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1-6eim Pazgen 1 Section 1
MaremaTuka Maremaruka Mathematics
IRSTI 27.39.21 DOL: https://doi.org/10.26577/JMMCS.2021.v109.i1.01

A. Hasanov!'?? ~, T.G. Ergashev?®
nstitute of Mathematics, Uzbekistan, Tashkent
2Tashkent Institute of Irrigation and Agricultural Mechanization Engineers,
Uzbekistan, Tashkent
3Department of Mathematics, Analysis, Logic and Discrete Mathematics,
Ghent University, Belgium, Ghent
*e-mail: ergashev.tukhtasin@gmail.com

ON POTENTIAL THEORY FOR THE GENERALIZED BI-AXIALLY
SYMMETRIC ELLIPTIC EQUATION IN THE PLANE

Fundamental solutions of the generalized biaxially symmetric elliptic equation are expressed in
terms of the well-known Appel hypergeometric function in two variables, the properties of which
are necessary for studying boundary value problems for the above equation. In this paper, using
some properties of the Appel hypergeometric function, we prove limit theorems and derive integral
equations for the double- and simple-layer potentials and apply the results of the constructed
potential theory to the study of the Dirichlet problem for a two-dimensional elliptic equation with
two singular coefficients in a domain bounded in the first quarter of the plane.

Key words: Appell hypergeometric function, generalized bi-axially symmetric elliptic equation,
potential theory, Green’s function, Dirichlet problem.

A. Xacanos!?3, T.I'. Dprames?’
I'Maremaruka HHCTHTYTHI, O36excTan, TAIIKEHT K.
2TamKeHT UPPHUTAIUS JKOHE aybLT MAPYANILLIBIFLIH MeXaHIKAJIAHBIPY HHKEHepJIep HHCTUTYTHI,
O3z6ekcran, TamkenT K.
3MaTemaTrKa, aHAIN3, JOTHKA YKoHe TUCKPETTi MaTeMaTnKa, (paKyIbTeTi,

lent yuusepcurerti, Beabrus, l'ent k.

*e-mail: ergashev.tukhtasin@gmail.com
2K a3bIKTBIKTAFBI 2KAJNBIJIAHFAH €Ki 6CKe CUMMETPUSJIBIK, SJIINITAKAJIBIK, TEHIEY/IiH,

HOTEHIUAJIJIBIK, TEOPUSCHI XKAWbIHIA

ZKannburanran eKi ©CKe CHMMETPUSIIBIK, SJITAITHKAIBIK, TeHIEYIIH iprei menriMaepi exi aifubimva-
JIBICBI 6ap AT IiH MUIepreoMeTPHUSIIBIK, (DYHKITUSICH APKBLIBI ODHEKTEJIE/T, OJIapIbIH KacueTTepi
JKOFapbIJia KeJITIPLJIreH TeH ey VIMiH IeKTi ecenrep/ii 3epTrey VIIH KaxkeT. By xkymbicra Anmej-
JIiH, TUIIePreoOMeTPUsIIbIK, (DYHKIMSACHIHBIH, Keifibip KacrueTTepiH KOJIIaHa OTBIPHII, 6i3 KOC KabaTThl
2KOHE YXKaill KabaTThl TOTEHINAJIIAD/IBIH THIFBI3/IBIFBI VIIH MEKTI TEOPEeMAaJIap/Ibl IO/ IeHMI3 KoHE
MHTErpPaJIIbIK, TEHIEYIEP ajgaMbl3. Kypbuiran MOTEeHIInaIIap TEOPUICHIHBIH, HOTUXKEJIEPIH yKa3bl-
KTBIKTBIH OipiHIIT IITIperiHIe meKTeareH 00IbICTa €Ki CHHTY/ISAPJIBI KoM UIIeHTi 6ap exi esmemMIi
JUINITUKAJIBIK TeHey yinin Jlupuxie ecebin 3eprTeyre KOJJaHaAMBbI3.

Tyitia ce3mep: AnmnesiiH eki aifHbIMAJIbI THIIEPreOMeTPUSK, (PYHKIUSICHI, YKoil KabaTThl 2KoHE KOC
KabarThl oTeHImaIap, ['pun dyHKIusicel, ipreni menrim, Jlupuxie ecebi.

A. Xacanos!?3, T.I'. Dpramren?’
'Nucruryr MaTtemaruku, YabexucTan, r. Tamkent
2TalIKeHTCKUil WHCTUTYT MHYKEHEPOB MPPHTAINN U MEXaHM3AIlIN CeIbCKOIO X034HCTBa,
V36ekucram, . TamkeHT
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4 On potential theory for generalized bi-axially symmetric ...

3@akysbTeT MaTEMATHKH, AaHAJIN3A, JJOTHKI U UCKPETHOI MATEeMATHKH,
T'entckuit yausepcurer, Besbrus, r. I'enr
*e-mail: ergashev.tukhtasin@gmail.com
O Teopuu moTeHIMAA JJIsI OOOBIIEHHOTO JIBYOCECUMMETPUYHOIO 3JIJIMITUYECKOTO yYPaBHEHUS
Ha MJIOCKOCTH

OyHaaMeHTaIbHbIE PereHnsi 0DOOIEHHOrO JIBYOCECUMMETPUIHOIO SJIIUITUIECKOrO yDABHEHUS
BBIPAYKAIOTCSI YepPe3 U3BECTHYIO TUIIEPTEOMETPUIECKY IO (DyHKIMIO ATIIEsIs ¢ IBYyMsI IIEPEMEHHBIMH,
CBOICTBa KOTOPO# HEOOXOAUMBI JIJIsl M3yU€HUs KPAEBBIX 33124 /i1 YKA3aHHOI'O BBIIIE yPABHEHUS.
B pmannoii paboTe, MCIIOJIBb3ysl HEKOTOPBIE CBOICTBA I'MIIepreoMeTpudecKoil byHKimu Armess, J10-
Ka3bIBae€M IIPEJIeJIbHBIE TEOPEMBI M BBIBOJIMM MHTEI'DAJIbHBIE YPAaBHEHUS, KACAIOIINECH IIJIOTHOCTHA
MIOTEHITUAJIOB JIBOIHOTO M MPOCTOrO cJioeB. IIpuMeHnM pe3yabTaThl MOCTPOEHHON TEOPUU MOTEH-
nuajga K MCCJIEI0BAHUI0 3a7a4n Jlupuxiie mjis AByMEPHOrO SJUIMIITHYECKOTO YPABHEHUS C JIBYMSI
CUHTYJISIPHBIMEU KO3 duiimenTaMu B 00J1aCTH, OFPAHUIEHHON B II€PBOIl Y€TBEPTH IIJIOCKOCTH.
KoroueBble ciioBa: rumepreoMerpudeckasi GyHKIHA ATess JABYX HEPEMEHHBIX, HOTEHIUAJIDI
JIBOIHOI'O W IPOCTOrO cjioeB, pyHKus ['puHa, dpyHIaMeHTaIbHOE pelenue, 3a1a49a Jlupuxie.

1 Introduction

Numerous applications of simple- and double-layer potentials, as well as volumetric potentials,
occur in fluid mechanics, elastodynamics, electromagnetizm, and acoustics [3]; therefore, the
theory of potentials plays an important role in solving boundary value problems for elliptic
equations. This, in particular, allows one to reduce the solution of boundary value problems
to the solution of integral equations [1,2].

For the first time S. Gellerstedt [4] constructed a potential theory and applied it to the
solution of basic boundary value problems for the model Tricomi equation, i.e. for a two-
dimensional elliptic equation with one singular coefficient of the form

2
um—i-uyy—i-?aux:(), 0<2a<1,

which, later, was developed in the works of F.I.Frankl [5], S.P. Pulkin [6], M.M. Smirnov [7].
This line of research adjoin works [8-10].

The papers [11] and [12] are devoted to investigation of the double- and simple-layer
potentials for a three-dimensional singular elliptic equation of the form

2
ux$+uyy+uzz+?auxzo,0<2a<1 (1)

and solving the mixed problem and the Dirichlet problem for the equation (1) in a domain
bounded in the half-space x > 0, respectively.

The authors of the papers [13, 14] constructed a potential theory for multidimensional
elliptic equation with one singular coefficient

= 2c

E U’C’?kxk_'_x_ul’l:()? 0<2a<1, m2>2
1

k=1

in the domain bounded in a half-space z; > 0 and with the help of this theory, the solutions
of the Dirichlet [13] and Holmgren problems [14] are obtained in forms convenient for further
research.



A. Hasanov, T.G. Ergashev 5)

On potential theory for an elliptic equation with two singular coefficients

20

2
E(t) = tyy + gy + — 1ty + ——u, =0, 0 < 20, 28 < 1 2)
x y

are devoted to relatively few works. In the works [15-18] the authors studied only the
properties of the double-layer potentials for generalized biaxially symmetric elliptic equation

(2).

In this paper, for the equation (2), we construct the theory potential and apply it to
the solution of the Dirichlet problem in the domain bounded in the first quarter R3" :=
{(z,y) : 2 > 0, y > 0} of the zOy-plane.

