocks, etc.), magmatic
and metamorphic rocks (basalt, granite, quartzite, etc.). According to Figure 5, with the
piping material’s thermal conductivity above 1.2 W/m K, there is no change in heat flux. It
is known that the HDPE, PVC, and polyethylene thermal conductivity is less than 1.0 W/m
K, and because of the flexibility, durability, service life, and the piping material cost they
are the most used in BHE. According to Figure 5, the influence of the thermal conductivity
coefficients of the grout and ground material is almost the same. This means that with an
increase in the thermal conductivity, heat fluxes increase, but above 6.0 W/m K this change
is insignificant.

Additionally, calculations were carried out on the effect of the well diameter on the
thermal efficiency of BHE. With an increase in the borehole diameter from 100 mm to 200
mm, the BHEs heat transfer increased by 5.5 W/m; on the other hand, the corresponding
thermal efficiency is somewhat reduced by 3.7 % for BHE. The result shows that as the
well diameter increases, more heat can be injected into the well as the heat transfer area
increases. However, the improvement in thermal performance with borehole diameter is not
as significant as the change in thermal performance with parameters such as borehole depth,
inlet fluid temperature, and soil thermal conductivity. However, from an economic standpoint,
a BHE with a larger borehole diameter may have a higher capital cost and therefore may not
be feasible compared to a BHE with a smaller borehole diameter.
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Figure 5: Influence of different thermal conductivity coefficients on heat fluxes in BHE

5 Conclusion

This paper discusses the study of parameters for improving the heat transfer of a borehole
heat exchanger for a ground source heat pump application. The study of efficiency parameters
was carried out based on an experimental prototype of a ground source heat pump developed
by the authors. A mathematical model has been developed for calculating the efficiency of
a ground heat exchanger based on three-dimensional equations of heat and mass transfer in
a porous medium. The numerical solution was carried out using the COMSOL Multiphysics
software. The numerical calculation algorithm was verified by comparison with experimental
data from the created prototype. Calculations were made of the efficiency of a downhole heat
exchanger with various geometric configurations of the pipes in the well. The study of the
influence of the tube diameter on the heat transfer efficiency showed that with an increase in
the tube diameter, the heat transfer increases. With a tube diameter of 40 mm, the thermal
efficiency of the heat exchanger was 42.4 W/m in the heat charging mode, which is 24% more
with a diameter of 20 mm. It has also been shown that with increasing well depth, the heat
transfer efficiency increases. However, it is not possible to excessively increase the depth of
the well and the diameter of the pipe for economic reasons. The influence of the thermal
conductivity coefficients of the pipe material, grout material and various types of ground on
the heat transfer efficiency was also studied. It was shown that with an increase in the thermal
conductivity coefficients of grout and ground, the heat flux increases, but above 6.0 W/m K,
the heat flux practically does not change. When the coefficient of thermal conductivity of the
pipe material is higher than 1.0 W/m K, the heat fluxes almost do not change. In general,
materials containing plastics are used for piping of ground heat exchangers, the thermal
conductivity coefficients of which vary between 0.24-0.42 W/m K.
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NONLINEAR VIBRATIONS OF THE "ROTOR – JOURNAL BEARINGS"
SYSTEM

The equations of motion of a rotor system mounted on journal bearings with a non-linear
characteristic are solved by high-precision analytical methods. A new technique has been developed
for solving nonlinear differential equations of motion of rotor systems mounted on journal bearings,
taking into account nonlinearity of reaction forces of the lubricating layer.Algebraic systems of
equations were obtained that allow us to determine amplitudes of nonlinear oscillations of the
rotor and supports, and construct the amplitude-frequency characteristics of the system for varying
parameters of the rotor, supports and fluid depending on the angular velocity of the rotor. The
conditions and frequency intervals for the presence of self-oscillations of the rotor and supports
were determined. The amplitude-frequency characteristics of the nonlinear oscillations of the rotor
system are obtained, taking into account nonlinearity of characteristics of journal bearings.The
optimal parameters depending on the size of the gap and the oil film, the mass of the supports,
the fluids used as a lubricating layer in the journal bearing, with rigidity and damping coefficients,
at which the magnitudes of the amplitudes of self-excited oscillations have optimal values, are
obtained.
Key words: Nonlinear Vibrations, Harmonic Balance Method, Journal Bearing, Sommerfeld’s
Hypothesis, Rotor System, Self-Excited Vibrations.
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"Ротор – сырғу мойынтiректерi" жүйесiнiң бейсызық тербелiстерi

Жоғары дәлдiктi аналитикалық әдiстермен сипаттамасы бейсызық болып табылатын сырғу
мойынтiректерiнде орнатылған роторлық жүйенiң қозғалыс теңдеулерi шешiлдi.Майлау қа-
баты реакция күштерiнiң бейсызықтығын ескере отырып, сырғу мойынтiректерiнде орнаты-
лған роторлық жүйелер қозғалысының бейсызық дифференциалдық теңдеулерiн шешудiң
жаңа әдiстемесi жасалды. Ротор мен тiректердiң бейсызық тербелiстерiнiң амплитудасын
анықтауға және ротордың бұрыштық жылдамдығына қатысты кезiндегi ротордың, тiректер-
дiң және сұйықтықтың параметрлерiн варияциялау кезiнде жүйенiң амплитудалық-жиiлiк
сипаттамаларын құруға мүмкiндiк беретiн алгебралық теңдеулер жүйесi алынды. Сырғу мой-
ынтiректерiнiң сызықты емес сипаттамаларын ескере отырып роторлық жүйенiң бейсызықты
тербелiстерiнiң амплитудалық-жиiлiктiк сипаттамалары тұрғызылды. Жүйенiң өздiгiнен қо-
затын тербелiстер амплитудасының мәнi оптимальдi мәнге ие болатындай саңылаудың қалы-
ңдығы мен майлауқабаты, тiректердiң массасы, сырғумойынтiрегiнде майлау қабаты ретiнде
қолданылатын сұйықтықпен, қатаңдықжәне демпферлiк коэффициенттермен байланысты
оптимальдi параметрлер анықталды.
Түйiн сөздер: Бейсызық тербелiстер, гармоникалық баланс әдiсi, сырғу мойынтiрегi, Зо-
ммерфельд гипотезасы, роторлық жүйе, өздiгiнен қозатын тербелiстер.
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Нелинейные колебания системы "Ротор - подшипники скольжения"

Решены уравнения движения роторной системы, установленных на подшипниках скольже-
ния с нелинейной характеристикой высокоточными аналитическими методами. Разработана
новая методика решений нелинейных дифференциальных уравнений движения роторных
систем, установленных на подшипниках скольжения, с учетом нелинейности сил реак-
ций смазочного слоя. Были получены алгебраические системы уравнений, позволяющие
определить амплитуды нелинейных колебаний ротора и опор, и построить амплитудно-
частотные характеристики системы при варьировании параметров ротора, опор и жидкости
в зависимости от угловой скорости ротора. Были определены условия и интервалы частот
наличия автоколебаний ротора и опор. Построены амплитудно-частотные характери-
стики нелинейных колебаний роторной системы, с учетом нелинейности характеристик
подшипников скольжения. Определены оптимальные параметры связанные с толщиной
зазора и масленой пленки, массой опор, жидкости использующиеся в качестве смазочно-
го слоя в подшипнике скольжения, с коэффициентами жесткости и демпфирования, при
которых величины амплитуд самовозбуждающихся колебаний имеют оптимальные значения.

Ключевые слова: Нелинейные колебания, метод гармонического баланса, подшипник
скольжения, гипотеза Зоммерфельда, роторная система, самовозбуждающиеся колебания.

1 Introduction

Journal bearings have a number of significant advantages over rolling bearings. They are
resistant to a wide range of loads and dynamic disturbances, capable of operating at higher
rotational speeds, have a long service life and low cost, and are easy to operate.

Due to specific properties of hydrodynamic forces caused by the presence of a lubricating
layer during rotation of the rotor in journal bearings, self-excited oscillations (self-oscillations)
with large amplitudes can arise in a wide range of rotation speeds. Therefore, it is often
necessary to develop suppression measures in industry and production and study the behavior
of this type of oscillation depending on various physical and geometric parameters of the
system.

2 Literature review

At present, journal bearings, used in many rotary machines as key elements and serving to
transfer rotational energy, are complex elements for dynamic analysis since under certain
geometric and operating parameters they can cause, as mentioned above, self-excited [1-3],
parametric [3, 4] and chaotic oscillations [4, 5]. As at operating frequencies of the system
similar to the model considered in this paper, self-excited oscillations often occur, the paper
studies the conditions for occurrence and further behavior of these oscillations.

One of the first researchers who studied the phenomenon of self-excitation and the
reasons for its occurrence was Newkirk in 1924 [6]. Together with Taylor, he conducted
the first experimental study of this phenomenon and explained the causes of self-excited
oscillations [7]. When studying self-oscillations, in many cases the problem is reduced to
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studying precessional motion of the system. Approximate solutions, assuming that the load
on the stud is sufficiently small, were first obtained by Hagg [8] and Yukio Hori [9]. Works
on the analysis of the precessional movement of the stud in the oil-filled bearing were also
carried out by Kesten [10].

Conditions for stability of the equilibrium position of the rotor system mounted on journal
bearings, as well as the nature of unsteady motion in an unstable position, were studied
by Someya [11]. Experimental studies of these phenomena were also carried out by such
authors as Hagg, Boecker, Schnittger and Hori [8, 9, 12, 13]. Different results were obtained
concerning the influence of oil viscosity and the size of backlash in the bearing. Some authors
such as Schnittger have noted the benefits of low viscosity as it contributes to stud stability.
Other authors such as Boecker, Schnittger and Pinkus [14] noted that high viscosity is more
conducive to stability. According to the third group of authors, such as Hummel [15] and
Hagg, both of the above cases are equivalent. Different points of view are also observed
when studying the effect of bearing width on system dynamics. However, researchers agree
that the unbalance of the rotor has no effect on the occurrence and intensity of self-excited
oscillations. Some authors obtained different frequency of self-excited oscillations [16-19]. For
most authors, the frequency of self-excited oscillations coincided with the natural frequency
of the rotor, in some cases, for example, Pinkus, it increased with increasing speed, while
Schnittger experimentally obtained results in which the frequency curve first decreased and
then began to increase [13, 14].

Experimental studies of self-excited oscillations as a whole showed not only the complexity
of this problem, but also revealed a number of specific features of this phenomenon. The most
important of the identified effects is "inertia" (dragging), i.e. self-excited oscillations, after
arising at a certain frequency, continue to exist even when the rotor speed decreases below
the frequencies of occurrence of self-excited oscillations [20, 21-23]. Another feature is the
possibility of occurrence of self-excited oscillations under the action of a short-term pulse,
for example, a blow to the rotor, at speeds that are lower than the characteristic speeds at
which self-excited oscillations arise [24, 25].

3 Statement of the problem and equations of motion

Consider a vertical solid rotor of mass m symmetrically mounted on a flexible shaft with
respect to supports. The shaft is mounted on elastic supports. The rotor system rotates on
journal bearings of mass m0 with an angular velocity ω (Figure 1). Equivalent rigidity of
the elastic field of supports is c; δ is the size of the clearance in the bearing; t is the oil
temperature in the bearing; µ is the oil viscosity in the bearing; d is the diameter of the
bearing spike; L is the length of the bearing; D is the bearing diameter; l is the length of the
shaft; k1, k2 are damping coefficients; e is the rotor unbalance.

To derive the equations of motion, we introduce the fixed coordinate system Oxy. Let
in this system x1, y1 be coordinates of O1 (the center of the elastic support), x2, y2 be
coordinates of O2 (the center of the bearing spike), x3, y3 be coordinates of O3 (the center of
gravity of the rotor), ϕ be the polar angle of the line of centers.

Taking into account that

x3 = x2 + e cosωt, y3 = y2 + e sinωt, (1)
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Figure 1: Rotor system rotating on journal bearings

we obtain the differential equations of motion of the system

m0ẍ1 + k1ẋ1 + cx1 − 2 (Pe cosϕ+ Pϕ sinϕ) = 0,
m0ÿ1 + k1ẏ1 + cy1 − 2 (Pe sinϕ− Pϕ cosϕ) = 0,

mẍ2 + k2ẋ2 + 2 (Pe cosϕ+ Pϕ sinϕ) = meω2 cosωt,
mÿ2 + k2ẏ2 + 2 (Pe sinϕ− Pϕ cosϕ) = meω2 sinωt.

(2)

where Pe and Pϕ are determined from the Sommerfeld hypothesis, according to which no
restrictions are imposed on the length of the lubricating layer between the bearing and the
stud and are determined as [26]

Pe =
12πµLR3χ̇

δ2 (1− χ2)3/2
, Pϕ =

12πµLR3χ (ω − 2ϕ̇)

δ2 (2 + χ2)
√

1− χ2
.

The first two equations of system (2) are equations of motion of the support under
the action of elastic forces cx1, cy1, damping forces k1ẋ1, k1ẏ1, and reaction forces of the
lubricating layer Pe and Pϕ, directed in the opposite direction to the forces of the same name
shown in Figure 2.