2 Preliminaries

The Pochhammer symbol (p),, is defined by the equality

P =pp+1)..p+n—-1), n=1,2.. (po=1 (3)

The Gaussian hypergeometric function is defined inside the circle |z| < 1 as the sum of
the hypergeometric series [19, Ch.2, eq. 2.1(2)]

F(a,b;c;2) = Z (Z)'I(cgjzkzk, (4)

k=0

and for |z| > 1 is obtained by an analytic continuation of (4).
For the Gaussian hypergeometric function the summation formula [19, Ch.2, eq. 2.1(14)]

L) (c—a—10)
I'(c—a)l(c—1b)

F(a,b;c;1) = Re(c —a —b) >0, (5)

and Bolts’s formula [19, Ch.2, eq. 2.1(22)]

Flabic;z)=(1—2)"F (c—a,b;c;zil) (6)

are valid.
The Appel hypergeometric function of two variables has a form [19, Ch.5, eq. 5.7(7)]

Fy(a;by,bg;c1,c05,y) =

_ R { a, by, by; %y} _ f: (@min(b1)m(b2)n o n

) < 1’
c1, ez e (e, Y e+l

m,n=0

where the parameters a, by, bs, c1, co and variables x, y are arbitrary complex numbers and
C1, C2 7é 0, —1, —2,
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We give some elementary relations for F, necessary in this study:

8m+n

amma n ((I b17b2701762ax y)

_ (a)m+n<bl)m(bz)nF a+m-+mn,by +m,by + n; .
m!n!(c1)m(c2)n c1+m,ca+mn; Y]

b1 a+1,b0+1,0bo; by a-+1,by,00 +1;
—xF2{01+1’62; Ty + ng ci,co + 1; Y

(&1
= I (a + 1; b1, bo; 01,02;%@ - (a; b1, bo; 01702;90;9) )

FQ(CL, bl, b2, C1,C2; T, y) =

x y ) (9)

= (1 — — 2 —b — bo: .
( x y) 2<a7cl 1, C2 27617627x+y_17x+y_1

We note, that every point of the line z4+y = 1 is a logarithmic singularity of the function
F,.

Lemma 1 [20]. If x and y are positive and o« > 0, § > 0, then

r(2a)(28) ., _
F(a+ B, a,8;2a,206;x,y) ~ — % PIn(l—z—vy 10
! ) TN B+ B) Loy 1
asr+y—1—0.
Letci > by, co>byua+b+by=ci+co. If x>0,y >0, then
I'(c1)l(c)

F2 (CL, bla b27 C1,Co; T, y) ~ _F(a)r(bl)r(b2>xblicly@icz hl(l - — y) (11>

asr+y—1—0.
If 1 4+ co < a+ by + by, then
[(e)D () (a+bl+bz—cl—c2)x
I'(a)T'(b1)I(b2) (12)

X T b1—c1 b2 02(1_1, )Cl—l-cz a—by— b2

Fy (a,by, by c1,co5,y) ~

In addition, the fundamental solutions of the equation (2) are expressed in terms of the
Appell hypergeometric function Fj, one of which has the form [21]:

q (I, v é&, 77) :RT20¢+25—4$1—2ay1—2B£1—2an1—26 X

13
K Fy(2—a— Bl —a,l— B2 — 20,2 — 2801, 03): (13)
where
7,2 ,',.2
n=l-5 a=1-0 ==+ -’
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=@+’ +y—n ==+ @y+n’,
24720281 (1 — a)I'(1 — B)T(2 — a — B)

in T(2 — 2a)0(2 — 25)

The function ¢ (x,y; &, n) satisfies the equation by the variables (x,y), and by virtue of
the formula (10), it has a logarithmic singularity at » — 0 (z > 0, y > 0) and, therefore, the

function ¢ (x,y;&,n) is a fundamental solution to the equation (2).
The fundamental solution given by (13) possesses the following potentially useful property:

I

q (@960 |pmo = ¢ (2,456, 1)] =g = 0. (14)

3 Green’s formula
We consider the following identity:

2*9y?P B (v) — vE(u)] =
9, v Ou 9, v Ou (15)
— 28 7 2a v 2 20 7 s
e [m (uax &%’)} Ty [y ( ay vayﬂ

Integrating both sides of this identity in a domain D, which is located and bounded in
the quarter-plane = > 0, y > 0, and using the Ostrogradsky formula, we obtain

// 2a 25 v) —vE(u)] dedy =
ov Ju v ou
2a, 28
x%y [ (u——v—> dr + (u——v—) dy} ,
// dy dy ox ox
where v is a contour of D.

The Green’s formula (16) is derived under the following assumptions: (a) The functions
u(z,y) and v(x,y) , and their first-order derivatives, are continuous in the closed domain D;
(b) The second-order partial derivatives are continuous inside the domain D.

The integrals over D, consisting of E(u) and E(v), have a meaning. If E(u) and E(v) are
not continuous up to S, then they are improper integrals obtained as limits on any sequence
of domains D,, contained inside D when these domains D,, tend to D, so that any point in

this D,, will be inside of D, starting with some number n.
If v and v are solutions of equation (2), then we find from formula (16) that

/ (uALP [v] — vALP[u])ds = 0, (17)

where A% [ ] is the conormal derivative with respect to (z,y):

dy 0 dx 0
a,f3 2a, 28 -Jg - = =
AL =27y (ds Jr  ds 8y>.
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d x
Here d_y = cos(n, x), = cos(n,y), n is the outer normal to the curve ~.
s s

Assuming that v = 1 in (16) and replacing u by u?, we obtain

/D R Ta [(%)2 + (g—;‘ﬂ drdy = /y AP [u)ds, (18)

where u (z,y) is the solution of equation (2).
The special case of (17) when v = 1 reduces to the following form:

/Az’ﬂ [ulds = 0. (19)

~

We note from (19) that the integral of the conormal derivative of the solution of equation (2)
along the boundary v of the domain is equal to zero.

4 A double-layer potential

Let D be a domain bounded by two segments [0, a] of the axes x and y, and a curve I' with
the ends at the points A(a,0) and B(0, a) lying in the quarter-plane x > 0, y > 0.

Let the parametric equation of the curve I' be © = z(s), y = y(s), where s is the length
of the arc measured from the point A. With respect to the curve I', we will assume that:

(i) the functions z(s) and y(s) have the continuous derivatives z/(s) and %/(s) on the
segment [0, [], which do not vanish simultaneously; the derivatives z”(s) and 3" (s) satisfy the
Holder condition on [0, ], where [ is the length of the curve I’

(ii) in a neighborhoods of the points A and B on the curve I" the following conditions are
satisfied

dx

ds

d
< Cu), || < curto (20

respectively.
The coordinates of a variable point on the curve I' will be denoted by (£, 7).
We now consider the following integral:

!
wlz,y) = / 1 (s) ASP [q (6,0, y) d, (21)

where 4(s) € C (T) and ¢ (£, 7; 2, y) is a fundamental solution of the equation (2) defined by
(13). Here

ASP] ] = 2o {( ). %] T cos(,) - %] , (22)

is the conormal derivative with respect to (£, 7), v is outer normal to the curve T'.

Definition 1 . We call the integral (21) a double-layer potential with density y (s).
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In the study of the double layer potential (21), the conormal derivative of the fundamental
solution ¢ (§,m;x,y) plays an important role. Applying successively the formula for the
derivative of the Appel hypergeometric function (7) and the adjacent relation (8), taking
into account (22), we obtain (for details, see [18]):

a 1 C2a 1-2841-2a 1—
ASP g (& m; )] = —(2—04—5)’€7m$1 2oy 120 g1 =20 1726 o

x&{S_Q_Bﬂ_aﬂ_ﬁuﬁﬁ4Aywmﬁ]‘

2 — 2,2 — 20,
220 1-26 ¢ 5,2
_2<2_a_6>l€r62—aZ,8F2|:3_2a 9 _ 25 01,021
20228y 51— (23)
+2<2_a_6)ﬁr62—aQﬁF2|:2_2 3 _ 2B 0'1,0'2:|
at ey 2y 2—a—F,1-a,1-0;
+(1—2Q>HWFQ |: 2 20,2 — 26; 0'170'2:| dS -
a2yt 2—a—-p,1-a,1-0; dé(s)
— (= 20— I { 2 — 20,2 — 28 01"’2} ds
We introduce the notation:
!
wy(,y) E/ A (g (&m0, y)] ds,
0
Lemma 2 . The following formula holds true:
i(z,y) =1, (z,9) € D,
. 1
wl(x7y) = Z(l’,y) - 57 (1'73/) € F7 (24)
i(z,y), (z,y) ¢ DUT,
where
[EF(2—a—B,1—a;2— 2
Z(l’,y) (1 _ 2B> 1- 2a 1- Zﬁ/g ( a— 0, aquaiﬁa’ 0-10>d£+
[(z =€) + v]
(1= 200k 12a125/77F2—04—57 5'2—23;020)dn
2—a—pf ’
/ (y —n)?]
4xg 4yn
olg=—"—"-—>—, Ogp= ——F— .
Y@+ Y Py
Proof. Lemma 2 was proved in [18|.
Lemma 3 . If (x,y) € I, then
By rir2
AP [q 1 1). 25
| f”’xi‘/)]'—rgar?ﬁ(“mﬁ ) (25)

where By is a constant.
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Proof. The estimate (25) follows from the formula (23) and Lemma 1.

Lemma 4 . If a curve I' satisfies the conditions (i) and (ii), then the following inequality
holds true:

l
B
Aaaﬁ . d < 2
/0| Pla (& ma,y)]| S

whrer By 1s a constant.