The second two equations of system (2) determine the equations of motion of the rotor
under the action of the reaction forces of the lubricating layer Pe and Pϕ, and the external
damping forces k2ẋ2, k2ẏ2. In order for the equations of system (2) in combination with the
equations of hydrodynamic forces to form a closed system, it is necessary to express the
eccentricity of the stud center e and the polar angle ϕ through the coordinates of the center
of the elastic support x1, y1 and the coordinates of the center of the stud x2, y2. Figure 2
shows that

x2 − x1 = e cosϕ, y2 − y1 = e sinϕ. (3)

Then

e =

√
(x2 − x1)2 + (y2 − y1)2, (4)
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Figure 2: Reaction forces of journal bearings

ė =
(x2 − x1) (ẋ2 − ẋ1) + (y2 − y1) (ẏ2 − ẏ1)

e
, (5)

sinϕ =
(y2 − y1)

e
, cosϕ =

(x2 − x1)

e
, (6)

ϕ̇ =
(x2 − x1) (ẏ2 − ẏ1)− (y2 − y1) (ẋ2 − ẋ1)

e2
. (7)

The system of equations (2) and equations (4)-(7) together with expressions for the
reaction forces of the lubricating layer, the form of which depends on the accepted hypothesis,
forms a closed system of nonlinear equations, the integration of which in general is not
possible. To obtain an approximate solution of the equations of motion (2), we introduce
complex variables of the form

z1 = x1 + iy1, z2 = x2 + iy2, z3 = e(cosϕ+ i sinϕ). (8)

Then equations (2) and reaction forces can be rewritten as

mz̈2 + c (z2 − z3) + k1 (ż2 − ż3) = 0,
c (z2 − z3) + k1 (ż2 − ż3) = 2 (Pe − iPϕ) eiϕ,

Pe =
6µLR3

δ2

2χ2 (ω − 2Ω)

(2 + χ2) (1− χ2)
, Pϕ =

6µLR3

δ2

πχ (ω − 2Ω)

(2 + χ2)
√

(1− χ2)
.

(9)

Let the system be "weakly" nonlinear, then its solution can be sought as

z2 = δaei(Ωt−γ), z3 = δχeiΩt. (10)

Thus, substituting solutions in the form (10) into the equations of motion of system (9)
and equating the terms in front of the same harmonics, we obtain a system of algebraic
equations for the rotor amplitudes in the form

−aα2 cos γ + a cos γ − χ+Daα sin γ = 0,
aα2 sin γ − a sin γ −Dαχ+Daα cos γ = 0,

(11)
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where
ϕ = Ωt, A = aδ, D = k1/mΩ, α = 1/

√
1−D2.

From system (11) we find that

a =
χ2 (1 +D2α2)

(1− α2)2 +D2α2
, γ =

a

χ

Dα3

1 +D2α2
. (12)

Thus, by varying parameters of the dimensionless damping D, dimensionless frequency
of self-excited oscillations α, etc., we obtain amplitude-frequency characteristic for a rotor
system mounted on journal bearings, taking into account nonlinearity of the reaction forces
of the lubricating layer of journal bearings (Figures 3-13).

4 Results and discussion

The calculations were carried out for a rotor system rotating at a speed of 0 to 20000 rpm. It
should be noted that five main parameters vary during the calculation, namely, the viscosity
of the fluid in the lubricating layer, the mass of the supports, the damping coefficient, the
rigidity coefficient of the equivalent field of elasticity and the size of the gap in the bearing,
since these parameters are fundamental in the study of the behavior of self-excited vibrations.
The analysis of vibrations was carried out on the basis of the analytical solution of the
system of equations (11), with the following initial data: rotor mass m = 5 kg, support mass
m0 = 0.15 kg, clearance in the bearing δ = 0.06 mm, oil temperature in the bearing t = 50◦ C,
bearing oil viscosity µ = 22.39 mPa.s (turbine oil), bearing stud diameter d = 20 mm, bearing
length L = 20 mm, bearing diameterD = 20+2δ mm, shaft length l = 650 mm; the equivalent
rigidity of the elastic field of the support c = 29 kg/s2, damping coefficients k1 = 42 kg/s,
k2 = 6.59 kg/s.

Figure 3 shows the amplitude-frequency characteristics of the system with a gap of δ =
0.06 mm. It can be seen from the figure that with a rigid fastening (red curve), the system
performance is limited by the rotation speed, which is approximately equal to twice the critical
speed of the rotor. Starting from 6000 rpm, intense self-oscillations arise in the system in a
wide frequency range. With the elastic mounting (blue curve), the vibration level is many
times lower. The rotor, mounted on elastic supports, does not have a self-oscillation zone,
and the system acquires the ability for stable operation at speeds of 20,000 rpm and higher,
i.e. at speeds twenty times the first critical speed. When the rotor starts up after an easy and
calm transition through two critical rotation speeds, the first self-centering zone is detected,
in which operation with small vibration amplitudes is possible.

The second, even wider self-centering zone is located in the range from 6,000 to 20,000
rpm. Finally, it can be seen from the figure that the range of possible speeds of stable rotation
of the rotor due to rotor mounting on elastic supports has increased three times compared to
the rigid mounting of bearings, and this is especially important, the upper limit of the speed
of rotation of the rotor has no fundamental boundaries. At the same time, it is observed that
rotor mounting on elastic supports leads to a decrease in the level of vibrations not only in
the areas of self-centering, but also during transition through resonant modes. In this case,
the lower the rigidity of the supports, the less the vibration overloads.
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Figure 3: Rotor amplitudes with elastic and rigid mounting in the case when d = 20 mm,
l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C, k1 = 42 kg/s, k2 = 6.59 kg/s,
µ = 22.39 mPa.s (turbine oil)

Figures 4 and 5 show the amplitude-frequency characteristics of the rotor and support,
depending on the type of oil in the sleeve bearing, when t = 50◦ C, δ = 0.06 mm, pressure 1
atm. In the first case (red curve), when µ = 14.99 mPa.s (anhydrous glycerol), the amplitudes
of both the rotor and the support are maximum. Further, as the viscosity of the liquid
increases, the amplitudes decrease and have minimum values at maximum values of viscosity
(black curve), i.e. µ = 40 mPa.s (fuel oil). In this case, the optimal values correspond to the
case when turbine oil is used, i.e. when µ = 22.39 mPa.s, as further increase in viscosity may
lead to violation of the thermal regime in the journal bearing.

Figure 4: Rotor amplitudes at different values of fluid viscosity in the bearing whenm = 5 kg,
m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C, k1 = 42 kg/s,
k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)
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Figure 5: Support amplitudes at different values of fluid viscosity in the bearing when m =
5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

Figures 6 and 7 show the amplitude-frequency characteristics of the rotor and support
depending on the weight of the support. In both cases, the amplitudes of the rotor and
support are damped with an increase in the mass of the support, since the support, with a
sufficiently large mass, serves as an anti-weight and acts as a vibration damper, i.e. there
is an anti-resonance phenomenon, for example, when m0 = 1 kg (black curve). It should
be noted that with an increase in the mass of the support, critical frequencies are shifted
towards smaller angular velocities, whereas strong displacements of self-centering areas are
not observed. With a decrease in the mass of the support, resonance frequencies are shifted
towards large angular velocities, and amplitudes also increase, the first section of self-centering
is also narrowed, for example, the case when m0 = 0.15 kg (red curve).

Figure 6: Rotor amplitudes at different values of the support mass in the case whenm = 5 kg,
d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C, k1 = 42 kg/s, k2 = 6.59 kg/s,
µ = 22.39 mPa.s (turbine oil)

Figures 8 and 9 show the amplitude-frequency characteristics of the rotor and support
depending on the damping coefficient, for gaps δ = 0.06 mm. Here, the amplitudes sharply
decrease when passing through resonances. Moreover, the damping effect of the elastic
supports is most effective when passing through the first and second critical speeds of the
rotor. The influence of damping of supports on the third critical speed is less significant.
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Figure 7: Support amplitudes for different values of the support mass in the case when
m = 5 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C, k1 = 42 kg/s,
k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

An increase in the vibration amplitudes in the self-centering zones is not observed. Smooth
operation of the system with low vibration amplitudes is observed in these zones.

Figure 8: Rotor amplitudes at different values of the damping coefficient k1 in the case when
m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

At different values of rigidity of the equivalent field of the supports, there is also a shift in
the vibration amplitudes along the frequency axis and change in their magnitudes (Figures
10 and 11). For example, with an increase in rigidity, the amplitudes of both the rotor and
the supports increase. Also, with an increase in the coefficient, the peaks of the amplitudes
are shifted towards higher angular velocities. In general, an increase in rigidity, as was shown
initially (Figure 3), does not have a positive effect on the behavior of the system, while with
an increase in compliance, the opposite picture is observed.

Figures 12 and 13 show the amplitude-frequency characteristics of the rotor and support,
depending on the width of the gap in the journal bearing. As can be seen from the figures,
an increase in the width of the gap adversely affects the operation of the system. An increase
in the gap width leads to an increase in the amplitude of both the rotor and the support.
With a decrease in the gap width, the opposite effect is observed, i.e. the minimum values of
δ correspond to the minimum values of the amplitudes. But since, in practice, a small gap
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Figure 9: Support amplitudes at different values of the damping coefficient k1 in the case
when m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm,
t = 50◦ C, k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

Figure 10: Rotor amplitudes at different values of the rigidity coefficient c in the case when
m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

Figure 11: Support amplitudes at different values of the rigidity coefficient c in the case when
m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

width entails violation of the thermal regime due to heating [27], the best option in this case
is the gap value δ = 0.06 mm.
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Figure 12: Rotor amplitudes for different values of the gap thickness δ in the case when
m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

Figure 13: Rotor amplitudes for different values of the gap thickness δ in the case when
m = 5 kg, m0 = 0.15 kg, d = 20 mm, l = 650 mm, c = 29 kg/s2, δ = 0.06 mm, t = 50◦ C,
k1 = 42 kg/s, k2 = 6.59 kg/s, µ = 22.39 mPa.s (turbine oil)

In the first resonant zone, the vibrations of the disk and supports occur in phase, i.e.
the type of the waveform is cylindrical precession. In the second zone, vibrations of the
supports occur in antiphase with respect to each other; in this case, in the region of the disk,
vibrations have a node. Thus, in the second zone, the mode of vibrations is a skew-symmetric
precession. In the third resonant zone, the vibrations of the supports with respect to each
other occur in phase, and near the disk – in antiphase. Thus, the third form of vibrations
is a two-node symmetrical form, the type of which resembles the first form of vibrations of
an unsupported shaft. It should be noted that the location and types of the first and second
modes of vibrations are determined mainly by the compliance of the supports,whereas the
third form is caused by bending vibrations of the rotor shaft. Thus, these studies show that the
zones of increased vibrations are narrow resonant zones due to dynamic and static imbalances
of the rotor.
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5 Conclusion

Installation of rotors in elastic supports leads to complete suppression of self-oscillations
that occurred during rigid mounting of journal bearings, and oscillations of the system over
the entire speed range become purely forced. The damping efficiency of elastic supports is
very high and increases with decreasing rigidity. Self-centering of the system in non-resonant
zones leads to significant reduction in the magnitude of vibrations and vibration overloads
of the system. Installation of the rotor in elastic supports "linearizes"the dynamic system
"rotor – supports" . It should also be noted that the main parameter that determines the
type of oscillations is the size of the gap of the journal bearing, since with its increase the
amplitudes will increase, and at its limiting values, self-excited oscillations will turn into a
chaotic type of oscillations, which will negatively affect the stability of the system even at
high speeds. According to the theory of self-centering [28], where it is shown that overloads in
self-centering areas are determined only by the magnitude of the unbalance and the rigidity
of the supports, it can be concluded that vibration overloads of the system will practically
not increase even with a significant value of the rotor unbalance. Therefore, with sufficient
compliance of the supports, even with large imbalances, one can expect stable operation of
the machine with a moderate level of vibration overloads in a wide range of speeds.
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THE FEATURE OF THE AUTONOMOUS ROBOT FOR CLEANING THE
FLOOR IN THE BATHROOM

This article is a new robotic arm for cleaning the floor in the toilet with an increased radius of
action of the robotic arm type SCARA. The most common current trends in production include
short production cycles, low volumes and a wide variety of orders that can be solved with the help
of the SCARA robot. With the advent of the COVID-19 virus in the world, the term "cleaning
and disinfection" has become one of the most important tools for preventing the population from
becoming infected with the virus. The research focuses on the research and implementation of
SCARA-type robots and describes the possibilities of using a SCARA-type robot. This article
describes the selection and deployment of a SCARA robot in industrial automation. This research
project describes the simulation of a new SCARA-type robotic arm with a long reach and sliding
mechanism, we have developed a new multi-joint robotic arm for working in confined spaces with
an autonomous toilet floor cleaning system.
Key words: Automation, SCARA robot, forward kinematics, inverse kinematics.
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Жуынатын бөлме еденiн тазалауға арналған автономды роботтың ерекшелiгi

Ұзартылған SCARA типтi робот қолымен дәретхана еденiн тазартатын жаңа роботтың көр-
сету қазiргi жағдайда өте маңызды мәселелердың шешiмi болып табылады. өндiрiске әсер
ететiн заманауи тенденцияларға қысқа тауарлық циклдар, шағын көлемдер және SCARA
роботының көмегiмен шешуге болатын тапсырыстардың үлкен алуандығы жатады. Әлемде
COVID-19 вирусының пайда болуымен "тазалау және дезинфекция" терминi халықтың ви-
русты жұқтыруының алдын алудың маңызды құралдарының бiрiне айналды. Соған орай,
осы ғылыми жұмыста бiз дәретхана еденiн тазартатын өзiн-өзi басқару жүйесi барә iшкi
құрылымы жағынан жаңа көп буынды роботты ұсынылды. SCARA роботтары өздерiнiң қат-
тылығы мен жоғары дәлдiгiне байланысты салада ең көп қолданылатын роботтардың бiрi
болып табылады. Жобалау процесi қосылым конструкциясын, сiлтеме конструкциясын, кон-
троллер конструкциясын және механикалық таңдауды қамтиды. Ғылыми жұмыс SCARA
типтi роботын зерттеуге және орындалу процессiне бағытталған және SCARA типтi робо-
тын пайдалану мүмкiндiктерiн сипаттайды. Бұл мақалада өнеркәсiптiк автоматтандыруда
SCARA типтi роботын таңдау және орналастыру жұмысы туралы айтылады. Жұмыс құры-
лымында роботтың конструкциясын модельдеу, кинематика, кинематикалық валидация қа-
растырылған. Кинематикалық валидация арқылы буындардың бұрылу бұрышың, жылдам-
дығының және үдеудiң мәнi алынған.
Түйiн сөздер: Автоматтандыру, SCARA робот, алға кинематика, керi кинематика.
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Особенность автономного робота для уборки пола в ванной комнате

В данной статье представлена новая роботизированная рука типа SCARA для уборки пола
в туалете с увеличенным радиусом действия. К наиболее распространенным современным
тенденциям в производстве относятся короткие циклы продукции, малые объемы и большое
разнообразие заказов, которые можно решить с помощью робота SCARA. С появлением в
мире вируса COVID-19 термин "очистка и дезинфекция" стал одним из важнейших инстру-
ментов предотвращения заражения населения вирусом. В этом исследовательском проекте
описывается моделирование нового робота-манипулятора типа SCARA с большим вылетом
и раздвижным механизмом. Роботы SCARA являются одними из наиболее широко исполь-
зуемых роботов в промышленности благодаря присущей им жесткости и высокой точности.
Процесс проектирования включал проектирование соединения, проектирование звеньев, про-
ектирование контроллера, а также выбор механических и электрических компонентов. Иссле-
дование посвящено изучению и внедрению роботов типа SCARA и описывает возможности
использования робота типа SCARA. В данной статье описана работа по выбору и внедрению
робота типа SCARA в промышленную автоматизацию. Мы разработали новый многошар-
нирный робот-манипулятор для работы в ограниченном пространстве с автономной системой
уборки пола в туалете.
Ключевые слова: Автоматизация, робот SCARA, прямая кинематика, обратная кинемати-
ка.