Proof. Using the formula transformations (9), the conormal derivative A%* [q (&, n;x,v)],
defined by the formula (23), can be represented as

4
AsP g (& mym,y)) =D Pils;o,y),
i=0
where
92— _ 2
Py(s;a,y) = _H( 6_0‘20[_256)7’ x1—2ay1—2/3§1—2a771—25><
r

12
3—04—5,1—Oé,].—ﬁ;

XF2|:2—204,2—2ﬁ7 5'1,5'2:| [1117"2]7

Pi(s;w,y) = —2(2 — a = f)rX
x272ay1725€77 |:3—C¥—5,2—O{,1—5, —
—F2

riy 2% 3 — 20,2 —26; 7oz

X

} dn(s)

Py(s;x,y) =22 —a— f)rX
120228

X ——————— 1] ) |:
6—2a—2 _ _ .
% & 2 — 2,3 — 20,

Ps(s;z,y) = (1 — 2a)k X

x—Qayl—Qﬂgn 2_05_671 —Oé71 _67 - = dn(s)

Py(s;2,y) = —(1 = 26)kx
pt 2y ¢y T2—a—B1—a,1—4; _ _ ] dé(s)
e { 2 - 20,2 - 265; o 02} ds

4x 4
iy = (x+ €)%+ (y+n)? 512757 52=$, 0<o,+0, <1
T'12 712
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By virtue of (12), we obtain

I I, 1-2a,1-28¢,,.2
"y e
/ |PO(Sax7y)|d$ S 02/ 6—201—2ﬁ77 X
0 0 T12

2E a—1 n 81,2\ 1| 5 1
x| = = | g, (oo
12 12 T2 v r
! 1 !
< 025/ gonf 2 (ln —> ds < Cs / |COSl9|dS,
xyB J, ov r xoyb Jo oo

¥ is an angle between r and outer normal v to the curve T'.
From the theory of the logarithmic potential we have

l
9
/ leosdl 4 < ¢, (27)
0 T

Similarly we estimate P;(s;z,y) and Ps(s;x,y):

ds < (26)

< = .
IPsielas < 25 (=12 (28)
Now we will estimate Ps(s;x,y) and Py(s;x,y). It is easy to see that
Z—Ek Dk;
Py (s; ds < —— >0, k=3,4 29
/gk | k(saxay” §> Iayﬁ <8k ) ) )7 ( )

where D3 and D, are independent of (z,y).
€k l
Integrals / |P.(s;x,y)| ds and / |Pr(s;z,y)|ds are estimated similarly. Let us
0 !

—ek

estimate the first of them for & = 3. Using the estimate (11), taking into account the first of
the conditions (20), we get

&3 E1 &3 T EQ
Ps(s;z,y)|ds < —— In|—|ds < . 30
[ intsamias < 25 M D as< 2 (30)
Thus, the obtained estimates (26) - (30) imply the validity of the Lemma 4.
Theorem 1 . The following limit formulas hold true for a double-layer potential (21):
l
wi(s) = ~gu(s) + [ ulK (s, 00

0

(31)

where

K(s,t) = A37 [q ((t), n(t); 2(s), y(s))].

AP [w (x,y)]; and AYP [w (z,y)], are limiting values of the double-layer potential (21) at the
point t € I' from the inside and the outside, respectively.

Proof. Theorem 1 follows from the Lemmas 2 and 4.
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5 The simple-layer potential

In this section, we consider the following integral:

v(z,y) = /0 p(t)a(&,m; . y)dt, (32)

where the density p(t) € C (f) and ¢ (&, n;x,y) is given in (13). We call the integral (32) a
simple-layer potential with density p(t).

The simple-layer potential (32) is defined throughout the quarter-plane x > 0,y > 0
and is a continuous function when passing through the curve I'. Obviously, a simple-layer
potential is a regular solution of equation (2) in any domain lying in the quarter-plane
x >0,y > 0. It is easy to see that, as the point (x,y) tends to oo , a simple-layer potential
v (z,y) tends to 0. Indeed, we let the point (z,y) be on the quarter-circle given by Cg:
22 +y? = R?*(z > 0, y > 0). Then, by virtue of (13), we have

l
el < [ IOl < 75 (33)

where M is a constant.(R > Ry).

We take an arbitrary point N (z(x), y(s)) on the curve I and draw a normal at this point.
By considering on this normal any point M (z,y), not lying on the curve I', we find the
conormal derivative of the simple-layer potential (32):

AWW@WHZAP@&?M@W@MM@ (34)

where

0 0
aB] ] — 20,28 o - —_
AMPL ] = ™%y <cos(n,x) 5 + cos(n, y) 8y> :

The integral in (34) exists also in the case when the point M(x,y) coincides with the
point N, which we mentioned above.

Theorem 2 . The following limit formulas hold true for a simple-layer potential (32):

l
A el = 3o + [ K
(35)

where

K(t,s) = AxP [q (£(t), n(t); z(s),y(s))].

AP v (z,y)); and A2P [v (z,y)], are limiting values of the normal derivative of simple-layer
potential (32) at the point t € I' from the inside and the outside, respectively.



A. Hasanov, T.G. Ergashev 13

Proof. Theorem 2 is proved in the same way as theorem 1.
Making use of these formulas, the jump in the normal derivative of the simple-layer
potential follows immediately:

AP v (x,y)]; — A2 [v (2, )], = plz, y). (36)

For future researches on the subject of the present investigation, it will be useful to note
that when the point (z,y) tends to oo, the following inequality

M

x,y)” < Ri—2a-23 (37)

A28 o (

is valid, M is a constant (R > Ry).
In exactly the same way as in the derivation of (18), it is not difficult to show that Green’s
formulas are applicable to the simple-layer potential (32) as follows:

/ /D oy [(%)Z (%)2] ddy = /F AP [v], ds, (38)
///xzay% [(%)2 + (%)2] drdy = —/FUA%’B [0], ds. (39)

Hereinafter D' = R3" \ D is the unbounded domain at z > 0, y > 0.

6 Integral Equations For Denseness

Formulas (31) and (35) can be written as the following integral equations for densities:

l
() = A [ K. oua = 1) (40)

1
) = [ Klt.s)ptat = g(s), (41)
where

A=2, f(s) = —2wi(s), g(s) = —24%7 [v]_,

A=-2, f(s) =2w.(s), g(s) = 242" [v],.
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Equations (40) and (41) are mutually conjugated and, by Lemma 3, Fredholm theory is
applicable to them. We show that A = 2 is not an eigenvalue of the kernel K (s,t). This
assertion is equivalent to the fact that the homogeneous integral equation

I
p(s) — 2/0 K(t,s)p(t)dt =0, (42)

has no non-trivial solutions.

Let p(t) be a continuous non-trivial solution of the equation (42). The simple-layer
potential with density p (t) gives us a function o (x,y), which is a solution of the equation (2)
in the domains D and D’. By virtue of the equation (42), the limiting values of the normal
derivative of A%# [0], are zero. The formula (39) is applicable to the simple-layer potential
0(x,y), from which it follows that v(x,y) = const in domain D’. At infinity, a simple layer
potential is zero, and consequently ©(z,y) = 0 in D', and also on the curve I'. Applying now
(38), we find that o(z,y) = 0 is valid also inside the domain D. But then A%” [7], = 0, and
by virtue of formula (36) we obtain p(¢) = 0. Thus, clearly, the homogeneous equation (42)
has only the trivial solution; consequently, A = 2 is not an eigenvalue of the kernel K (s;t).

7 The Uniqueness of the Solution of Dirichlet Problem

We apply the obtained results of potential theory to the solving the boundary value problem
for the equation (2) in the domain D.

We consider the Dirichlet problem for equation (2) in the domain D defined in Section 4.
We assume that the curve I' satisfies conditions (i) and (ii) in Section 4.

Dirichlet problem. Find a regular solution u(x, y) of equation (2) in the domain D that
is continuous in the closed domain D and satisfies the following boundary conditions:

ulr = o(s) (0 < s < 1), (43)
lim u(z,y) = 7i(y), limu(e,y) = (@) (0 <ay < a), (44)

where ¢(s) is given continuous function in 0 < s < [; 71 (y) and 72 (x) are continuous functions
at 0 <z, y < a; 71(0) = 12(0), 7i(a) = (1), 72(a) = ¢(0).

Theorem 3 . If the Dirichlet problem has a reqular solution, then it is unique.

Proof. Consider the domain D, 5, 5, C D, bounded by the curve I';, parallel to the curve
I', and line segments x = §; > € and y = 9y > €.

Integrating both sides of the identity (15) along the domain D, and using the Gauss-
Ostrogradsky formula, we obtain

// 2%y* [uE(v) — vE(u)] dedy =
De 51,59

- / (U’Azﬁ[v] o UAz’B[u])dSE,&,(Sz?
S,

£,01,09
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where S, 5, 5, is a contour of the domain D, s, 5,.
One can easily check that the following equality holds:

[,

2> y?PuB(u dxdy—// 2*y*P [u2 + u] dody—
52

661 o

. 0
//551 } [ (x uux) + 2 8_y (y uuy)} dxdy.

Application of the Ostrogradsky formula to this equality after 6; — 0, 3 — 0 and ¢ = 0
yields

// 20920 Tu2 2+ ul| dedy = — /@(S)Ag’ﬁ[u]ds—f—
r
¢ 5,0 ¢ 450
+/ 20 -y%ﬁ(y)dw/ y
0 Oz |,_, 0 dy y=0

If we consider the homogeneous Dirichlet problem, then we find from (45):

// 2o 26 u +u§]dmdy:().

Hence, it follows that u(x,y) =0 in D.

561

- 27y () dz.

r=

8 Green’s Function Revisited

To solve this problem, we use the Green’s function method. First, we construct the Green’s
function for solving the Dirichlet problem for an equation in a domain which is bounded by
an arbitrary curve and two mutually perpendicular line segments. We then show that, in view
of the Green’s function, the solution of the Dirichlet problem in a quadrant takes a simpler
form as described below.

Definition 2 . We refer to G(z,y; xo,yo) as Green’s function of the Dirichlet problem, if it
satisfies following conditions:

1) The function G(z,y; xo, Yo) is a reqular solution of equation (2) in the domain D, expect
at the point (xo,yo), which is any fized point of D.