1 Introduction

It has been at least two decades since conventional robotic manipulators became a common
production tool in industries ranging from automotive to pharmaceuticals [1]. In many ways,
the proven benefits of using robotic manipulators for manufacturing in various industries have
motivated scientists and researchers to try to expand the use of it in many different areas. To
apply robotics in all areas, scientists had to invent several other types of robots, different from
conventional manipulators. New types of robots can be divided into two groups: redundant
manipulators and mobile robots. These two groups of robots have greater mobility, allowing
them to perform tasks that conventional manipulators cannot. Many engineers have expanded
the work with the added mobility of new robots to make them work in tight spaces [1]. In
the course of work, the limitations for robotic arms are usually dependent on the working
environment, they are changeable. Engineers had to invent different methods to allow robots
to automatically cope with various constraints. And an autonomous robot is one that is
equipped with those methods that allow it to automatically cope with various environmental
constraints while performing the desired task [1].

Autonomous robots must be able to efficiently use and synchronize their limited physical
and computational exchequer to operate in a dynamic environment. In each field of activity
of progressive complexity, it becomes necessary to impose explicit restrictions on the control
of planning, perception and action in order to exclude unexpected interactions between
behaviors [2]. Autonomous robots must plan when to act, how to find errors and recover
from them, how to deal with conflicting goals when performing complex tasks in any dynamic
environment. Following this, robots must precisely coordinate all of their limited dynamic
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and computational resources [2]. In order to improve the comprehensibility of the system
and ensure that the robots perform their tasks, explicit constraints are needed that impose
structure on the control of planning, perception, and action as tasks and environments become
more complex. Any methodology should be to develop robotic systems consisting of sets of
behaviors, which can be independent objects that control actions. Running systems consist
of sets of local behaviors that can run without additional awareness of the environment.
The main problem is that as the number of additional tasks increases, so does the ratio of
complexity between behaviors, which can reach such an extent that it becomes difficult to
predict the overall behavior of the control system [2].

The robot arm’s arm can move within the three main x, y, and z axes associated with
base motion, vertical direction, and horizontal direction. Manipulators are available in various
configurations: rectangular, cylindrical, spherical, rotating and horizontally articulated. A
robot with a horizontal rotating configuration, the Selective Compliance Articulated Robot
Arm (SCARA) has four degrees of freedom, in which the two or three horizontal servo-
controlled joints are the wrist, elbow, and shoulder [3]. Most importantly, the last vertical
axle is pneumatically controlled. Each working task can be set as pickup, non-contact task
(ceiling mounting) and contact task (stuff sorting). SCARA, developed in Japan, is suitable
for inserting small parts on assembly lines, such as inserting electronic components [3].

SCARA robots have become popular on packaging and assembly lines with three rotating
and one prismatic degrees of freedom [4]. Hiroshi Makino first introduced this type of
robot in 1979. Commercial SCARA robots are develop in a variety of sizes, line speeds and
payload capacities, thus, the control systems of such robots are intended for general industrial
applications [4].

2 Robot design

The workplace and the task set determine the design of the robot. The robot you are designing
has several significant parts to learn; the resulting robot can work only in the analyzed and
predetermined workplace. The dimensions of the area obtained in this study, i.e. the bath,
should be 1000mm wide and 1500mm deep. The toilets considered in the study were obtained
in accordance with the standards of Western European countries, i.e. the dimensions of the
public toilet were 850 mm wide and 1500 mm deep [5].

Firstly, the manipulator performing the task must be accessible at any point in the given
workspace without dead zones and must be sufficiently compact. Therefore, with this in this
study, we proposed a multi-joint arm, which is similar to the structure of the SCARA robot
[5]. As shown in Figure 1, the robot arm is aligned along the slide rail after the cleaning
process. In general, in such a limited working space, there are individual advantages due to
the flexible structure of the continuum arms. The main thing in this task is to have a strong
connection with the robot in the hands of a heavy control device [5].

3 Robot arm design

The studied manipulator has the following designs: the manipulator consists of four joints and
three links. The robot arm has a particular advantage because the robot is designed to rotate
only on the Z axis. The design of the manipulator has been simplified as much as possible
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а) b)

Figure 1: а) The mode of operation of the robot; b) Robot standby mode.

in order to reduce the cost and production time. For the accuracy of work, stepper motors
were used to drive the robotic arm [5]. This robotic arm has a total of four stepper motors.
A feature of the robot arm is that the robot arm rotates only along the Z axis. Therefore,
the design creates a significant dynamic load on the basic drive of the robot. Following these,
the dimensions of the engine, such as size and weight, are gradually reduced; on ours, we
used a 50 mm frame stepper motor for the base part, and 42 mm and 35 mm frame motors
for the middle joints respectively. The end effector that holds and drives the cleaning tool is
designed with a 28 mm stepper motor (see Figure 2).

Figure 2: CAD design of the robot.

For the design of the robot, a two-shaft stepper motor was chosen, the effect of skew of
the links is important to us. The two-shaft motor has its own characteristics, for example,
the use of a two-shaft motor allows the link to be fixed on both sides; side links up and down
[5]. In addition, this design simplifies the connection mechanism of the robot.



A.B. Baratova et al. 95

4 Robot kinematics

4.1 Forward and Inverse Kinematics

The kinematics and dynamics of SCARA robots have also been obtained and modeled using
various programs. The experimental results of the SCARA robot were obtained and compared
with the simulation results [4].

The researched SCARA robot is widely used as an assembly robot and is a kind of selective
picking robot arm. The main features of the robot are the accuracy of the repeating position
index and the ease of dynamic execution. The first generation of robots, the serial arm has
developed rapidly, and mature designs have already been formed, the connection of which is
mainly composed of a servo motor and gearboxes with high speed ratio and good accuracy,
such as harmonic reducer [6]. The kinematics of the robot has one translational joint, forming
a sequential mechanism, and three rotational joints between the links. The gear mechanism
in the rotary joints is a harmonic gear, without shading on the third axis, which makes it
possible to obtain a high reduction ratio in sufficient space.

A special advantage of the proposed robot design is the kinematic structure of the robot,
which facilitates the kinematic solution of the robot. Because we use serial manipulators, it is
much easier to get forward kinematic solutions. As mentioned earlier, the SCARA robot [6]
rotates only along the Z axis, and the design of the SCARA robot has the simplest kinematic
structure, which means it provides great advantages.

Figure 3: Kinematic structure of the robot.

The robot kinematics starts with Determination of Denavit-Hartenberg parameters. The
coordinate systems are directly attached to the robot in accordance with the DH convention
[4] and is shown in Table 1.
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Table 1: Denavit-Hartenberg parameters
Rz Rx Tx Tz
θ α h d∑

0→1

θ1 0 0 `1∑
1→2

θ2 0 `2 0∑
2→3

θ3 0 `3 0∑
3→4

θ4 0 0 `4∑
4→5

0 0 0 `5

4.2 Forward kinematics of robot

Table 1 shows the homogeneous transformation formula.

H01 =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 `1
0 0 0 1

 , H12 =


cos θ2 − sin θ2 0 `2
sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1

 ,

H23 =


cos θ3 − sin θ3 0 `3
sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1

 , H34 =


cos θ4 − sin θ4 0 0
sin θ4 cos θ4 0 0
0 0 1 `4
0 0 0 1

 , H45 =


1 0 0 0
0 1 0 0
0 0 1 `5
0 0 0 1


Here we have obtained a homogeneous transformation, then it is necessary to multiply

the matrices from H01 to H45.

H05 = H01 ∗H12 ∗H23 ∗H34 ∗H45 =

(
i05 j05 k05 r05
0 0 0 1

)
(1)

4.3 Inverse kinematics of robot

The robot has inverse kinematics and is quite simple compared to other existing robotic arms
[6]. As mentioned earlier, the rotation function of the robot rotates only along the Z axis and
this allows us to simplify the calculation and formulation of inverse kinematics (Figure 3).

For inverse kinematics, the robot has four variables as: linear prismatic movement is the
main difference from the SCARA robot.

q4 = (θ1, θ2, θ3, θ4) = (q1, q2, q3, q4) (2)

ν4 =

(
ω4

r04

)
(3)

Derivation of variables by the Jacobian method

ν4 = Jq4 (4)
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j =

(
k1 k2 k3 k4

k1 × r04 k2 × r24 k3 × r34 0

)
(5)

Here r04, r24, r34 are the access vectors of the individual rotation. Instead ~r04 we can use
~r14. Here r44~k4 parallel connection is equal to 0.

k0...4 =

0
0
1

 (6)

r04 =

`1 cos(θ1) + `2 cos(θ1 + θ2) + `3 cos(θ1 + θ2 + θ3) + `4 cos(θ1 + θ2 + θ3 + θ4)
`1 sin(θ1) + `2 sin(θ1 + θ2) + `3 sin(θ1 + θ2 + θ3) + `4 sin(θ1 + θ2 + θ3 + θ4)

`1 − `5

 (7)

Here: `1 cos(θ1) = `1c1; `2 cos(θ1 + θ2) = `2c12; `1 sin(θ1) = `1s1; `2 sin(θ1 + θ2) = `2s12;

r24 =

 `3 cos(θ1 + θ2 + θ3) + `4 cos(θ1 + θ2 + θ3 + θ4)
`3 sin(θ1 + θ2 + θ3) + `4 sin(θ1 + θ2 + θ3 + θ4)
−`5

 (8)

Here: `3 cos(θ1 + θ2 + θ3) = `3c123; `3 sin(θ1 + θ2 + θ3) = `3s123;

r34 =

 `4 cos(θ1 + θ2 + θ3 + θ4)
`4 sin(θ1 + θ2 + θ3 + θ4)
−`5

 (9)

Here: `4 cos(θ1 + θ2 + θ3 + θ4) = `4c1234; `4 sin(θ1 + θ2 + θ3 + θ4) = `4s1234;

j =


0 0 0 0
0 0 0 0
1 1 1 1
r04 r24 r34 0

0
0

 (10)

5 Kinematic validation of the robot

In this study, we used RoboAnalyzer to test the robot’s kinematics. The proposed robot
arm modeling tested in RoboAnalyzer software [7]. Most industrial robots are described
geometrically by Denavit-Hartenberg (DH) parameters, which are also difficult for students
to perceive. Students will find it easier to study a subject if they can visualize in three
dimensions.
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The RoboAnalyzer software [7] was developed using Object Oriented Modeling concepts
in the Visual C# programming language. 3D graphics are rendered using OpenGL via the
Tao Framework. The ZedGraph open source library is used for graphing. The software has
been developed in modules, so adding or changing modules does not affect the entire software.
The Forward Kinematics module of serial robots with rotating joints has been reported in
a paper. It uses wireframe models. The results of the analysis were viewed in the form of
animation and a built-in plotting module. The addition of prismatic connections, inverse
dynamics and forward dynamics analysis have been reported. Additional modules have been
developed here, such as "Visualization of DH parameters and transformations" , "Import of
3D CAD models" and "Inverse kinematics" .

The software can simultaneously provide the robot’s working space and analyze the
movement trajectory (see Figure 4).

Figure 4: Model of robot movement in the RoboAnalyzer software environment.

а) Joint angle
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b) Joint speed

c) Acceleration of the joint

Figure 5: Graph of parameters of robot joints. x-axis describes time; The y-axis describes the
angle.

6 Conclusion

This study demonstrates the design and control algorithm of a new robotic system that
cleans the bathroom floor. The importance of the robot in quarantine in hospitals is very
high. According to the survey, there are bathrooms and toilets in infected areas in public
places and hospitals. The world was not ready for COVID-19, and simple places related to
hygiene were one of the main drivers of the spread of such infections. In addition, in this
study, we took into account human rights.

In the future, we plan to conduct experiments in public places with a laboratory prototype
to test the suitability of the proposed robot’s signature and system.
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PREDICTING HEART DISEASE USING MACHINE LEARNING
ALGORITHMS

Increasing the accuracy of detecting heart disease is widely studied in the field of machine
learning. Such study is intended to prevent large costs in the field of healthcare and is the reason
for the misdiagnosis. As a result, various methods of analyzing disease factors were proposed,
aimed at reducing differences in the practice of doctors and reducing medical costs and errors.
In this study, 6 classification learning algorithms were used, including machine learning methods
such as classification Tree, Close neighborhood method, Naive Bayes, Random forest tree, and
Busting methods. These methods were collected by the University of Cleveland. Using heart.csv
dataset, they were trained to make an effective and accurate prediction of heart disease. In
order to increase the predictive capabilities of algorithms, all methods were trained primarily on
non-standardized data. A study was conducted on how much data standardization affects the
result using the Standard Scaler method. In the paper, this method helped algorithms such as
KNN and SVC improve the result about 25%.

Key words: Classification, Standardization, Training Selection, Metrics, Busting, Confusion
Matrix.
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МАШИНАЛЫҚ ОҚЫТУ АЛГОРИТМДЕРI АРҚЫЛЫ ЖҮРЕК АУРУЛАРЫН
БОЛЖАУ

Жүрек ауруларын анықтаудың дәлдiгiн арттыру машиналық оқыту саласында кеңiнен
зерттелуде. Мұндай зерттеу денсаулық сақтау саласында үлкен шығындардың алдын алу
үшiн және қате диагноздың қойылу себептерiнен туындайды. Нәтижесiнде дәрiгерлердiң
тәжiрибесиндегi айырмашылықтарды азайтуға және медициналық шығындар мен қателiк-
тердi төмендетуге бағытталған ауру факторларын талдаудың әртүрлi әдiстерi ұсынылады.
Бұл зерттеуде классификациялық оқытудың 6 алгоритмң, соның iшiнде атап айтқанда
жiктеу ағашы, жақын көршiлер әдiсi, аңғал Байес, кезейсоқ орман ағашы, бустинг әдiстерi
қолданылды. Осы әдiстердi Клевеленд университетiнiң жинақтаған heart.csv датасетiне
қолдану арқылы жүрек аурулары бойынша машинаға тиiмдi және дәлдiгi жоғары болатын
болжам жасау үйретiлдi. Алгоритмдердiң болжау қабiлетiн арттыру мақсатында барлық
әдiстер бiрiншi кезекте стандартталмаған деректерге оқытылды. Standart Scaler әдiсiн қол-
дану арқылы деректердi стандартизациялау нәтижеге қаншалықты әсер ететiнiне зерттеу
жүргiзiлдi. Зерттеу барысында бұл әдiс KNN мен SVC секiлдi алгоритмдерге нәтиженi
шамамен 25%-ға жақсартуға көмек беретiнi анықталды.

Түйiн сөздер: Классификация, стандартизация, оқыту таңдамалары, метрика, бустинг, ша-
тасу матрицасы.
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ПРОГНОЗИРОВАНИЕ ЗАБОЛЕВАНИЙ СЕРДЦА С ПОМОЩЬЮ
АЛГОРИТМОВ МАШИННОГО ОБУЧЕНИЯ

Повышение точности выявления заболеваний сердца широко изучается в области машинного
обучения. Такое исследование призвано предотвратить большие потери в здравоохранении
и привести к неправильному диагнозу. В результате были предложены различные методы
анализа факторов заболевания, направленные на снижение различий в опыте врачей и
снижение медицинских расходов и ошибок. В данном исследовании были использованы 6
алгоритмов классификационного обучения, в том числе методы машинного обучения, такие
как дерево классификации, метод ближайших соседей, наивный Байес, случайное лесное
дерево, методы бустинга. Эти методы были обобщены университетом Клевеленда применяя к
датасету ССЗ. Они были обучены делать эффективные и высокоточные прогнозы сердечных
заболеваний. С целью повышения предсказательной способности алгоритмов все методы
были обучены в первую очередь нестандартизированным данным. Проведено исследование
того, насколько стандартизация данных с использованием метода Standard Scaler влияет на
результат. В ходе исследования данный подход улучщил результаты алгоритмов как KNN и
SVC почти на 25%.
Ключевые слова: Классификация, стандартизация, обучающая выборка, метрика, бустинг,
матрица путаницы.

1. Introduction

Cardiovascular disease is a disease that poses a risk of death in the modern world and
is the biggest problem, as predicted by medicine in terms of growth. According to World
statistics, this disease is such a problem that it worries the whole world, which leads to a
large mortality factor. According to the World Health Organization, about 20 million people
die from heart disease. In England, cardiovascular diseases account for 34% of deaths, while in
European countries these statistics reach 40%. According to the latest statistics, the number
of deaths from cardiovascular diseases around the world is increasing, the main reason for
this forecast is that the statistics of countries with the lowest risk of cardiovascular disease
are increasing every year. But according to who forecasts, more than 75% of cardiovascular
diseases can be prevented, thereby reducing the burden of developing diseases.
Purpose of the work: selection and description of machine learning methods in Big Data
Processing, increasing accuracy in the process of big data learning and reducing machine
learning time. Research objectives:

• analysis of the literature on the use of machine learning (ML) methods for data on
heart failure;

• analysis of python language libraries and part of machine learning methods;

• initial analysis and pretreatment of data related to cardiac arrhythmias;

• use methods for classifying signs, selecting and filling in missing values;

• analyze obtained results;

• justification of the research results in the subject area.
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Object of research: the object of research is the prediction of cardiovascular diseases using
machine learning algorithms. Use methods that allow to study and analyze the data used
to optimize the process of solving research problems. Using this method, to create a system
based on predicting the disease, minimizing human participation in analysis and creating an
optimal solution with the participation of machine learning algorithms.

2. Literature Review

Machine learning is an analysis method that allows us to conduct data training and
analysis methods that we use to optimize the process of solving research problems. This
method is a system based on minimizing human participation in analysis and creating an
optimal solution with the participation of artificial intelligence intelligence systems. This
article will explore machine learning methods to make predictions in the process of Big Data
Processing and analyze some specific methods. Currently, there is an active implementation
of machine learning methods in medical information systems (MIS). This is primarily due
to the need to analyze a large amount of information about patients in real time, as well
as predict whether to seek outpatient care or hospitalization within a given time frame [1].
For the database, there are many open sources for accessing acient records, and research can
be conducted to use various computer technologies to identify this disease in order to make
the correct diagnosis of the patient and prevent his death [2]. Patients are often diagnosed
asymptomatic until death, and even if they are under supervision, trained personnel are
required to detect cardiac abnormalities [3]. Heart disease was the cause of 6.2 million
deaths between the ages of 30 and 70 in 2019 [4]. These diseases usually occur as a result of
stroke, hypertensive heart disease, rheumatic heart disease, artery disease and other defects
in the heart vessels and the heart itself [5]. In many countries, there is little experience in
cardiovascular research and a significantly higher percentage of misdiagnosed cases, which
can be solved by developing accurate and effective methods for predicting heart disease at an
early stage through analytical support for clinical decision-making through digital medical
records [6].
Amin Ul Hak, Jiang Ping Li, Muhammad Hammad Memon, Shah Nazir and Ruinan
Sun were tested on their systems in a Cleveland heart disease dataset. Seven well-known
classifiers, such as logistic regression, KN, AN, SM, NB, DT and random forest were
used with three algorithms for selecting functions Relief, mRMR, and LASSO, which are
used to select important functions. In terms of features SVM (linear) with the selection
of functions, the performance of the mrmr algorithm was better than that of other
classifiers [7]. Fajr Ibrahim Alarsan and Mamun Yunets received a data set of 205.146
lines, which were randomly divided into two parts: training and testing. They compared
the Random Forest and Decision Tree Classifier algorithms in machine learning of this
data set. In a random forest, the learning process is faster than in a decision tree and in
a decision tree, the testing process is faster than in a random forest. The parameters of
both algorithms were changed manually. The optimal values for the configured parameters
could be obtained by running cross-checking methods, but the algorithms took a lot of
time [8]. Jiang Yi, Zhang X, Ma R, Wang X, Liu J. , Kerman M, Yang Yi, Ma J, Son
Yi, Zhang J. , He J, Go C, Go X chose dataset as the data that monitored 1,508 Kazakh
subjects in China at the initial level without cardiovascular diseases. All subjects were
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randomly divided into a study sample (80%) and a test sample (20%). LR, SVM, DT,
RF, KNN, NB and XGB were used to predict outcomes in cardiovascular diseases. LR
and SVM had better predictive characteristics than other machine learning models in the
context of discrimination and calibration. LR was similar to the predicted effectiveness of
SVM in predicting the risk of cardiovascular diseases and surpassed other ML models. The
sensitivity of LR was higher than that of SVM and the specificity gave the opposite result [9].

3. Problem Settings

This section discusses sorting data from the collected databases, conducting pre-machine
learning processing measures, fully studying target variables, dividing them into machine
learning and testing stages and learning these information using machine learning method
classifiers. Through the selected classifiers, the level of training is evaluated and measures are
taken to improve the results. The first step is to access the database used in data training. The
dataset taken from the database consists of 14 columns of 303 consecutive factors affecting
the symptoms of cardiovascular disease. This database was collected by the Cleveland Clinic,
which was connected with the university clinics of Zurich and Basel. The database originally
consisted of 72 columns, and as a result of removing columns that did not attach much
importance to special processing and research activities, 14 columns were left.

We can show statistical characteristics for numeric attributes in the database. Statistical
values are represented as the total number of attributes, the average, standard statistical
deviations, the smallest and largest values, as well as indicators of 25%, 30% and 75% on 3
quartils. You can see it in the table below.

Since the indicator of people with cardiovascular diseases was taken as a target variable,
the indicators for this variable were visually displayed. Age indicator of the number of people
suffering from heart disease according to Figure 3. As we have seen, the most sick people
can be called the age range of 40 to 55 years.

4. Materials and Methods

To check the accumulated commands, we first look at whether there are zero elements in
the dataset, and if such data is found, fill in the spaces by calculating the median or average
value of this column. Disable them because dictionary columns are not involved in training.
Algorithms of the machine learning method are used by setting target variables.

The general picture of the work carried out on the methodology is shown in Figure 4:
Until measures to improve the accuracy of the algorithms used give good results, it

is necessary to implement such measures as training, avoiding mistakes in the course of
excessive training. Classification techniques used to detect cardiovascular diseases are as
follows: Decision Tree Classifier, Kneighbors Classifier, Logistic Regression, XGBClassifier,
Random Forest Classifier, Support Vector Classfier. Although training is carried out using
such techniques, cross – checking with the target variable column of the dataset is carried
out in order to increase the result. Cross-validation (verification) is the process of improving
the result of an algorithm by training each time with different random values with a random
transfer of a target variable to a test set in order to improve the learning efficiency of
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Table 1: Database analysis

machine learning operations.
The classifier tree method is a tree-type structure consisting of certain rules that represent
the result in the learning process in a hierarchical type. It consists of 2 types of elements, a
node and a leaf. Elements to be written in the node if the elements that affect the value of
the target variables are written in the Leaf, the functions of the target variables are written
in the Leaf. The decision tree is often used because it gives good results in statistical reports,
including in medical reports for more probabilistic reports, by classifying the same data,
making better predictions, clarity, and simple processing of the data without converting or
causing severe distortion [10].
The k nearest neighbors method is an algorithm for classifying objects by class by dividing
them into groups previously distributed by region after calculating the distances by weight
by vote. This method is considered the simplest of the classification algorithms. It is a
classifier algorithm that can be used in cases where there is little information about the
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Figure 2: Statistical indicators for databases

Figure 3: Quantitative indicator for the target variable

data in the preliminary data separation, and is completely unknown. The optimal method
for understanding and implementing KNN. Therefore, this situation should be taken into
account for any calcification calculations. Its main advantages are that the process is very
clear, time-consuming, efficiency and accuracy are often high, and there are methods that
eliminate noise in the process that work only for KNN [11].
The logistic regression method is a statistical method that classifies a classification using a
linear classification line. The main idea is to determine the optimal line that best divides
data through a set of data. The range of logistic regression covers the range from 0 to 1. In
addition, this method does not require a connection between input and output data. Logistic



A.K. Berdaly, Z.M. Abdiahmetova 107

Figure 4: General research plan

regression is a method in medical research that allows you to perform several tests at the
same time, minimizing external factors. If the model structure created by the researcher
avoids raw data,then the probability of logistic regression is also high [12].
The XGBoost method is a method that belongs to the ensemble method, designed to
improve gradient descent, with optimal and high accuracy. This is a method that aims to
get the best results by training multiple decision trees in parallel to improve the gradient.
Through XGBoost, trees grow rapidly and parallel trees are erected, the final decision is
made by an ensemble voice. In this method, random forest trees and decision trees are solved
by using models and making comparisons with their parameters [13].
The random forest tree method is another type of algorithm that uses the ensemble method.
An algorithm that randomly creates a forest of decision trees, takes forest trees of different
selections, matches them to the classifier, and finally takes the average value in order to
increase accuracy. The main advantage is the ability to achieve good results when working
with large groups and classes, independence from the scale of learning, and the ability to
perform high parallelization. Therefore, the random forest tree is an effective predictor [14].
The method of reference vectors is a set consisting of intensive learning algorithms and
bringing changes through hyperactivity to a single norm. The idea of the method is that
we place data elements consisting of points on the n-dimensional plane, creating hyperspace
by creating a classification that best defines classes. SVM also has a core, which is used
to convert data entered into the plane by the cores to a large one, taking it as small. It is
mainly used for Tex cataloging, recognizing handwritten numbers, finding tones, classifying
images, and gene expression using a microchip [15].

In the future, we will use assessment metrics to evaluate the training of these 6 used
methods. To do this, in the process of comparing the algorithm-trained results of y with the
true value of y in the target variable, a reflection matrix is created, as in Table 5. The result
of algorithms based on the generated matrix will be evaluated.

True Positive (TP) – the classifier assumes that the positive result is positive.
True Negative (TN) - the classifier assumes that the negative result is negative.
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Table 5: Confusion Matrix

False Positive (FP) - the classifier incorrectly predicts a negative result as positive.
False Negative (FN) - the classifier incorrectly predicts a positive result as negative.
The classifier is evaluated using the formulas of the metrics listed below: Accuracy – the total
accuracy of the model, the amount of accuracy of classifiers when compared with the main
values.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision is an indicator that the classifier finds positive and is actually positive.