2) The function G(x,y; o, Yo) salisfies the boundary conditions given by

G(x,y;20,9%0) I = 0, G(x,9320,%0) |, = 0, G(2,4; %0, 40)],— = 0; (46)
3)The function G(x,y;xo,yo) can be represented as follows:
G(7,y; 70, Y0) = 4(,y; o, Yo) + v(¥,Y; To, Yo) (47)

where q (x,y; To,Yo) is a fundamental solution of the equation (2), defined in the domain D,
and the function v(x,y; xo,yo) s a reqular solution of the equation (2) in the domain D.



16 On potential theory for generalized bi-axially symmetric ...

The construction of the Green’s function G(z, y; o, o) reduces to finding its regular part
v(x,y; xo,yo) which, by virtue of (14), (46) and (47), must satisfy the following boundary
conditions:

U(xay;x(J?yO)‘F = _Q(may;{ﬂanO)lF? (48>

v(Z, Y320, Y0) |, = 0, v(x, Y5 %0, Y0)l,—o = 0.

We now look for the function v(x,y; g, yo) in the form of a double-layer potential given
by

!
U(I,y;wo,yo)Z/ 1 (t; w0, yo) A% q (€, m; 2, y))dt. (49)
0

By taking into account the equality (31) and the boundary condition (48), we obtain the
integral equation for the density u (¢; o, yo) as follows:

1 (55 70, 50) — 2 / K (s, )10 (¢ 20, 0) dt = 2q (2(s), y(5); 20, o) (50)

The right-hand side of (50) is a continuous function of s (the point (xg,yo) lies inside D). In
Section 6, it was proved that A = 2 is not an eigenvalue of the kernel K (s, t) and, consequently,
the Equation (50) is solvable and its continuous solution can be written in the following form:

!
1 (8320, 40) = 2q (2(s),y(s); To, o) + 4/0 R(s,t;2)q (&, m; w0, o) dt, (51)

where R(s,t;2) is the resolvent of kernel K (s,t); (x(s),y(s)) € I'. Thus, upon substituting
from (51) into (49), we obtain

l
v (2, y; To, Yo) = 2/ q (&, m; w0, y0) ALP[q (&, m; 2, y)dt+
0

52)
Lol (
[ Azlatém ) Rolt, 5 20 (2(6), y(s)smn, o) s,
o Jo
We now define the function g(z,y) as follows:
U(%?J?%ﬂo)» (w,y) € D>
) = 53
9(z.v) { —4(z, y; 20, %0), (2,y) € D", 53)

The function g(z,y) is a regular solution of equation (2) both inside the domain D and
inside D" and equal to zero at infinity. Because the point (g, yo) lies inside D, therefore, in
D', the function g(z,y) has derivatives of any order in all variables that are continuous up
to I'. We can consider g(x,y) in D’ as a solution of Equation (2) satisfying the boundary
conditions given by

AP [g(z,y)] | = —A3" [q(x(s), y(s); 2o, yo)] ,
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9(z,y)],—o = 0, 9(x7y)‘y=0 = 0.

We represent this solution in the form of a simple-layer potential as follows:

l
A%MZAPM%MM@me%(LMEU (54)

with an unknown density p(t; xg, yo)-
Using the formula (35), we obtain the following integral equation for the density

p(s; 0, Yo):

p(8; %0, Yo) — 2/0 K(t, 5)p(t; zo, yo)dt = 2457 [q((s), y(s); zo, yo)] - (55)

Equation (55) is conjugated with the equation (50). Its right-hand side is a continuous
function of s. Thus, clearly, the equation (55) has the following continuous solution:

p(s; w0, 90) = 2457 [a(x(s), y(s); 0, yo)] +

| y (56)
4 [ Rt 2) A a6 mian, )

0

The values of a simple-layer potential g(x,y) on the curve I are equal to —q(x, y; o, ¥o), that
is, just as the functions v(x,y; xg, yo) and on the axes = and y their partial derivatives with
respect to y and z multiplied, respectively, by ?? and 22® are equal to zero. Hence, by virtue
of the uniqueness theorem for the Dirichlet problem, it follows that the formula (54) for the
function ¢(z,y) defined by (53) holds throughout in the quarter-plane x > 0, y > 0, that is,

[
UW%%&@I/P@%MM@m%w%(%wGD (57)
0

Thus, the regular part v(z,y;xo,y0) of Green’s function is representable in the form of a
simple-layer potential.
Applying the formula (35) to (57), we obtain

l
2407 [0 (2(s), y(s); 20, yo)]; = p(s; T0, Yo) + 2/ K (t, s)p(t; zo, yo)dt,
0

But, according to (55), we have

2457 [q (2(s), y(s); 20, 90)]; = p(s;20, o) —2/0 K(t, s)p(t; zo, yo)dt.

Summing the last two equalities by term-by-term and taking equation (47) into account, we

find that

AP (G (x(s), y(s); 20, 50)] = p(s; o, o). (58)
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Consequently, formula (57) can be written in the following form:

l
v(z, y; o, Yo) =/ AP (G (€, 520, y0)] (&, m; 7, y)dt.
0

Multiplying both sides of (56) by ¢ (z(s),y(s);z,y), integrating by s over the curve I'
from 0 to [ and, by virtue of (51) and (49), we obtain

!
v(zo, Yo; 7, Y) =/ p(t; %0, 90)q (&, 15 2, y)dt.
0
Comparing this last equation with the formula (57), we have

(@, y; o, yo) = v(wo, Yo; T, Y).- (59)
if the points (z,y) and (xo,yo) are inside the domain D.

Lemma 5 . If points (x,y) and (xo,yo) are inside domain D, then Green’s function
G(z,y; xo,Y0) is symmetric about those points.

Proof. The proof of Lemma 5 follows from the representation (47) of Green’s function
and the equality (59).

For a quarter circle Dy bounded by two segments [0, a] of the axes « and y and a quarter
circle given by 2%+ 4* = a? (z > 0, y > 0), the Green’s function of the Dirichlet problem has
the following form

a 20428 o
Go(z, y; o, Yo) = q(x,y; To, Yo) — (}_z) q(x, y; Zo, %o), (60)
where
_ a? . a?
R =af + 5, To= 2 v0r Yo = g3l
We now show that the function given by
a 20420 3 B
vo(, y; o, Yo) = — <§> q(, y; To, o)
can be represented in the following form:
l
vo(, Y; 20, Yo) = —/ p(s; &, y)vo(x(s), y(s); To, yo)ds, (61)
0

where p(s;z,y) is a solution of equation (57).
Indeed, by letting an arbitrary point (xg, o) be inside the domain D, we consider the
function given by

l
Wz, 0, 90) = — / o(s: 2,y )vo(2(s), y(s); 20, yo)ds.
0
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As a function of (x,y), the function u (x, y; x¢, yo) satisfies equation (2), because this equation
is satisfied by the function p(s;x,y). Substituting the expression (56) for p(s;x,y), we obtain

UWM%WMZjAMsmmMWMM%MﬁmwM& (62)

where

l
Y(s; w0, 90) = 2v0 (2(s), y(5); To, Yo) +4/ R(s,t;2)vo (§,m; 70, yo) dt,
0

that is, ¥(s; xo, yo) is a solution of the integral equation

’W&%w®—2Alﬁ%ﬂ%&%wdﬁ=2%@@%MﬁWmm) (63)

Applying formula (31) to the double-layer potential (62), we obtain

ui (z(s), y(s); zo, Yo) = %@/J(S;xo,yo) - /Ol K (s, 1)1(t; 20, yo)dt,
whence, by virtue of (63) we get
ui ((s), y(s); w0, yo) = vo (2(s), y(s); 20, yo) , (x(s),y(s)) €T
It is easy to see that
u (z,y; 5130,?/0)‘1:0 =0, wo (1’7% xo,yo)|x:0 =0,

Uu ('Ia Y5 o, yO)‘y:O = 07 Vo ('T7 Y; Xo, yO)’yzo = 0.

Thus, clearly, the functions u (z,y; xo, yo) and vg (x,y; o, yo) satisfy the same equation
(2) and the same boundary conditions. Also, by virtue of the uniqueness of the solution of
the Dirichlet problem, the equality

u (z,y; To, Yo) = Vo (@, Y; To, Yo) -

is satisfied.
Now, subtracting the expression (60) from (47), we obtain

H (z,y; %0, 90) = G (x,y; 20, yo) — Go (2, Y; T0, Yo) =

= v (2, y; o, yo) — o (@, Y3 %o, yo)

or, by virtue of(57), (59), (60) and (61), we obtain

[
H(z,y; 0, y0) = / p(t; z,y)Go(&, m; xo, yo)dt. (64)
0

Solving the Dirichlet Problem for Equation (2)
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Theorem 4 . The following function

u(x07y0) :/ y26 (1'204 aG <x7y;x07y0))
0

1 (y)dy+

=0

ox
‘ IG (z,y; o, yo)
2c¢ 2c¢
+/0 ! <y dy

_ / ASB[G (€, 7 0, 30)) 0 (5)ds

0
=11 (o, y0) + I2(x0, yo) + I3(x0, Y0),

. To(x)dx— (65)

where p(s) is given continuous function in 0 < s < I; 7i(y) and To(x) are given continuous
functions in 0 < x, y < a with 71(0) = 7(0), 11(a) = @(I), 72(a) = ¢(0), is the solution of
the Dirichlet problem for equation (2) in the domain D.

Proof. Let (z9,70) be a point inside the domain D. Consider the domain D, s, 5, C D
bounded by the curve I'., which is parallel to the curve I', and the line segments x = §; > ¢
and y = dy > ¢.

We choose ¢, d; and d2 to be so small that the point (zo, ) is inside D, s, 5,. We cut out
from the domain D, g, 5, a circle of small radius p with center at the point (zo, o), and we
denote the remainder part of D, s, 5, by Dg’ s» in which the Green’s function G(z,y; xo, yo) is
a regular solution of equation (2).