Precision =
TP

TP + FP
(2)

Recall is an indicator of true positive classes among all positive classes found by the
algorithm.

Recall =
TP

TP + FN
(3)

F1-score is the hormonal average of accuracy and completeness.

F1− score =
2TP

2TP + FP + FN
=

2 ∗ Precision ∗Recall

Precision+Recall
(4)

5. Results

Data source of a 303-row, 14-column collected by Cleveland Medical Center for cardiovascular
disease has gone through processing measures that consist of many steps. As a result
of the processing measures, no particularly strong outs and zero elements were found in
the database. The absence of columns that strongly influence each other on the data was
observed through the correlation matrix. After processing, 30 percent of the data was sent
for training. Subsequently, 10 classification algorithms were trained. It includes algorithms
Decision Tree Classifier, Kneighbors Classifier, Logistic Regression, XGBClassifier, Random
Forest Classifier, Support Vector Classfier. During the training of each algorithm, the result
was increased by standardization using the Standard Scaler function. The Standard Scaler
function tries to show good results by normalizing our data so that the average value does
not exceed 0 and the standard deviation does not exceed 1, which gives the opposite effect
before applying the algorithm. Algorithms such as Decision Tree Classifier showed a decrease
in accuracy from 0.7142% to 0.7023% from the scattered neural structure algorithm, while
Kneighbors Classifier helped to increase the accuracy from 0.5934% to 0.7692%. The same
result was obtained from the support Vector Classfier algorithm, which increased the accuracy
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from 0.5604% to 0.8021% by standardization. In addition to standardization, we tried to find
the most optimal parameters and increase the result using the GreedSearchCV algorithm.
GreedSearchCV refers to a cross – validation operation. It is one of the most powerful tools
in machine learning, the main reason for which the correct choice of parameters is the main
guarantee of good results. If the parameters are chosen correctly, then, of course, the training
will also go well. As for work, it calculates the result for each parameter over the entire
connection, providing us with the best indicator. The result was not satisfied, there were
significant delays in terms of time, and the result of the algorithm did not show much
difference from standardization.

Thus, 6 algorithms were evaluated on 4 metrics. The results were compared among
themselves. This can be seen in Table 6. The best indicator for the Accuracy metric was
the result of the Random Forest Classifier algorithm. In Figure 7, dynamic comparisons were

Table 6: Comparison of results of classifiers

made. You can clearly see the real difference through the diagram.

Figure 7: Comparison of results of classifiers
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Conclusion

Heart disease is one of the main problems of society, as the number of people with heart
diseases is increasing day by day. The growth of Statistics is influenced by many factors, such
as the time spent by medicine to predict diseases or the lack of an accurate diagnosis. It is
difficult to manually determine the probability of heart disease based on many such factors.
But with deep data analysis and machine learning models, it is possible to identify diseases
and treat these diseases in a timely manner. For this purpose, relevant data on heart disease
collected by the University of Cleveland were studied. Work achieved and done during the
study:

• analysis of the literature on the use of machine learning (ML) methods for data on
heartbeats was carried out;

• analysis of python language libraries and part of machine learning methods;

• primary analysis of data on heart beauties and pre-processing;

• the marks were stitched, selected and methods of filling in the missing values were used;

• the results obtained were analyzed;

• based on the results, a comparison was made between the models.

According to the conducted research, the classification method showed the highest results.
Its metrics showed accuracy = 0.82%, precision = 0.91%, recall = 0.83%, and f1-score =
0.76%. In the future, training of the algorithm on various data will continue, increasing
these results given by Random Forest. Further experiments are developed on algorithms and
optimal solutions are developed using various methods. Algorithms that have been trained
to read various data on heart disease are also good at making predictions.
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Multi-Agent Learning for the Inverse Kinematics of a Robotic Arm

This paper presents a solution to the inverse kinematics problem for robotic manipulator based
on the Adaptive Multi-Agent System (AMAS) approach. In this research, multi-agent system
is in charge of controlling a robot arm with four degrees of freedom (DOF) and two motorized
wheels, giving appropriate commands, such as rotation angles and velocities, to reach the desired
position and orientation of the end effector. The calculation of commands is directly related
to the solving of forward and inverse kinematics. Before the learning process of AMOEBA, the
rotational angles, θ values, are encoded into a single number N , this parameter is the desired
value that we are going to predict in the predicting stage. During the learning phase, the Agnostic
MOdEl Builder by self-Adaptation (AMOEBA) builds context agents, which has local models and
is able to self-adapt. After the getting the predicted value, Npred, it will be decoded back to get
the set of rotational angles that is given to robot end effector. In addition, the robot with all its
physical parameters is modeled and simulated in the Robot Operating System (ROS) environment

Key words: Forward kinematics, inverse kinematics, adaptive multi-agent system, agnostic model
builder by self-adaptation.
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Робот қолының керi кинематикасы үшiн мультиагенттiк оқыту

Бұл жұмыста бейiмделетiн көп агенттiк жүйе (Adaptive Multi-Agent System) тәсiлiне негiз-
делген роботтық манипуляторға арналған керi кинематика мәселесiнiң шешiмi ұсынылады.
Бұл зерттеуде мульти-агенттiк жүйе төрт еркiндiк дәрежесi (DOF) бар робот қолы мен екi
дөңгелегiн басқаруға жауапты. Роботтық қажеттi позиция және бағдарына жетуi үшiн, оның
қолы мен дөңгелектерiне айналу бұрышы мен жылдамдық тәрiздi тиiстi командалар берiледi.
Командаларды есептеу тура және керi кинематика есебiн шешумен тiкелей байланысты.
AMOEBA-ның үйрену кезеңiне дейiн θ айналу бұрыштары бiр N санына шифрланады. Бұл
параметр болжау кезеңiндегi бiздiң болжам жасайтын негiзгi мән болып табылады. Үйрену
кезеңiнде Agnostic MODEl Builder by self-adaptation (AMOEBA) жергiлiктi үлгiлерi бар және
өзiн-өзi бейiмдей алатын контекстiк агенттердi құрады. Болжамды мән, Npred, есептелiнiп
алынғаннан кейiн, айналу бұрыштарының жиынтығын алу үшiн керi бағытта шифр ашыла-
ды. Бұл жиынтық роботтық атқарушы механизмi, яғни робот қолының саусақ ұшы, қажеттi
позиция және бағдарға жетуi үшiн төрт еркiндiк дәрежелi қолы мен екi дөңгелегiне команда
ретiнде берiледi. Сонымен қатар, робот өзiнiң барлық физикалық параметрлерiмен Robot
Operating System (ROS) ортасында модельденедi және имитацияланады.
Түйiн сөздер: Кинематика, керi кинематика, адаптивтi көп агенттiк жүйе, өзiн-өзi бейiмдеу,
агностикалық модель.
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Мультиагентное обучение для обратной кинематики роботизированной руки

В данной статье представлено решение обратной задачи кинематики для робота-
манипулятора на основе подхода Adaptive Multi-Agent System (AMAS). В этом исследовании
мультиагентная система отвечает за управление манипулятором робота с четырьмя степеня-
ми свободы (DOF) и двумя моторизованными колесами, давая соответствующие команды,
такие как углы поворота и скорости, для достижения желаемого положения и ориентации
исполнительного механизма, то есть концевого эффектора. Расчет команд напрямую связан с
решением прямой и обратной кинематики. На этапе обучения Agnostic MOdEL Builder путем
самостоятельной адаптации (AMOEBA) создает агенты контекста, которые имеют локаль-
ные модели и способны к самостоятельной адаптации. Перед процессом обучения AMОEBA,
углы поворота, θ значения, кодируются в одно число N , этот параметр является желаемым
значением, которое мы собираемся предсказать на этапе прогнозирования. После получения
предсказанного значения Npred, оно будет декодировано обратно, чтобы получить набор уг-
лов поворота, заданный концевому исполнительному механизму робота. Кроме того, робот со
всеми его физическими параметрами моделируется и симулируется в среде Robot Operating
System (ROS).
Ключевые слова: Прямая кинематика, обратная кинематика, адаптивная мультиагентная
система, независимый построитель моделей путем самостоятельной адаптации.

1 Introduction

Nowadays the study and development of intelligent robots are becoming an essential part of
robotics. Many methods and approaches are aimed at making the robots fully automated and
independent of external impacts, such as neural networks and multi agent systems. Major
attention is paid to the motion of the robot, which, in turn, involves the study of kinematics.
The general objective of this research is to reach the desired point or target with end-effector
of robot with precise accuracy. In order to reach the goal, both forward and inverse kinematic
problems must be solved. The forward kinematics (FK) involves determining the position and
orientation of the robotic end-effector by giving values for each individual joint of robotic
manipulator. Vice versa, by knowing the position and orientation of the end effector, the
inverse kinematics (IK) is in charge with determination of values that must be set to the
joints, in other words, inverse kinematics is the inverse problem of forward kinematics. In
comparison with forward and the inverse kinematics, the solution of inverse kinematics
is much more complicated. The FK can be easily solved by performing linear algebraic
operations on homogeneous transformation matrices and has a unique solution. However,
due to the complex IK equations, which is strongly nonlinear, there is no single solution for
IK. As we mentioned, the IK is the main issue of robotics, and several methods are proposed
for its solution [1]. Many approaches to this problem lie on the analytical, algebraic, or
iterative methods, which give approximate results. Recently, much attention has been paid
to artificial networks and self-adaptive multi-agent systems. The controlling of the robotic arm
is considered as real-world complex problem and it cannot be solved by predefined model and
needs learning and self-adaptation. ’Multi-agent systems are particularly suitable to design
and implement self-organizing systems’ [2]. In this paper, Self-Adaptive Context Learning
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(SACL) recurrent pattern is applied to our problem. It consists of two mechanisms: Adaptive
mechanism, which perceives information from the environment and dynamically builds a
model describing the current context and its transformation Exploitation mechanism, which
decides what actions to perform over the environment [2].

For building a dynamic model in adaptive mechanism, Agnostic MOdEl Builder by self-
Adaptation (AMOEBA) is used. AMOEBA is based on AMAS approach. In order to be able
to build a model, AMOEBA must learn on data provided by simulation or FK problem,
which makes it supervised learning. In the final application, the multi-agent system will be
integrated with machine learning, the function of which is to process an image, taken from
the robot’s camera, identify the target point and compute its distance and position relative
to the camera. The integration of a machine-learning application with multi-agent system
is another key feature of the project. The position of the button and the robot with all its
physical parameters are simulated in ROS environment. Motivating Example. Figure 1 shows
the real problem of the work. Consider a robot inside an elevator, the starting position and
orientation of which are known. The robot’s camera, which is attached on the end-effector,
takes a picture of buttons in the elevator and the robot needs to press the desired button. Once
the picture of elevator buttons is taken, the machine learning software identifies the desired
button and calculates its position (x, y, z) with respect to the camera. The coordinates
of the button are then sent to the multi-agent system. Multi-agent system is responsible to
control the 6 servo motors: 4 for robot arm and 2 for wheels. Taking the positions received
from ML as input data, the multi-agent system solves IK problem to get rotation angles for
each joint, θ0, θ1, θ2, θ3. The servo motors are given an angle setpoints and they rotate and
maintain to reach this setpoint:

CAMERA image
−−−−→ coord x,y,z

−−−→ AMAS θ0,θ1,θ2,θ3−−−−−−−→ Robot Arm.

Fig. 1: The robot in an elevator, identifying the desired target and tries to reach it

Figure 2 contains a snapshot of the real robot with four degrees of freedom (DOF) arm
which is placed on the platform. The platform has two motorized wheels and one castor
wheel.
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Fig. 2: The picture of the real robot with 4 DOF named TwIRTee

2 Simulating Physical Model of Robot under Robot Operating System (ROS)

This section describes the simulation model of the TwIRTee robot under ROS/Gazebo. This
model includes the robot chassis with its two motorized wheels, the robot arm, and the
Light Identification Detection and Ranging (LIDAR). It gives the procedure to setup the
environment and to interact with the simulation via the com-mand line and programmatically.
The two wheels are identical, so they are modeled using a macro with a parameter, "tY "that

Fig. 3: The local frame for the chassis definition

gives the translation of the wheel with respect to the Y axis. Each wheel is drawn in a local
frame that is obtained by a rotation of π

2
radians along the Y and Z axis with respect to the

joint reference frame (see Figure 3). The robot is a set of links (such as the chassis described
previously) and joints. Let’s take the example of the robot arm that is fitted on top of the
robot, as show on Figure 3, with a close-up view on Figure 4.

The arm is composed of: 4 servo motors (the green boxes): link0, link1, link3 and link5;
two sets of "bars"(brown colored): link2 and link4; camera (in blue); "finger"(in red, at the
tip of the arm):
"link1−joint"joints "link1"and "link2"with a "revolute"joint;
"link3−joint"joints "link2"and "link3"with a "revolute"joint;
"link4−joint"joints "link3"and "link4"with a "fixed"joint.
In the model, the camera is represented by a simple blue box (see Figure 5).
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Fig. 4: The robotic arm closed view

Fig. 5: The illustration of the camera attached to the end-effector (blue box)

This environment allows the complete dynamics of the system to be simulated, in-cluding
the effect of inertia: the simulator receives the angles for each joint and com-putes the position
of the arm and camera. Figure 6 shows the general idea of integrating the machine learning
part with the multi-agent system in ROS environment. There are many related works with
image processing and object detection and ML for image processing is quit out of this paper.
The main task is to tackle with multi-agent system, to make the multi-agent system learn
and self-adapt with precise accuracy.

3 Forward Kinematics

In robotics, forward kinematics is responsible for determining the final coordinates and the
direction of the end-effector relative to the global coordinate space. Let’s consider that the
initial position and orientation of each servo motor is known. Ho-mogeneous transformation
matrices with a dimension of 4x4 will be constructed from the base frame to the end effector
frame [3]. These matrices consist of a 3x3 rotation matrix, that describes the orientation of
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Fig. 6: The illustration of integration of ML and AMAS in ROS environment

joints and their behaviors, and trans-lation vector. Further, linear algebra operations will
be performed on matrices to ob-tain FK results. In this section, more detailed solutions are
provided for the robot arm.

3.1 Kinematics for 4 DOF Robotic Arm

In our case, the robotic arm has 4 degrees of freedom (DOF). The robot is articulated
vertically with 4 joints. It has a stationary base, shoulder, elbow and wrist, where the base
joint rotates around the z-axis and the other three rotate around the y-axis. The position
of joints is represented in the three-dimensional Cartesian coordinate system and a local
reference frame is assigned to each joint. The coordinate frame assign-ment is shown in
Figure 7. In addition, it is necessary to assign a global coordinate frame to the base of the
robot [4] (see Figure 8). The servo motors in three-dimensional space can have movements of

Fig. 7: The coordinate frame assignment of robotic arm
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rotation and translation. The homogeneous transformation matrix (H.T.M) with dimension
of 4x4 is constructed separately for each joint to describe its position and orientation relative
to the world coordinate system. The H.T.M is composed of 3x3 rotation matrix and 3x1
translation vector:∣∣∣∣∣∣∣∣

. . . .

. R3×3 . t3×1

. . . .
0 0 0 1

∣∣∣∣∣∣∣∣ (1)

− Rotational matrix describes the rotation of joints in Euclidean space. The rotation is
done about z, y and x axes through a counterclockwise angle θ. The axis rotation
matrices for a rotation about z, y and x axes given, respectively [5]:

Rz (θ) =

∣∣∣∣∣∣
1 0 0
0 cos (θ) sin (θ)
0 −sin (θ) cos(θ)

∣∣∣∣∣∣ (2)

Ry (θ) =

∣∣∣∣∣∣
cos (θ) 0 sin (θ)

0 1 0
−sin (θ) 0 cos(θ)

∣∣∣∣∣∣ (3)

Rx (θ) =

∣∣∣∣∣∣
cos (θ) −sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

∣∣∣∣∣∣ (4)

− Translation or displacement vector shows the location of each joint in the base frame.
The final translation vector is the answer of the FK problem. In order to obtain the
final translational vector, the transformation matrices of each joint are multiplied. The
sequence of multiplication is important, as it results in a trajectory generation step [5].

The transformation matrices of each joint are represented as i
jT (see Fig.8.):

1. Transformation matrix of base joint, rotates about z-axis:

0
1T=

∣∣∣∣∣∣∣∣
1 0 0 x0
0 cos (θ0) sin (θ0) y0
0 −sin (θ0) cos (θ0) z0
0 0 0 1

∣∣∣∣∣∣∣∣ (5)

2. Transformation matrix of shoulder joint, rotates about y-axis:

1
2T=

∣∣∣∣∣∣∣∣
cos (θ1) 0 sin (θ1) x1

0 1 0 y1
−sin (θ1) 0 cos (θ1) z1

0 0 0 1

∣∣∣∣∣∣∣∣ (6)



E.B. Zhantileuov et al. 119

Fig. 8: The coordinate frame assignment of robotic arm in world space

3. Transformation matrix of elbow joint, rotates about y-axis:

2
3T=

∣∣∣∣∣∣∣∣
cos (θ2) 0 sin (θ2) x2

0 1 0 y2
−sin (θ2) 0 cos (θ2) z2

0 0 0 1

∣∣∣∣∣∣∣∣ (7)

4. Transformation matrix of wrist joint, rotates about y-axis:

3
4T=

∣∣∣∣∣∣∣∣
cos (θ3) 0 sin (θ3) x3

0 1 0 y3
−sin (θ3) 0 cos (θ3) z3

0 0 0 1

∣∣∣∣∣∣∣∣ (8)

5. Transformation matrix of end joint:

4
5T=

∣∣∣∣∣∣∣∣
1 0 0 x4
0 1 0 y4
0 0 1 z4
0 0 0 1

∣∣∣∣∣∣∣∣ (9)

Finally, the desired transformation matrix is obtained by multiplying all ijT matrices:

0
5T =

0

1T ·
1
2T · 2

3T · 3
4T · 4

5T (10)
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where 0
5T has the form of:∣∣∣∣∣∣∣∣

. . . x

. R3×3 . y

. . . z
0 0 0 1

∣∣∣∣∣∣∣∣ . (11)

The (x, y, z) is the answer to the FK problem. The (x4, y4, z4) is the position of the
end-effector in the local coordinate space (see Figure 7) and (x, y, z) is the position of the
end-effector on the world system, in another words, the coordinates of the end-effector are
translated to the global coordinate system.
The Implementation of FK on 4 DOF Robotic Arm Implementing the FK to determine
the final position and orientation of the end-effector is done in Python.

Suppose the arm of the robot is raised up initially. The rotation angles are given to
each servo motor, i.e. the rotation angle setpoints, (θ0, θ1, θ2, θ3), are sent to the base,
shoulder, elbow and wrist. Depending on the given angles, the motors begin to rotate. The
final location of the end-effector is determined by the translation of the coordinate from the
local coordinate system to the global one. Input data is angular setpoint, the output is the
coordinates of the end-effector on the global system:

θ0, θ1, θ2, θ3
FK−4Dof
−−−−−−−→ x, y, z.

The result of the problem is illustrated in Python on Figure 9. Initially, the robot arm is

Fig. 9: The result of the example to check the correctness of implementation FK.

raised up and θ0 = 45, θ1 = 50, θ2 = 34, θ3 = 23 is given to the motors. The dark blue
curve is the final position and orientation of the arm manipulators. The final position of the
end-effector computed by FK is (0.19346298, 0.19346298, 0.11533945).
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4 Inverse Kinematics

Summing up the previous section, we can say that solving forward kinematics for robotic
manipulators is a fairly simple task, only linear algebra operations are performed on matrices
to determine the final position and orientation of the end-effector. The problem has one and
only one solution. However, when the final position and orientation of the manipulators is
initially given, and the task is to find the rotation angles for each joint, (θ0, θ1, θ2, θ3),
the problem becomes non-linear and complex. This kind of task in robotics is called Inverse
Kinematics Problem. There are many approaches to solving inverse kinematics problem, e.g.
analytical solution, numerical methods, artificial neural networks and self-adaptive multi-
agent systems. In this paper, we propose Adaptive Multi-Agent System based solution for
solving IK problem.

5 Adaptive Multi-Agent System

To solve IK problem, we need to prepare a model which is responsible to predict the revise the
degrees of liberty and “rotation time”. However, due to the complexity of the problem, it is
difficult and expensive to solve using a predefined model; instead, we will use several agents,
an autonomous entities, responsible for predicting the result. A system where the agents are
plugged-in should be able to adapt to the environment and learn independently. The Adaptive
Multi-Agent Systems (AMAS) approach has been applied to designed and developed self-
adaptive multi-agent system. This approach aims at solving problems in dynamic non-linear
environments by a bottom-up design of cooperative agents, where cooperation is the engine
of the self-organization process [7].

6 The Self-Adaptive Context Learning Pattern

Our self-adaptive system is connected with a dynamic environment by a cycle of observations.
The main task of system is to receive the observations coming from the environment and find a
proper actions for the current state of inputs, which, in turn, is called the context [8]. This is a
context mapping problem. The Self-Adaptive Context Learning (SACL) is recurrent pattern,
based on the AMAS approach, the key feature of which is to solve the context-mapping
sub-problem. It is composed of two mechanisms, that interacts with the environment:

• Adaptation mechanism, is dynamically building a model, that describes the current
context and possible actions in it. [2, 8] It is related to the learning phase of the system
and its changes.

• Exploitation mechanism, is in charge with the selecting the most appropriate action in
the current context.

7 AMOEBA: Agnostic MOdEl Builder by Self-Adaptation

The building of the model in adaptation mechanism is performed by using Agnostic MOdEl
Builder by Self-Adaptation (AMOEBA), based on the AMAS approach. The model explains
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the interaction that occurs between the mechanism of exploitation and the environment [2].
The model receives a set of input data, we call it percepts, and produces one output. We call
the obtained result as prediction and the actual, correct result is called oracle.

There are two types of agents in AMOEBA [9]:

− Percept agents are responsible for the perceiving information from the environment.

− Context agents are in charge of determination the context, where a specific output
would be a good one.

AMOEBA learning phase is done by building the context agents. Each context agent
has its own validity range and local model. The validity range of the context agent is the
interval, where a specific output will be relevant [9]. If the received value of the percept
agent is included in the validity range interval, we say the validity range is valid for this
percept. The context agents have rectangular shape in two-dimension space (see Figure 10).
The local model is built separately for each context agent. When the validity range of the

Fig. 10: The context agents in AMOEBA

context agent is valid for the current perceived value, the output is calculated by using the
local model of that context agent. In this paper, the linear regression is used as a model. The
linear regression function computed using a set of points [9]:

p∑
n=1

xnvn + a (12)

where p is the number of percepts, xn and vn are the coefficients, a is the real number.
The creation of the context agent, the self-organization, the changing of the validity ranges,
the changing local model and the destroying itself is deeply described in reference [9].
Working Principle of AMEOBA. At first, AMOEBA must learn from examples with the
correct outputs. This approach of learning is called supervised learning. Once, the AMOEBA
is learned, it starts to predict the result for a new inputs.

Let’s look at the illustration taken from reference [9]:

1. During the learning phase, AMOEBA uses incoming data to adapt and improve itself.
The specific data set with the correct result is given to AMOEBA. However, at the
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Рис. 11: Learning phase of AMOEBA, with
the given oracle (red arrow)

Рис. 12: The exploitation step of AMOEBA,
without labeled data

beginning, the oracle, actual result, is “hidden” from AMOEBA. The valid context
agent tries to predict the output, and checks the predicted value with the oracle. If it
was wrong, it adapts and improves itself by reducing its validity range or changing the
local model (see Figure 11).

2. During the exploitation step, AMOEBA receives a set of data without an oracle. Based
on the previous knowledge it provides an output (see Figure 12).

AMOEBA for the Inverse Kinematics Problem. In IK problem for the robot arm,
the input data are the final coordinates of the end-effector, (x, y, z), remember that in
practice these coordinates are taken from machine learning software. The output is a set
of rotation angles for each servo motor, (θ0, θ1, θ2, θ3). Then the servo motors execute the
given commands to achieve the (x, y, z) target position. This means that we must predict 4
parameters for the robot arm. However, AMOEBA learns to predict only one parameter at the
time. So, using four independent AMOEBAs to perform the learning of each parameter can
give physically unreachable commands to the robot arm because the correlation between each
parameter would be lost; e.g. to reach point (x, y, z) the arm has many ways to reach desired
point by varying its angles, a single solution is given by an arm configuration expressing
four angles which depend from each other in each configuration. If the learning process for
each angle is independent, the prediction for the angle will be non-correlated to the one
of the other angles, resulting in an “impossible” arm configuration. Therefore, in order to
preserve the correlation between the joint’s positions of the robotic manipulators, we decided
to encode the four angles (θ0, θ1, θ2, θ3) to one single number N . This number N is used as an
oracle in the learning process. Then, when the (x, y, z) coordinate is provided to the trained
system, the number encoding the joints angles is given as output, and decoded for the final
application.

In order to AMOEBA to predict values, the system need to be trained. Therefore, a
training data set should be provided.

Training Data for AMOEBA. The learning data for AMOEBA is built in Python
programming language. Several training sets of 100, 1000 and 5000 examples respectively,
are randomly generated in different files. The angle values uniformly cover the fallowing
ranges:

θ0 ∈ (0; π) , θ1 ∈
(
0;
π

2

)
, θ2 ∈

(
0;
π

2

)
, θ3 ∈

(
0;
π

2

)
.
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For each example, the final position and orientation of the end-effector is calculated by
solving FK problem (see Figure 13). The result of FK problem is exact and stored in vector
(x, y, z)T form.

Fig. 13: The resulting positions of the end-effector for 5000 randomly generated set of joint
angle values

Finally, each example used in the training file is a row in a table consisting in
θ0, θ1, θ2, θ3, x, y, z parameters, and the respective encoding of the joint positions, given
that the learning ability of AMOEBA is limited by only one parameter. This means that, we
feed AMOEBA with data, that has the correct answers or oracles.
Encoding and Decoding of θ Values. The process of encoding θ values into a single number,
N , occurs before the learning process of AMOEBA. The number N is used as an oracle at
the learning stage (red colored) and at the predicting stage, this is the value that we aim to
predict. The value of Npredict is then decoded to retrieve θ0pred, θ1pred, θ2pred and θ3pred
(see Figure14).

Fig. 14: The role of encoding/decoding in the learning and predicting stages of AMOEBA.

Let’s see how θ values are encoded. The movement of joints are limited within the following
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ranges:

θ0 ∈ (0; π) , θ1 ∈
(
0;
π

2

)
, θ2 ∈

(
0;
π

2

)
, θ3 ∈

(
0;
π

2

)
,

and the maximum value that angle can assume is 1800. This value, incremented by 1, is called
the base (B = 181). Finally, the value N is calculated:

N = θ0 ×B3) + (θ1 ×B2) + (θ2 ×B1) + (θ3 ×B0) (13)

To decodeN , we divide it by base B. The value in remainder is θ3. In order to get θ2, θ1 and θ0,
the division process is repeated, but instead of N , quotient of previous division is used.
Example 1. Let’s encode and decode the set of angles:

θ0=450;θ1=230; θ2= 540;θ3=890

N=
(
45×1813

)
+
(
23×1812

)
+
(
54×1811

)
+
(
89×1810

)
= 267601711

The four values of θ are encoded in one N .
The decoding of N :

267601711÷181 = 1478462 (remainder 89)

1478462÷181 = 8168 (remainder 54)

8168÷181 = 45 (remainder23)

45÷181= 0 (remainder45)

The values in remainders are our angles, which we encode earlier.
Returning to our training data, let’s encode all the joint angles. Table 1 represents several

lines from the real dataset.