Let u(x,y) be a regular solution of the equation (2) in the domain D that satisfies the
boundary conditions (43) and (44). Applying the formula (17), we obtain

o oG ou
a,fB . a,fB — 2a, 28 o
/Cp (GAYP[u] — uAL”[G]) ds /52 %y <u_8x G_8x>

o oG ou
+ o e (u— - G—)
/51 Y dy dy

x1 and y; are an abscissa and ordinate of the intersection points of the curve I'. with the
straight lines y = 0, and o = 4, respectively, and C, is a circumference of the cut circle.

Proceeding to the limit as p — 0 and then as ¢ — 0, §; — 0 and d; — 0, we obtain the
formula (65).

We show that the formula (65) gives a solution of the Holmgren problem.

It is easy to see that the first integral I (x¢,yo) in the formula (65) is a solution of the
equation (2) and is regular in the domain D, continuous in D.

We use the following notation:

a (9 x,Y;To,
VI (0, Yo) =/ y?? <x2a q( (?; 0 yo))
0 x

dy+

=0

do + / (GAP[u] — uA®P[G)) ds,

y=042

71(y)dy = (1 — 2a)k X
x=0

4yyo

20 1-28 ayF(B_a71_ﬁ72_2ﬁ7x3+(y+y0)2)

*To Yo 2 2|l-ar 2 2)1-8 mi(y)dy.
0 (25 + (v — y0)?]" " [x5 + (¥ + %0)?]

(66)

Here, 9(0, o) is a continuous function in D. In view of (66) and (52) and the symmetry of
the function v(x, y; xo, yo), the integral I1(zg,yo) can be represented in the following form:
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!
I (w0, y0) =9 (0, Yo) + 2/0 9 (&,m) ALP[q (&, m; w0, yo))di+
(67)

I gl
+4/0 /o R (t,5;2) 9 (x(s), y(s) A3 [ (€ m; w0, yo)]dtds.

The last two integrals in the formula (67) are double-layer potentials. Taking into account
the formula (31) and the integral equation for the resolvent R(s,t;2) from formula (67), we

obtain

]1 ('r()a yO)’F = 07

It is easy to see that

limu(z,y) =71 (yo) (0<yo < a).

xo—0

In fact, by virtue of (57) and the symmetry of the function v (x, y; o, yo), the above integral
can also be written in the following form:

I (0, 96) — / A ()q(0, y: 70, yo)dy-+
0
a [
+ / 1 (y)dy / (150, 9)a(€, 1 20, yo .
0 0

Following the work [7], it is easy to show that

a

lim [ 71(y)q(0,y; 20, y0)dy = 7 (y0) (0 <yo < a)

xro—0 0

and

a

l
lim ﬁ(y)dy/ p(t;0,9)q(&,m; w0, y0)dt =0 (0 < yo < a),
0

:Eo—)O 0

because
q(&,m; 20, y0) = 0

when 2o =0, 0 < gy < a.
By virtue of the last from the conditions (46), we have

limu(z,y) =0 (0 <z <a).

yo—)O
Similarly, we get

Iy (w0, y0)|p = 0; xlgglofz (z0,y0) =0, yloigloﬁ (w0, 40) = T2 (20) -
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We consider the third integral I3(zo, yo) in the formula (65), which, by virtue of (58) and
(56), can be written in the following form:

l l
Iy(o,50) = — / o(5)p(5: 70, yo)ds = — / 6(8) A% [q(&, 700, yo)] d,

where
0(t) = 20(t) + 4 /0 R(t,5:2)p(s)ds,

that is, the function 6(s) is a solution of the integral equation

0(s) — 2 /0 K (s,1)0(t)dt = 2(s). (68)

Because 6(s) is a continuous function, I3(xo, o) is a solution of Equation (2), regular in
the domain D, that is continuous in D, which, by virtue of (31) and (68), satisfies following
condition:

I3 (o, Yo)|p = ¢(5).

It is now easy to see that

lim I3 (29,%) =0 (0 <y < a), lim I3 (z0,%) =0 (0 <20 < a).
zo—0 yo—0

Theorem 4 is proved.
By using formulas (64) and (60), solution (65) of the Dirichlet problem given by (43) and
(44) for Equation (2) can be written in the following form:

u (%o, 0) =

@ 0
=/ Tl(y)y%-f“a—x[@o (2, y; 20, y0) + H (x,y; Zo, Yo)]
0

(69)

@ 0
+/ Tz(w):vg"‘-y%a—y[Go (2,520, y0) + H (,y; 70, y0)]
0

y=0
l
- / o(5) { A2 [Glo (€, 0, yo)] + ADP [H (€, m: 20, 0)] } ds,

where

[
H(ﬂc,y;xo,yo):/ po (t; 20, y0) Go (§,m; , y) dt.
0

We remark that solution (69) of the Dirichlet problem is more convenient for further
investigations.
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In the case of a quarter circle Dy, the function H (z,y;0,y0) = 0 and solution (69)
assumes a simpler form as follows:

u (2o, 4o) =

=(1- 20()1@:(:(1)*26“1/3725

[ ~ dyyo ~ dyyo
F (- F (-
’ ( X%) ( Y7
(Y)Y — — dy+
0

X{l—2a—2ﬂ Y14—2a 28
[~ < 4xx0> ~ < 4$$0)
2\ — 2\ Ty
B a X2 Y2 (70)
g [faine| ) BUE)
o X;l 2a—203 Y’z 2a—28
L 2 _ 2
22— o — Byrai-ty / P()E(5)n(5) g
0 12
P22 g2 g2
><F2(3—04—6,1—0471—5;2—204,2—25; 1r2 ) 27“2 )d‘97
12 12

where

F(x)=F2—-a—p,1-5;2-28;2), Fy(z)=F2—a—8,1-a;2—20a;2);

R*=ax5+ys, o> =&+ 7“2:(5—560)2+(77—y0)27

ri=(E+z0)’ +(m—10)", 15 =(E—20)"+ (+w0)°;

> yyo\2 | Y’
Xi=a5+(y—10), Y12:<G—T> +§»’U3;

9 xx9\2 2’
X3 = (z—0)" + y5, Y22=<a—7> +?y§.

The resulting explicit integral representations (69) and (70) play an important role in
the study of problems for equation of the mixed type (that is, elliptic-hyperbolic or elliptic-
parabolic types): they make it easy to derive the basic functional relationship between the
traces of the sought solution and of its derivative on the line of degeneration from the elliptic
part of the mixed domain.
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MAXIMAL REGULARITY ESTIMATE FOR A DIFFERENTIAL
EQUATION WITH OSCILLATING COEFFICIENTS

The paper considers a second-order differential equation with unbounded coefficients. Sufficient
summability conditions with the weight of the solution and its derivatives up to second order are
obtained. The equation studied is singular as it is defined in an infinite domain, and its coeflicients
may be unbounded. Its main feature is the rapid growth of the coefficient at of the first derivative
of the solution required, therefore the well-developed theory of the Sturm-Liouville equations is not
applicable. The equation studied and its multidimensional generalizations arise in the modeling
of the Brownian motion of particles, in problems of biology and financial mathematics. Their
well-known representatives are the Ornstein-Uhlenbeck and Fokker-Planck-Kolmogorov equations,
which have been actively studied since the first half of the twentieth century. On the other
hand, projection methods are well known in applications (e.g., Fourier or Laplace transforms),
which reduce partial differential equations with coefficients depending on one variable to ordinary
differential equations. Therefore, the present study is important for partial derivative equations
with unbounded coefficients. In contrast to previous works, the senior and intermediate coefficients
of the equation studied can be strongly fluctuating. In the proof of the main theorems, the authors
use their earlier result on the correct solvability of the mentioned equation.

Key words: second order differential equation, linear differential equation, differential equation
in an unbounded domain, maximal regularity, oscillating coefficients.

A.H. Ecbaes*, K.H. Ocnanos
JI.H. T'ymuiés arbiagarsr Eypasust yiarTeik, yauepcureri, Kazakcran, Hyp-Cynras K.
*e-mail: adilet.e@gmail.com
Tepb6eameni koadpdummenTti 6ip AuddepeHINAIABIK TeHJAey YIITiH MaKCUMAaJIIbI
peryJisipJjbIK, 0aracel

2Kymbicra kosdduimeHTTepl IIeHe/IMereH eKinii perTi nuddepeHImaliiblK TeHIey KapacThIPbI-
sgraf. [lenriM MeH OHBIH €KiHIT peTKe JIeHIHT] TYBIHABLIAPBIHBIH, CAJIMAKIIEH KOCHIHIBLIAHY Bl YITiH
JKETKUTIKTI mapTrap aJjblHAAbl. 3€PTTEJIeH TEHJEY CUHTYJISPJIbI, OfTKeHI OJI IMIEKCi3 00JIbICcTa
Gepinren, aj oubiH, Koaddurmentrepi meHesmeren 6osybl MyMKiH. OHBIH OACTBI epekImesiri -
mernriMAig, OGipiHmT peTTi TYBIHABICH AJIABIHIATBI KOI(MMOUIMEHTTIH KbIJIJaM OCYiHIe KaTbIp,
conbry, ocepinen ITypm-JIuyBuias TeHaey/IepiHiH, JaMbIFaH TEOPUSACHIH KOJJIAHY MYMKIH eMec.
SeprTesireH TeHJEY MEeH OHBIH KOIT ©JIIIEeM/ Il XKaJIIbLIayIapbl OOJIIIEKTeP IiH, OPOYHIbIK, KO3Fa Ibl-
CBIH MOJIEJIbIEY Ke3iHIe, OMOJIornsi KOHE KAPXKBLIBIK, MATeMaTUKa MOCeJIeJIePiHIe TYBIHIANIb.
Osapapis, Genrisi exiimepi - XX racbIpiblH, OIpiHIN KapThICHIHAH OacTan OeJiceH i Type
zeprrein Keje xarkaH OpaHirreitn-Yienbek xkone ®okkep-Iliank-Kosimoropos tenzeysepi.
Exinmi »KafbliHaH, TPOEKIUSIBIK, d7icTepai Kosianbin (Mbicasbl, Pypre Hemece Jlaniac Typies-
nipysepin) koaddunuentrepi 6ip alfHbiMaibFa Toye il Aepbec TYLIHABLIAPIATHL TEHJEYIePI
KapanaibiM auddepeHnuaaabK, TeHaeyaepre aabii Keayre 6osaapl. COHIBIKTAH, OYJI 3ePTTEYIiH,
koahdurmenTTepi MeHeIMereH repbec TybIHIbIIAPAATbl TEHEYIep YIIiH MaHbI3bl Oap. 3epTresin
OTBIPFaH TEHJEYIIH OCBIFaH JeiiH KapacThIPbLIFAHIAPIAAH afbIPMAIIBIIBIEGl - OHBIH 2KOFapIbI
JKOHE apaJiiblK Ko3dddunueHTTepi KbLIgaMm Tepbesryi myMmkin. Herisri TeopeMasapisl fomesnaey
Ke3iHJIe aBTOpJIap ©3JEPiHiH OChI TEHJECY/IIH, JYPBIC IIENIyiHe KATBICTHI AJIJbIHFbI HOTUKEJIePiH
naiiaJlaHraH.

Tyiitin ce3aep: exinmii perti AuddepeHINATIBIK, TEHIEY, ChI3BIKTH 1uddepeHITNAIIbIK TEHIEY,
IIeHeIMEereH O0JIBICTArEl UM PEPEHITHAIBIK, TEHIALY, MAKCUMAJIIbI PEryIsSpIbIK, TepoeaMert Ko-
apburmenTrep.

© 2021 Al-Farabi Kazakh National University
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Espasuiickuit Hanmonasbubiii yausepcurer umenu JI.H. I'ymunésa, Kaszaxcran, r. Hyp-Cynran
*e-mail: adilet.e@gmail.com
O1eHKa MaKCUMaJIbHOII perysjsipHOCTu AJisd AnddepeHInaJIbHOr0 yPaBHEHUSI C
KoJieOmronmMucs KodduimeHTaMmu

B pabore paccmarpuBaerca muddepeHnmaabHOe ypaBHEHNE BTOPOTO TMOPSAIKA C HEOTPAHMIECH-
HbIME KO3 durmentamu. [loyueHs! T0CTATOYHBIE YCIOBHUS CYMMHUPYEMOCTH C BECOM PEIIeHUs U
€ro IPOU3BOJIHBIX BILJIOTH JIO BTOPOrO IOpsiiKa. V3yuaemMoe ypaBHEHHE SIBJISIETCS CUHIYJISPHBIM,
TaK KaK OHO 3aJ[aHO B OECKOHEYHOI obJsiacTh, a ero Ko3(M@UIMEHTH MOTYT OBITH HE OrpaHu-
9eHHbIMA. [JIaBHOI ero OCOOEHHOCTBIO SBJISIETCH OBICTPBI poCT Koddduimenra npu mepBoit
[TPOU3BOJIHON MUCKOMOTO DEIIeHNsI, M3-3a Yero He MPUMEHNMa XOPOIIO Pa3BUTAas TEOPHUsT yPABHEHUI
MIrypma-JInysumasa. Uccnemsyemoe ypaBHeHHWE W €ro MHOTOMEpPHBIE O0OOOIEHNsT BO3HUKAIOT B
MOJIEJINPOBAHNKM OPOYHOBCKOI'O JIBUXKEHHUsI YACTHIl, B 3ajadax Ouojiorud u (PUHAHCOBON Ma-
TeMaTuKu. VX WM3BECTHBIMM IIPEJICTABUTENISIMU SIBJISIIOTCsT ypaBHeruss OpHINTeliHA- YIeHOeKa U
Doxrxkepa-Ilranka —Koamvoroposa, KoTopble akKTHBHO HU3YJAKOTCs HAYWHASI C MEPBOHM ITOJIOBUHBI
aaganaroro Beka. C  JIpyroifl CTOPOHBI, B MPUJIOXKEHUSX XOPOIINO U3BECTHBI MTPOEKITHOHHBIE
Meropl (Hanpumep, upeobpazosanusg Dypbe miam Jlamiaca), KOTOpble CBOAAT yDaBHEHUS B
YaCTHBIX MPOU3BOJHBIX C KOIDPUIMEHTAMU, 3ABUCAIIMMU OT OJIHON TepeMeHHOH, K OOBIKHO-
BeHHBIM JudHepeHnraIbHbIM ypaBHeHusiM. [l03TOMy HacTosiiee WCCIeJOBAHUE BAYXKHO JIJIst
YPaBHEHUII B YACTHBIX IPOU3BOIHBIX C HEODAHMYEeHHbIMEH Kodddurmentamu. B ommuame ot
NPEIbIIYIMUX PaboT, CTapmii W TPOMEXKYTOUHBIN KOIMDDUIMEHTHI WCCIEIYEMOTO ypaBHE-
HUsI MOTYT OBITh CHJIBHO KoJeOsomuMucs. 1Ipu Joka3aresbcTBe OCHOBHBIX TEODEM, ABTOPBI
MOJIB3YIOTCsT 60JIee PAHHUM UX PE3YIBTATOM O KOPPEKTHOW Pa3peninMOCTy YKA3aHHOTO YPABHEHUSI.

Kurouessbie ciioBa: judepeHimalibHOe ypaBHEHNE BTOPOIO MOPsiiKa, JinHeiiHoe nuddepeHim-
aJIbHOE ypaBHeHUe, nudPepPeHIuaIbHOe YPaBHEHNE B HEOTPAHUYIEHHOU 00JIACTH, MAKCHMAJIbHAS
PeryJIsipHOCTD, KojebJronuecs: Ko3hhUIMeHTH.

1 Introduction

In this paper, we consider the smoothness properties of the solution of a second-order singular
differential equation

Toy = —p(x) (p(x)y) +r(z)y + s(@)y = f(x), (1)

where x € R = (—o00,+00), p is a positive and twice continuously differentiable function, r
is a continuously differentiable function, and s is a continuous function, f € Ly = Lo(R).

By Ty we denote the operator mapping from the set of twice continuously differentiable
and finite functions C’éz) (R) to Ly by the following formula

Toy = —p(z) (p(2)y) +r(z)y + s(2)y.

We denote by T the closure Tj in Ly space. The function y € D(T') such that Ty = f is said
to be solution of the equation ([1)).
The solution y € Ly of the equation is said to be maximally regular if the following
inequality holds
I=p(oy") lz + [Iry/lly + llsylly < C U fIly,

where C' > 0 does not depend on y, || - ||2 is a norm of L.
Some conditions for existence, uniqueness and maximal regularity of a solution of the
equation (1)) were obtained in our work [1]. There the relevance in theory and practical
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issues of studying this equation in the case when its coefficients can be unbounded functions
were also covered, and the case of tending to zero function p(z) in the leading term of the
equation was also studied. Naturally, the correctness of the equation assumes that there
are some relations between its coefficients. The equation is reduced to the well-known
Sturm-Liouville equation if the intermediate coefficient r(x) is absent or grows slowly, so
that r(m)g—g as operator is controlled by the sum of leading and free terms in the left part.
When these conditions are not met, the equation is investigated poorly.

The investigated equation and its multidimensional generalizations arise in Brownian
particle motion modeling, in biology and financial mathematics problems [2-6]. Their well-
known representatives are the Ornstein-Ulenbeck and Fokker-Planck-Kolmogorov equations,
which have been actively studied since the first half of the twentieth century.

In this paper, unlike [1] as well as [7], we will assume that the coefficients p(z) and
r(z) do not follow the weak fluctuation conditions. Such conditions usually appear when
evaluating the norm of the higher derivative of a solution to the second-order singular
differential equation. In [8] there is an example of a Sturm-Liouville equation with an
oscillating coefficient whose solution is not maximally regular.

The main result of the work is Theorem [2] We have proved the validity of the maximal
regularity estimate of a solution of the equation (|1)) when the mentioned coefficients p and r
can fluctuate rapidly.

2 Material and Methods

We rely on Lemma 1 obtained in [1], where the theorem of the existence and uniqueness of
the solution of the equation is proved and a uniform estimate for the norm of the solution
and its first derivative was obtained.

An auxiliary binomial degenerate differential operator associated with the equation (|1)
was investigated. Applying the method of local estimates developed in the work of
M. Otelbaev 9], we obtained a representation of the resolvent of its certain shift. Using this
representation we have proved the separability of the above binomial differential operator.
Then we applied the closed operator perturbation theorem in [10]. Here, the partition of the
real axis chosen by us depends on the dominant intermediate coefficient, which allowed us to
consider the case of strongly fluctuating coefficients.

3 Auxiliary statements
Consider the equation

loy = —p(py) +ry = F(x), (2)
Let D(ly) = C’éz) (R), and [ is a closure of the operator Iy by the norm of L,. A function

y € D(1) such that ly = f is said to be a solution of the equation (2)). Let u(z) and v(z) # 0
are some real continuous functions. We denote
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T % +o0 % 0 2 T %
Yup = Max | sup /uQ(t)dt /UQ(Zf)de , SuUp /u2(t)dt /U2(t)dt
>0 7<0
0 T T 0o

In |1, Teopema 3.1| the following statement is proved.
Lemma 1 Let p(z) > 0 is a twice continuously differentiable function, and r(z) > 1 is a
continuously differentiable function. Let
r

E Z 17 Y1,/7 < +-00, (3>

and there also exists a € R such that

a

ili}g p(x)exp —/;;%dt < +00. (4)

T

Then for any F € Lo the equation has a unique solution y, and for y the following
estimate holds

[vry' ||, + llyll, < C -
When the condition holds, the following inequality was also proved in [1]:

Iy, < H%zyu 5)
where y € D(1).