θ0 θ1 θ2 θ3 x y z N
7 12 78 19 0.216441 0.026575 0.13153 5207239
72 18 36 74 0.059224 0.182274 0.20249 52637114
62 27 11 60 0.087914 0.165342 0.25034 45417750
53 48 83 72 0.101095 0.134158 -0.027521 39033342
. . . . . . . . . . . . . . . . . . . . . . . .
19 83 53 48 0.189071 0.065102 -0.095592 14528118

Table 1. A training data for AMOEBA

Now instead of fourfold training for each θ, AMOEBA will be trained once on the values of
N .
Learning Phase of AMOEBA. In the problem of inverse kinematics for the robot arm,
AMOEBA starts learning by mapping (x, y, z) into cartesian plane. Note that: the oracle is
N . For each point, AMOEBA randomly produces a value Npred. If this value is closer to the
oracle, the validity range of context agent expands, and vice versa, if the difference between
the exact value of N and the predicted value of N is large, the range becomes smaller. If
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Fig. 15: The illustration of context agents (red crosses are percept agents; the rectangles are
context agents). Each.

Fig. 16: 2D visualization of learning AMOEBA in JAVA.

the validity range of context agent is too small, AMOEBA decides that it is useless and the
context agent will be self-destroyed. Context agents with their local regression models are
illustrated on Figure 15.

Validation Phase. To estimate how well AMOEBA was trained, we need to provide
a testing dataset. Just like in training dataset, this file consists of 100 lines of
θ0, θ1, θ2, θ3, x, y, z, N values. However, at this stage we will use the oracle only to
calculate model error. This means that the input for AMOEBA is only x, y, z, remember
that at the learning stage, the input was x, y, z and oracle N . Based on previous knowledge,
AMOEBA predicts the value of N, the output is Npred. This output is then decoded to get
θ0pred, θ1pred, θ2pred and θ3pred. Next, we simply solve FK problem for predicted joint
angles and obtain the predicted coordinates of the end-effector, (xpred, ypred, zpred). These
steps are described in the following scheme:

x, y, z
input−→ AMOEBA

predic−→ Npred
decode−→ θ0pred, θ1pred, θ2pred, θ3pred

solve FK−→ xpred, ypred, zpred.

The performance of AMOEBA was determined based on the Euclidean distance of two
points and the mean squared error (MSE) between the predicted output and the expected
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output.

8 Experimental results

First of all, I generated 3 training datasets for AMOEBA with 100, 1000 and 5000 rows of θ
values. To find the corresponding localizations, the problem of forward kinematics has been
solved and for each row, the values of θ were encoded into a single N (see Tab.2). These data
were then transmitted to AMOEBA, so that it could learn. After each training with the data
of different sizes, another testing dataset is given, to check the correctness the model.

θ0 θ1 θ2 θ3 x y z N
7 16 19 19 0.15 0.02 0.3 5234329
81 65 63 54 0.03 0.2 -0.05 59581224
78 9 68 17 0.04 0.21 0.18 56941037
30 21 13 12 0.13 0.08 0.3 22041282
. . . . . . . . . . . . . . . . . . . . . . . .
55 2 82 87 0.09 0.13 0.116 40118667

Table 2. An example of learning data for AMOEBA

Once AMOEBA is trained, the validation phase is conducted. Tables 3, 4 and 5 show the
results of validation stage after training with 100, 1000 and 5000 data rows, respectively.

x y z Npred θ0p θ1p θ2p θ3p xp yp zp ED MSE
0.15 0.02 0.3 9720459 13 30 5 9 0.17 0.04 0.3 0.02 0.001
0.03 0.2 -0.05 55375708 75 86 45 58 0.05 0.2 -0.1 0.05 0.002
0.04 0.21 0.18 59999713 82 27 33 43 0.03 0.22 0.2 0.03 0.001
0.13 0.08 0.3 27920717 38 27 0 17 0.12 0.09 0.31 0.02 0.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.09 0.13 0.116 37979806 52 8 77 76 0.11 0.14 0.11 0.02 0.01

Table 3. After training AMOEBA with 100 rows of data, the mean Euclidean distance is
0.33 and the

∑
MSE = 0.03.

x y z Npred θ0p θ1p θ2p θ3p xp yp zp ED MSE
0.15 0.02 0.3 5250410 7 18 17 80 0.16 0.02 0.25 0.05 0.003
0.03 0.2 -0.05 59594295 81 67 28 75 0.04 0.25 0.03 0.09 0.009
0.04 0.21 0.18 57170504 78 38 7 74 0.04 0.21 0.21 0.03 0.001
0.13 0.08 0.3 21849462 29 87 41 72 0.18 0.10 -0.1 0.39 0.147
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.09 0.13 0.116 40903374 56 9 71 84 0.10 0.15 0.13 0.02 0.001

Table 4. After training AMOEBA with 1000 rows of data, the mean Euclidean distance is
0.12 and the

∑
MSE = 2.66.
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x y z Npred θ0p θ1p θ2p θ3p xp yp zp ED MSE
0.15 0.02 0.3 5229175 7 15 51 85 0.19 0.02 0.16 0.14 0.021
0.03 0.2 -0.05 59609975 81 69 23 5 0.05 0.29 0.07 0.15 0.023
0.04 0.21 0.18 56898316 78 4 43 46 0.03 0.16 0.25 0.08 0.008
0.13 0.08 0.3 22157307 30 35 42 27 0.22 0.13 0.15 0.18 0.033
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.09 0.13 0.116 40903374 56 9 71 84 0.10 0.15 0.13 0.02 0.001

Table 5. After training AMOEBA with 5000 rows of data, the mean Euclidean distance is
0.1 and the

∑
MSE = 3.12.

With the help of testing data, we can compute the Euclidean distance between two points,
(x, y, z) and (xpred, ypred, zpred). With an increase in the training data, the mean Euclidean
distance decreased, and the sum of the mean squared error increased (see Figure 17). The
explanation for this is closely related to the number of context agents. When we try to
train AMOEBA with more data, it also tries to build a perfect model. Thus, it breaks down
the initial context agents into several small ones. When we have more context agents than
necessary, our model becomes overfitted. On the other hand, we can notice that the values of

Fig. 17: The graph of mean squared error of different data size.

Npred are approximated to the real values of N and that AMOEBA always perfectly coincides
with the first angle. So, I found that the order of θ values at the encoding stage is highly
important, since when encoding, the first value is multiplied by the highest base accordance
with equation (12).

Returning to the problem, at the encoding stage, we need to encode so that each θ is
occurred first in order (see Figure 28).

For each N, we create 4 independent AMOEBAs. Note that in this case all links and
relations will be preserved between θ parameters. Further, all other steps will be the same for
this learning. Only, at predicting stage, we select the better values of θ from each independent
learning. Table 6 shows the testing phase results after training AMOEBA with 5000 data
rows.
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Fig. 18: At the encoding step, we encode so that each θ will be first in order.

x y z θ0p θ1p θ2p θ3p xp yp zp ED MSE
0.08 0.18 -0.05 67 50 69 31 0.09 0.21 0.00 0.06 0.004
0.04 0.17 -0.11 78 85 56 65 0.04 0.17 -0.1 0.01 0.000
0.20 0.16 -0.04 39 69 26 37 0.22 0.18 0.04 0.09 0.007
0.18 0.11 0.19 31 34 18 56 0.19 0.11 0.21 0.03 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.27 0.10 0.10 56 9 71 84 0.15 0.06 0.29 0.23 0.052

Table 6. The result of validation phase, after training AMOEBA with 5000 lines of data.
To obtain this results, learning is done independently of each other with the oracle N .

The result of latter method is pretty impressive: after 5000 learning,
∑
MSE = 0.008 and

average Euclidean distance is 0.06.

9 Conclusion

This study presented a detailed solution for inverse kinematics problem using an Adaptive
Multi-Agent System approach.

To avoid parameter non-correlation, we encoded the output / input of the IK problem as
one base-dependent number. Using this approach, we were able to predict the position and
orientation of the robot arm joints, given a final position.
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The results show that the size of the training set is relevant to the performances, as the
bigger it is, the model becomes more complex and the MSE increases. To make the error less,
four AMOEBAs were trained with the differently encoded labels.

This applications were aimed as a part of a more complex system, involving machine
learning techniques to identified a goal for a robot, and multi-agent system to elaborate the
robotic arm position to reach this goal.
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MODELLING OF HORIZONTAL DRILL STRING MOTION BY THE
LUMPED-PARAMETER METHOD

The motion of drill strings is modeled in the drilling of geotechnological wells in the mining industry
by the Lumped-Parameter Method (LPM). This method is widely used in structural mechanics
and is most justified in modeling dynamic systems with a variable structure. On the example of
horizontal drilling of geotechnological wells, longitudinal vibrations of a drill string with a static
compressive load at the left end are considered [1]. The contact interaction of the drill string with
the borehole walls and the inertia force of the bit on the destructible rock at the right end of
the string are taken into account. The analysis of the column splits number, which specifies the
dimension of the system of discrete equations, is carried out by verifying the obtained results with
the previously known data [1]. For verification, the developed C# software was used, allowed to
determine the error of the column splits in comparison with the test data. The optimal number
of the drill string splits in terms of “implementation time – calculation error” by the LPM was
identified. The numerical implementation of the model is conducted by the fourth-order Runge-
Kutta method. In connection with the increase in the implementation time of the program code
due to the increase in the dimension of the system, the numerical algorithm is optimized using the
parallel programming tools. The expediency of this optimization is analyzed.
Key words: drill string, nonlinear, vibrations, lumped-parameter method, parallel programming.
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Жиынтық параметрлер әдiсi бойынша бұрғылау бағананың көлденден қозғалуын

модельдеу

Бұрғылау бағананың қозғалысы тау-кен өнеркәсiбiнде геотехнологиялық ұңғымаларды иге-
руде жиынтық параметрлер әдiсiмен (ЖПӘ) модельденедi. Бұл әдiс құрылымдық механи-
када кеңiнен қолданылады және айнымалы құрылымы бар динамикалық жүйелердi модель-
деуде барынша негiзделген. Геотехнологиялық ұңғымаларды көлденең бұрғылау мысалында
оның сол жақ шетiнде статикалық қысу жүктемесi бар бұрғылау бағананың бойлық тер-
белiстерi қарастырылған [1]. Бұрғылау бағананың ұңғыма қабырғаларымен жанасу әрекетi
және тiзбенiң оң жақ шетiнде жойылатын жынысқа қашау инерция күшi ескерiледi. Алынған
нәтижелердi бұрын белгiлi [1] деректермен тексеру арқылы, дискреттi теңдеулер жүйесiнiң
өлшемiн белгiлейтiн бағананың бөлiмдер санының талдауы жүргiзiледi. Тексеру үшiн C#
тiлiнде әзiрленген бағдарламалық қамтамасыз ету пайдаланылады, бұл сынақ деректерi-
мен салыстырғанда шығарылған бағана бөлiмдерiнiң қателiгiн анықтауға мүмкiндiк бередi.
Бағананың бөлiмдерiнiң оңтайлы саны «есептеу уақыты-есептеу қатесi» тұрғысынан аны-
қталады. Модельдiң сандық орындалуы 4-шi реттi Рунге-Кутта әдiсiмен жүзеге асырылды.
Жүйе өлшемiнiң өсуi мен программалық кодты орындау уақытының ұлғаюына байланысты
параллельдi бағдарламалау құралдарының көмегiмен сандық алгоритм оңтайландырылды.
Осы оңтайландырудың орындылығына талдау жүргiзiлдi.
Түйiн сөздер: бұрғылау бағана, бейсызықтылық, тербелiстер, жиынтық параметр әдiсi, па-
раллельдi бағдарламалау.
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Моделирование горизонтального движения буровой колонны методом сосредоточенных

параметров

Моделируется движение буровых колонн при разработке геотехнологических скважин в
добывающей промышленности методом сосредоточенных параметров (МСП). Данный метод
широко применяется в строительной механике и наиболее оправдан при моделировании
динамических систем с переменной структурой. На примере горизонтального бурения геотех-
нологических скважин рассмотрены продольные колебания буровой колонны со статической
сжимающей нагрузкой на ее левом конце [1]. Учтены контактное взаимодействие буровой
колонны со стенками скважины и сила инерции долота на разрушаемую породу на правом
конце колонны. Посредством верификации полученных результатов с ранее известными
данными [1] проведен анализ числа разбиений колонны, задающий размерность системы
дискретных уравнений. Для верификации использовалось разработанное программного
обеспечение на C#, позволяющее определить погрешность производимых разбиений колон-
ны в сравнении тестовыми данными. Определено оптимальное число разбиений колонны
с точки зрения «вычислительное время-погрешность расчета». Численная реализация
модели осуществлена методом Рунге-Кутта 4-го порядка. В связи с увеличением времени
реализации программного кода за счет роста размерности системы произведена оптимизация
численного алгоритма с применением средств параллельного программирования. Проведен
анализ целесообразности данной оптимизации.

Ключевые слова: буровая колонна, нелинейность, колебания, метод сосредоточенных па-
раметров, параллельное программирование.

1 Introduction

In the complex process of drilling geotechnological wells in the mining industry, horizontal
drilling has become widespread [2–4]. Research in the field of modelling the motion of
horizontal drill strings from the point of view of the influence of stochastic processes
on the dynamics of drilling equipment was carried out by Ritto T.G. with a group of
scientists [1, 5, 6] and the authors of [7]. The authors of [8, 9] created an experimental setup
based on the principle of mechanical similarity, and analyzed the accuracy of the theoretical
models in accordance with the obtained experimental data. The authors of [10] studied the
importance of drilling fluid formulations when drilling horizontal wells and proposed the use
of biopolymer-based drilling fluids. In [11], the longitudinal vibrations of the column were
modeled by the method of summation of modes, the analysis of the influence of the modes
number on the dynamics of the system and their convergence was carried out. The authors
of [12] developed a model that takes into account the geometric nonlinearity and the contact
of the drill string with the well, based on the geometrically exact beam theory and the method
of quadrature elements.

The search and application of alternative solutions in modelling are of scientific and
practical interest, since they allow verifying the correctness of the already available results
and expanding the class of problems under study. In particular, today, little-studied problems
of modelling the dynamics of industrial equipment and machines in complicated conditions
are relevant, namely due to the inhomogeneity of physical and mechanical properties, the
variable structure of the research object, local and point loads.
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Sadler J.P. in his work [13] considered the lumped-parameter method (LPM) for kinetic-
elastodynamic analysis of mechanisms, later successfully used for the analysis of nonlinear
vibrations of elastic multi-link mechanisms [14–16]. LPM is a special case of the finite
element method, when the equation of a one-dimensional continuous medium is replaced
by its discrete analogue. The essence of the method lies in the convertion from the model
of a continuous medium to its discrete representation at the nodes by a system of ordinary
differential equations. This method is widely known in structural mechanics, as well as in
the study of the dynamics of flat beam structures [17–19]. Its application is most justified
when modelling nonlinear systems with elements of heterogeneous material, variability of
cross sections, loading, etc.

The purpose of this work is to identify the optimal number of drill string splits from
the point of view of “implementation time-calculation error” by the LPM using parallel
programming tools.

2 Mathematical model and its discretization

The horizontal motion of a drill string [1] under the action of a static compressive load at
its left end, friction forces of the drill string against the rock, a variable harmonic force,
gravitational forces, as well as an interaction force between the bit and the rock at the right
end is considered

Figure 1. The lumped-parameter method (LPM) for solving the problem of the dynamics
of drilling equipment was applied.

The equation of motion of the drill string with a length L is given in a general form [1]:

ρA
∂2u(x, t)

∂t2
− EA∂

2u(x, t)

∂x2
= fsta(x, t) + fhar(x, t)+

+fbit(u̇(x, t)) + ffric(u̇(x, t)) + fmass(ü(x, t))
(1)

where u(x, t) is the longitudinal displacement of the drill string, ρ is density of the column
material, A is the cross-sectional area, E is Young’s modulus. The right-hand side of Eq. (1)
contains the forces acting on the drill string.

The constant force fsta acts on the left end of the drill string (x = 0) and it is given by

fsta(x, t) = Fstaδ(x), (2)

where Fsta is an amplitude, δ(x) is the Dirac delta function.
The harmonic force fhar is given as:

fhar(x, t) = F0sin(ωf t)δ(x− L), (3)

where F0 is an amplitude, ωf is the harmonic force frequency.
The bit inertia force and the drill string friction force on the rock are defined, respectively,

as:

fmass(ü(x, t)) = −mbitü(x, t)δ(x− L),

ffric(u̇(x, t)) = −µ(x)(ρA)g sgn(u̇(x, t)), (4)
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Figure 1: The sketch of forces acting on a drill string

where mbit is the mass of the bit, concentrated at the point x = L, µ(x) is the coefficient of
friction against the rock, g is gravitational acceleration.

The static compressive force at the right end of the column is determined in an exponential
form as

fbit(u̇(x, t)) =

{
(c1exp(−c2u̇(x, t))− c1)δ(x− L) for u̇(L, t) > 0,

0 for u̇(L, t) ≤ 0
(5)

where c1, c2 are the coefficients of the bit-rock interaction.
The mathematical model Eq. (1-5) was solved by T.G. Ritto et al. in the work [1] by the

finite element method. Here, the authors of the work, as in [20], use LPM, which is an effective
method for the numerical analysis of such dynamical systems. Due to the inhomogeneity of
the drill string loading, the mathematical model is written in accordance with the drilling
equipment loading scheme (Figure 1) as follows:

ρA
∂2u(x, t)

∂t2
− EA∂

2u(x, t)

∂x2
= ffric(u̇(x, t)) (6)

with the boundary conditions

x = 0 : EA
∂u

∂x
= −Fsta,

x = L : EA
∂u

∂x
= fhar(x, t)) + fmass(ü(x, t)) + fbit(u̇(x, t)). (7)

The metric is introduced in spatial and time coordinates:

u = Lu, x = Lx, t =
τ

c
, c =

√
E

ρL2
(8)

Approximate the derivatives according to the LPM used here:(
∂2u
∂x2

)
j

= 2
∆xj+1uj−1 − (∆xj + ∆xj+1)uj + ∆xjuj+1

∆xj+1∆xj(∆xj + ∆xj+1)
(9)
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(
∂u
∂x

)
j

=
uj − uj−1

∆xj

,

(
∂u
∂x

)
j

=
uj+1 − uj

∆xj+1

(10)

(
∂u
∂x

)
j

=
uj+1 − uj−1

∆xj+1 + ∆xj

(11)

where ∆xj = xj − xj−1, xj =

{
(2j − 1)l for 1 ≤ j ≤ N
1 for j = N + 1

, 2l =
1

N − 1
, N is the number of

the drill string splits.
The model Eq. (6) and its boundary conditions Eq. (7) are represented in the discrete

form:

∂2u1

∂τ 2
− 1

3l2
(2u0 − 3u1 + u2) = − µg

Lc2
sgn(u̇1) for j = 1,

∂2uj

∂τ 2
− 1

4l2
(uj−1 − 2uj + uj+1) = − µg

Lc2
sgn(u̇j) for j = 2, N − 2 (12)

∂2uN−1

∂τ 2
− 1

3l2
(uN−2 − 3uN−1 + 2uN) = − µg

Lc2
sgn(u̇N) for j = N − 1

x = 0 : u1 − u0 = − lFsta

EA

x = 1 :
∂2uN

∂τ 2
+

(ρA)L

mbit

(uN − uN−1)

l
=

F0

mbitLc2
sin
(ωf

c
τ
)

+
1

mbitLc2
fbit(Lcu̇N) (13)

As a result, the system of N nonlinear second-order ordinary differential equations with
respect to time with one algebraic expression is obtained.

3 Numerical analysis of the model

The numerical analysis of the model was carried out by the fourth-order Runge-Kutta
method. The algorithm and the program code for numerical modelling have been developed
in the C++ programming language.

The values of the physical and geometric parameters of the drill string, the indicators of
the acting loads were taken in accordance with the author’s values of [1]: E = 2.1 · 1011Pa,
ρ = 7850kg·m−3, g = 9.81m·s−2, Di = 0.10m (inner diameter), Do = 0.15m (outer diameter),
L

Do

= 400, mbit = 20kg, c1 = 1.4 · 103N, c2 = 400, µ = 0.1, ωf = 100 · 2π
60

rad · s−1, t ∈ [0, 10]s,

∆t = 0.0001s, fsta = 5500N, F0 = 550N.
To evaluate the efficiency of the drilling rig, the ratio of the input power of the drill to

the power of the drill at the output was used:

pin(t) = fstau̇(0, t) + fharu̇(L, t)

pout(t) = fbitu̇(L, t) (14)

where pin(t) is the input power, pout(t) is the output power.
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Figure 2: Verification of the obtained results of the longitudinal displacement.

Figure 3: Verification of the obtained results of the bit speed.

The number of the drill string splitting nodes was taken, as in [20], equal to N = 101.
The research results, which are longitudinal displacement of the drill string at an interval

of 10 s, are shown in Figure 2. The data of the bit speed are demonstrated in Figure 3.
The verification of the obtained results with the results of works [1] and [20] was carried

out. In [1], the numerical modelling of the drill string motion was realized by the finite element
method. The authors of [20] used LPM, and the numerical solution of the mathematical
model was found in the symbolic mathematics package Wolfram Mathematica (WM). Here,
numerical modelling was conducted in C++.

It was found that the longitudinal displacement of the drill string at the point x = L
increases with time, and the speed of the drill string at the right end is oscillating. It is
caused by the presence of loads on the drilling equipment in the model.

The dashed black line shows the results of T.G. Ritto [1], solid red line is the results of
L. Khajiyeva, A. Sergaliyev [20], dotted black one is the results of this work.

It is visually clear that the graphs in both figures are qualitatively convergent.
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Longitudinal displacements grown by red and dotted black lines coincide completely, while in
comparison with dashed black one, the error increases with time. The amplitudes of the speed
of motion depicted by red and dotted black lines are slightly higher than the amplitude of
dashed black line, which may be caused by the digitization error, the use of various numerical
methods, or an insufficient number of nodes in the discrete model.

In Figure 4 the change in the ratio between the output and input power is shown. The
higher this ratio, the more efficient the drilling rig is. It can be seen from the graph that
this indicator of the drill string does not exceed 25%, which is explained by the fact that
the model takes into account the loads affecting the equipment, which are friction forces, the
reaction force of the rock on the drill, static compressive force, gravitational forces, etc. The
dashed black line shows the results of T.G. Ritto, solid red line is the results of L. Khajiyeva,
A. Sergaliyev, dotted black one is the results of this work. Good consistency of the results is
observed.

Figure 4: Verification of the obtained results of the ratio between the input and output power

4 Dimension analysis of the discrete ODE system

Obviously, the calculation accuracy depends on the choice of the number of points for dividing
the drill string along the length: the spatial steps l decrease with an increase in the nodes
in space, the discrete system tends to the continuity equation. However, with an increase
in the number of partitions, the program implementation time also increases. This requires
additional analysis of the dependence of the computational accuracy on the number of nodes
N and the time spent on executing the program code.

The results of T.G. Ritto, who first considered this problem, were taken as a sample to
estimate the calculation error. For algebraic verification, a WPF Application was written in
the C# language. It compares the digitized data of the work [1] with the results of this work
and finds the difference in the data of the loaded files at the closest possible time points.

The results of the longitudinal displacement of the drill string were taken as comparative
data. Tables 1 presents the results showing the effect of the number of split points on the
calculation error. It is relevant to notice, the accuracy of the results is influenced by the
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quality of the digitized data from the test graph; the error of the time points at which the
difference in the results is located (this indicator does not exceed the time step dt = 1e−5s);
the error of the used numerical methods.

Tables 1 shows that the best convergence values were obtained by splitting the column
into 1000 segments: the maximum error does not exceed 0.39 mm, while the computation
time is no more than 8.5 minutes.

Figure 5: Influence of the number of column splits on the error and implementation time

Table 1: Analysis of the influence of the number of partitioning nodes on time and
computation error.

The number of nodes 11 101 201 401 601 801 1001
Maximum error (mm) 47.3475 2.837 1.3428 0.68111 0.46391 0.3847 0.3922

Standard deviation (mm) 26.5089 1.573 0.7076 0.304 0.19071 0.1513 0.1392
Time implementation (s) 6.667 48.9 94.837 196.707 304.165 405.95 510.85

Figure 5 clearly demonstrates the need to use more points, where the bar graph
corresponds to the standard deviation for a particular number of splits, and the graph depicts
the implementation time. Note that the error for 101 points is more than 1.5 mm, therefore,
more than 300 nodes are required to obtain quantitatively accurate values.

If the priority of the research is the accuracy of the calculation with a sufficient amount
of time resources, splitting into 1000 or more parts is the most appropriate.

5 Optimization of the numerical algorithm using parallel programming tools

A small time step, the need to use a large number of partitions and, as a consequence,
a large number of iterations served as factors for the next stage of the study which is
optimization of the program code using parallel programming tools. Parallelization of the
C++ code was implemented using the Open Multi-Processing (OpenMP) API. The OpenMP
technology, designed for shared memory systems, implements parallelism of calculations due
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Figure 6: Acceleration coefficient for a different number of points

to multithreading. The master thread creates a number of threads, the task is distributed
among them. Due to this technology, the logic of the code does not change compared
with MPI, oriented to distributed memory systems, where it is necessary to determine
connections between processes. OpenMP allows to find "vulnerable"places in the program and
significantly speed up the execution of these blocks, alternating them with a sequential part.
In particular, this approach is applied to linear algorithms, which include the fourth-order
Runge-Kutta method.

To analyze the advantages of using parallel programming, spent time resources, and the
optimal number of threads, the program code was tested for various values of the parameters
of the partition nodes and number of threads on the interval of t = 10s.

The test results are clearly shown in Figure 6, where the values of the acceleration factor
of the program using the OpenMP library are presented for a different number of points. The
bar chart shows the implementation time of the code, where the red columns correspond to
the execution time of the code by one thread, that is, without using parallel computations, the
green columns correspond to the time of the optimal number of threads (in parentheses next
to the number of nodes). The line graph shows the acceleration factor as the ratio of the time
taken by one thread at the optimal time. Thus, for a smaller number of points, one stream
is optimal, but with an increase in the number of points, the use of parallel computation is
justified.

It is worth noting that in the further, considering a more complex model and complicating
the computational algorithm, using a larger number of nodes, the efficiency indicators will
increase accordingly.

6 Conclusion

During the research of the dynamics of longitudinal vibrations of a horizontal drill string the
optimal number of the drill string splits by LPM using the developed software in the C#
language and parallel programming tools was found. The optimal number of the drill string
splits in terms of “implementation time-calculation error” varies within the range of 400-600
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nodes. It improves the accuracy of the solution in comparison with the case of splitting the
string into 100 elements [20]. A good agreement between the obtained results and the results
of T.G. Ritto’s work [1] based on the FEM has been established.

In addition, the numerical algorithm implemented in the C++ language allows further
refinement of solutions by increasing the number of the drill string splits. At the same time,
the increase in the dimension of the discrete lumped model is successfully implemented
through the use of parallel programming. Comparative analysis showed the justification of
its application for optimization of the numerical algorithm.

In the future, this work of the authors is seen in the use of LPM in modelling nonlinear
vibrations of vertical drill strings with spatial type of deformation, inhomogeneous structure,
inhomogeneity of loading due to local and point loads, etc.
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