4 Main results

We use the following theorem in the proof of the main result which is Theorem [2 Meanwhile
Theorem [I] is of independent interest.

Theorem 1 Let 0 < p(z) < +00 is a twice continuously differentiable function and r(z) > 1
18 a continuously differentiable function for which the conditions and of Lemma are
satisfied. Suppose, moreover

px) r(z)

sup ——= < 400, sup ——= < 400, (6)

|qu7|<% P(TZ) \mfn\g% T’(n)

where k(n) = 4 is continuous and lim k(n) = +oo. Then the following estimate holds for

[n|—-+o0

the solution y of the equation (2)):

||_P (py/)/Hz + ”TyIHQ + Hsz <Gy Hf”z (7)
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Proof. By virtue of lemma 2.1 [9] and the condition (6] there is a cover of {A; J“f of the

set R (i. e. U A; = R) such that each interval A; = (a;,b;), where

j=1
b —a; < k<brT%>

- L —
J J 270 (bj_aj>7
2

can intersect with the others no more than ¢ times. There exists also a set of functions {;};
such that

OO

—+00
d i) =1, 9 € CR(A)).

Let pj(x), rj(x) and F;(z)
and F'(x), respectively, and A

(J

= 1,2,...) are restrictions on A; of the functions p(z), r(z)
>0 Consmler the following problem

lojay = —p;i(@) (ps()y) + [rj(x) + Ay’ = Fj(x), (8)

y(a;) = y(b;) = 0. (9)

We define the solution to the problem 9 @ as the function y(x), for which there exists
the sequence {yx(x)}; 25 from the set C’( ) of twice continuously differentiable and finite
in A; functions such that ||y, — y||L2(AJ) —> 0 and llojauk — fillaa,) — 0 as b — +o0o. We
denote by [;, (j = 1,2,...) the closure of the operator Iy ; with D(lo ) = C’éQ)(Aj) in the
space Ly(Aj). The functlon y € Ly(A;) is said to be the solution of the problem (8)), (9) if
y € D(l;,) and lj,y = Fj. It follows from the general theory of differential equations that
for any Fj € Ly(A;) the solution to the problem (§)), (9) exists.

Let us introduce the following notation: z =y’ (y € D(lo ), Lojaz = —pi(pjz) + (r; +
Nz, || - ll2a; = |- llzaa,)- Let 2 € D(Lgj,x). Integrating by parts we obtain

2
/ZLo,j,AZdZU = /Z(—Pj(sz)/‘|‘ (rj +A)z)dz = /(rj +A)2%dr = H V7Tt AZHzA

A A A

On the other hand, according to Holder’s inequality

2
/ZLOJ')\ZdI < / dz /
A;

Aj Aj
1
= H ———="Lojn\z

[N

1

(T’j + /\)_%Lo,j)\z ] + /\ 2z

aj‘ =

(11)

H\/rj + Az
2.A
2.7,
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From and it follows that

1
\/r-—l—/\zH <lle———Lonzll . 2 eD(Losy). 12
H J 2., = \/m 0.4, - ( 0,5 ) ( )
1=
Since z = 3/, we have
1 .
i+ Ay <|l——lyl . yecP)). 13
VR N o U o (8) (12)

]

Further, according to the well-known Friedrichs’s inequality

Iyllz, < C||v/r5 + 3

By virtue of and

VT 20 oa, + 9lloa, < (C+ D) Ejllan,,  yeCP(A)
According to ((12))

.y ecPay). (14)

2.,

<

1
Loz .
a S Tl ra e

TEA;

| v/

Hence, taking into account of the condition @ and the choice of A;, we have

1075 + Nl < sup v/ # 2|V e <
Y xGA] Q,A]
g ¢ inf \/rj + A H\/TJ + Az ‘ g C HLO,]’,)\ZH2A_ y R S D(LO’]”/\).
IEAJ' Q,Aj =7
Then
H_Pj@jz)/Hz,Aj + [|(rj + )\>Z||27Aj <Oy |‘L07j7AZ||27Aj , 2 € D(Lo,n)- (15)

Due to u we have
2
1505 Y s, + 105+ N s, + lyllas, < Ci llosallos, .y € G2, (16)

Since the [; 5 is closed, the inequality holds for all y € D(l; »), in particular, for a solution

of the problem (§)), (9).
Let L; is an operator from the set D(L;\) = {z € La(A;) : Jy € D(l;\),z = ¢/} in
Ly(Aj) by the following formula

Lixz = =pi(@)(pj(2)2) + (rj(z) + X)z.

Since R(L;,) = R(l;5) = L2(4;), and for all z € D(L;,) the inequality holds, the
operator L, is bounded invertible. We define the following operators for f € Lo:

—+00 —+o00

Byf ==Y PA@)g@)Liieif. M= > ei(@)Liieif.

j=—o0 j=—o0
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For any point x € R the sums in the right-hand sides are consisted of no more that £ + 1
terms, thus By and M, are well-defined.

Let Lyz = —p(x)(p(x)z) + (r(x) + A)z for any z = ¢/, where y € D(l). Consider the
operator LyM),. The operators Ly and L;  are same in the interval A;, therefore taking into
account the properties of ¢; (j € Z), we get

“+o0 —+o0
LAMyf =Y Lin(eiLiaeif) = Y (eilinLiaeif — p°¢iLi eif) =(E + B f,
j=—oo j=—o00
1. €.
LM, = E + B, (17)

Let’s estimate the norm of the operator B,.

400 2
||Bxf||§=/ Zp% aeif| dr <
oo 1d=—00
+00 2
<3 [Iramiestas 3 [|3 rariar] as
j_—ooA k=— OOA, j=—00

Due to ((12)

Cy sup p*(x)

P o flaa €~ o f
inAf (ri(z) + \) 285 S 14N "
[SYAVS

|0° oLy ity a, <

therefore, using the properties of the functions ¢ (z) (k € Z), we have

+oo CQ +o0
/W%L onfde < 25 T /soklﬂ dx =

k=—oox, TA

H“Z/souff T /(Zwk)wx—(

o) e

Thus,

IByfz < Cal€ + 1>(1H) 17113, f €L

Hence || B,|| — 0 as A\ — 400, so there exists Ao > 0 such that || B,|| < 5 for all A > A. It
follows from Lemma [1|that the operator L;l, the inverse of L), exists and is bounded in Ls.
From , by virtue of the well-known Banach theorem, it follows that

Li'=M(E+ By |[(E+B)™ <2, A= . (18)
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Let us now prove the estimate . According to and , for z € D(L,), we have

o+ M)2l2 = ||+ ML < 210100+ N Maf])2 <

+o0 +00
— 2 _ 9
<Cr )0 [0+ NesLineifll,a, <Cr Y sup (15 + ) |l 5, <
Jj=—00 j=—00 TE2I
+o0o 1 )
< C A\) —— , <C <C 2
< 73-2 sup (r+A) inf (r+ ) 13 fll2,a, g ol £ 12
=T xTe 3 =—00

So
[(r+M)zlly < Coll I, -

Hence, assuming A = 0 and z = 3/, we obtain an estimate . The theorem is proved.
Theorem 2 Let the functions p and r satisfy the conditions of Theorem and s 15 a

continuous function such that s, < 4oo. Then for any f € Lo the equation has a
unique solution y, and for y the following estimate holds

1= oy )|, + 73/ lly + 1+ [sDyllz < ClI£l2, (19)

Proof. Let z = at in (1)), where a > 0. Let us introduce the following notations

§) = ylat), pt) = plat), F(t) = r(at), 5(t) = sat), F(t) = a " Flat).
Then the equation is transformed to the following form

—p(py) + 7+ a "5 = f. (20)
Let us denote by [, the closure in Ly of the operator —p(py’) + 7y, defined in C’(()Q) (R). The
function 7(t) € D(l,) is said to be a solution of the equation (20)) if it satisfies the equality
l,g = [. Clearly, if the function y(z) is a solution to the equation (I]), then §(¢) is a solution

to the equation and vice versa.
It is easy to show that p and 7 satisfy the conditions of Theorem [I} so

=7 ) |y + 1175 1|y + 113lly < Cuu lally, V5 € D(la).

According to lemma 2.1 1] and the last inequality, we have
la™"57]l, < 207 e 1771l < 207 9, G [l -

Let us choose a = 4v,,C),, then ||a™57[, < 1 ||l.g]l,. According to the theorem 1.16 in [10]

(chapter 4) we get that the operator [, +a~'5E (where F is an identity operator) is reversible

and its range coincides with L. This means that the equation (20 is uniquely solvable for

any f € Lo, then the equation also has a unique solution y(z) = g(a™'x) for any f € Ly.
Applying Lemma 2.1 [1], we obtain the estimate

Isylly < 2750 79/l

from which, taking into account , it follows . The inequality implies uniqueness
of the solution of the equation . The theorem is proved.
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Example 1 Consider the following equation
— (14 5sin®€e”) [(1 + 5sin®e”) y’]’+ (4+2°+e*sin® e”)y + (2 +e"sine®)y = f(z). (21)

It is easy to check that for k(z) = 4 + 2? the coefficients of the equation satisfy the
conditions of Theorem |2} so for any f € Ly the equation has a unique solution y and for
y the following estimate holds

H— (14 5sin®e”) [(1+ 5sin®e”) y’]/

et esint ey, +
+ H(l + 2%+ €” sine“)yH2 < Cfflly-

5 Conclusion

A singular second-order differential equation with an unbounded variable coefficient at the
first derivative of the unknown function is investigated in the paper. Only positiveness is
required from the leading coefficient, i.e. the equation can degenerate near of infinity. In
addition, we have studied the case of rapidly fluctuating coefficients. We have obtained
conditions for the summability with weight of a strong solution of the considered equation
and its derivatives up to the second order. The obtained result theoretically extends the class
of coercive solvable differential equations of the second order. They can find application in
stochastic analysis, modeling problems in biology and financial mathematics.
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GREEN’S FUNCTIONS AND CORRECT RESTRICTIONS OF THE
POLYHARMONIC OPERATOR

In this paper, for completeness of presentation, we give explicitly the Green’s functions for the
classical problems — Dirichlet, Neumann, and Robin for the Poisson equation in a multidimensional
unit ball. There are various ways of constructing the Green’s function of the Dirichlet problem
for the Poisson equation. For many types of areas, it is built explicitly. Recently, there has been
renewed interest in the explicit construction of Green’s functions for classical problems. The
Green’s function of the Dirichlet problem for a polyharmonic equation in a multidimensional
ball is constructed in an explicit form, and for the Neumann problem the construction of the
Green’s function remains an open problem. The paper gives a constructive way of constructing
the Green’s function of Dirichlet problems for a polyharmonic equation in a multidimensional
ball. Finding general well-posed boundary value problems for differential equations is always
an urgent problem. In this paper, we briefly outline the theory of restriction and extension of
operators and describe well-posed boundary value problems for a polyharmonic operator.

Key words: Poisson equation, polyharmonic equations, Dirichlet problem, Neumann problem,
Roben problem, correct restrictions of the operator.
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aliKpIH Typie KemeJmemzai Oipiik mapma Ilyaccon temzeyi ymin kepcerinren. Ilyaccon Tenzmeyi
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B nmanHOl pabore npuBesieHbl B siBHOM Bujie (yHKiuil I'puna Kiaccudeckux 3ajad — Jlupuxie,
Heiimana u Pobena nst ypasuenusi [lyaccona B MHOrOMepHOM enuHudHOM Imape. CyInecTByroT
pasnuaHble crocoObl mocTpoenns dyHknun ['puna 3amadn lupuxie st ypaBaenusi [lyaccona.
st MHOTHX BHIOB 00JIACTEll OHA IIOCTPOEHA B ABHOM Buje. B mocsienee BpeMst BO30OHOBUIICS
WHTEpeC K MOCTPOEHUIO B ABHOM Bue yHKImit ['puna kmaccuaecknx 3agad. Oywakius ['puna
3asaqn Jupuxiie jiisi oJIMrapMOHUYIECKOT0 YPABHEHUsSI B MHOTOMEPHOM IIIape IIOCTPOeHa B SIBHOM
BHjie, a JuUisi 3ajiadn Helimana mocrpoenue dyHKnum ['puHa ocraercss OTKPBITON 3ajadeil. B
paboTe j1aH KOHCTPYKTUBHBII criocod mocrpoenus dyuknun ['puna 3ama4 Jupuxie 1jist moaurap-
MOHMYECKOTO YpaBHEHUsI B MHOTOMEPHOM Tirape. Haxoxkienne o0Immux KOPPEKTHBIX KPAEBBIX 33181
Hst auddepeHImaIbHbIX YPABHEHWI BCerja sSB/IsSeTCa aKTyaJabHOH 3ajatdeil. B mamnoit pabore
KPATKO U3JIOXKEHA TEOPHs Cy>KEHUsI ¥ PACIIMPEHUSI OIIEPATOPOB U OIMUCAHBI KOPPEKTHLIE KPAEBbIE
381491 T8l TIOJTMTAPMOHIYECKOTO OIIepaTopa.

KimroueBbie ciioBa: ypasHenue [lyaccoma, mosimrapMoHHYecKue ypaBHeHUs , 3ajada Jlupuxiie,
3agada Heiimana, 3amada Pobena, KOppeKTHBIE CYyKeHUsT OTiepaTopa.

Introduction

The need to study boundary value problems for elliptic equations is dictated by
numerous practical applications in the theoretical study of the processes of hydrodynamics,
electrostatics, mechanics, thermal conductivity, elasticity theory, and quantum physics [1-4].
The distributions of the potential of the electrostatic field are described using the Poisson
equation. When studying the vibrations of thin plates of small deflections, biharmonic
equations arise.

This work is devoted to the construction of the Green’s function of the Dirichlet problem
for a polyharmonic equation in a multidimensional ball and to the description of well-posed
boundary value problems for polyharmonic operators.

1 Materials and methods

The subject of this research is a constructive way of constructing the Green’s function of
boundary value problems for a polyharmonic equation in a ball of arbitrary dimension.

The research method is the representation of polyharmonic functions through the sum of
harmonic functions with certain weights. When constructing explicitly the Green’s function
of the Dirichlet problem for a polyharmonic equation in a ball, the method of special
expansion of the fundamental solutions of the polyharmonic equation and the method of
reflection are essentially used. When describing new well-posed boundary value problems
for an inhomogeneous polyharmonic equation in a ball, the method of restricting abstract
operators was applied.

There are various ways to construct the Green Function of the Dirichlet problem for
the Poisson equation. For many types of domains, it is constructed explicitly. And for the
Neumann problem in multidimensional domains, the construction of the Green function is
an open problem. For the ball, the Green function of the internal and external Neumann
problem is constructed explicitly only for the two-dimensional and three-dimensional cases.
In the general case, for a multidimensional ball, the explicit form of the Green function of
the Neumann and Robin problems for the Poisson equation is constructed recently in [5,6].
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2 Results and discussion

Note that recently there has been renewed interest in the explicit construction of Green’s
functions for classical problems. In [7-9], the Green function of the Dirichlet problem for a
polyharmonic equation in a multidimensional ball is constructed explicitly. In [10], the Green
harmonic functions of the Dirichlet, Neumann, and Robin problems are used to construct
the Green functions of the biharmonic Dirichlet, Neumann, and Robin problems in a two-
dimensional circle. Similar results in the class of inhomogeneous biharmonic and triharmonic
functions in the sector were obtained in [11-13|. Note also that the construction of explicit
Green functions of the Robin problem in a circle, when the parameter in the boundary
condition is equal to one, is devoted to the work [14,15]. The results of these studies are based
on the classical theory of integral representations for analytic, harmonic, and polyharmonic
functions on the plane.

Finding general correct boundary value problems for differential equations is always an
urgent problem. The abstract theory of operator contraction and expansion originates from
the work of John von Neumann [16], in which a method for constructing self-adjoint extensions
of a symmetric operator was described and a theory of extension of symmetric operators with
finite defect indices was developed in detail. Many problems for partial differential equations
lead to operators with infinite defect indices.

In [17,18] considered extensions of the minimal operator, rejecting its symmetry, and
described the areas of definition of the extension that have certain solvability properties,
here are investigated to general boundary value problems for general second-order elliptic
differential equations. In [19] found a correct problem that is not contained among the
problems described [18]. This type of problem for ordinary differential equations was studied
in [20].

In the early 80s of the last century, M. Otelbaev and his students [21-23] constructed
an abstract theory that allows us to describe all correct contractions of a certain maximum
operator and separately - all correct extensions of a certain minimum operator, independently
of each other, in terms of the inverse operator. This theory was extended to the case of Banach
spaces [24].

In [25] certain estimates are obtained for the deviation upon domain perturbation of
singular number of correct restrictions of elliptic differential operators.

Thus, this paper is devoted to the construction of the Green function of the classical
Dirichlet, Neumann and Robin problems for the Poisson equation in a multidimensional ball, a
constructive way to construct the Green function of the Dirichlet problem for a polyharmonic
equation in a multidimensional ball, and the description of correct boundary value problems
for polyharmonic operators.

3 Green’s function of the Dirichlet, Neumann, and Robin problem for the Poisson
equation in a multidimensional unit ball

Let 2 CR™, n > 2 be a bounded region with a smooth boundary 0f2. Consider in domain {2
following the Dirichlet problem for the Poisson equation

—Au(z) = f(z), v € Q, u(z) = p(z), v € . (1)
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The classical solution u(x) € C%(Q) N C(Q) of the Dirichlet problem (1) exists, is unique,
and is represented by the Green’s function Gp(z,y) in the following form [1]

we) = [ Gotwnitway— [ 2D oy, ©)

0
where ——— the external normal of 02, and is calculated by the formula

ony

0 - 0
. Z(ny)k‘a_%a ny = ﬁ>y = {(ny)1, (ny)2, .., (ny)n}, Iny| = 1.
Yoo k=1
The Green function of the Dirichlet problem (1) is defined as follows
_AGD(J:ay) = 6($ - y)7 z,y € Q,
Gp(z,y) =0,z € 99, = € Q,

where §(z — y) is the Dirac delta function.
In particular, when Q@ = {# € R" : |z| < 1} is a unit ball, the Green function of the
Dirichlet problem (1) can be constructed by the reflection method and has the form

1 y
GDxay:_[gnI_y _5n<my__>]7 3
(@) = - el = 9) = (el - 3)
27Tn/2
where w,, = Tn/2) the surface area of a unit ball, ¢, (z — y) is the fundamental solution
n

of the Laplace equation [2,3|

1
ln\x—y\’ n:27 |I_y|:\/(xl_y1)2+(‘r2_y2)27
|z —y>, n>3, |r—yl= /> (xr —y)*
n—2 k=1

Along with the Dirichlet problem, the Neumann problem for the Poisson equation is a
classical and well-studied one

ou(x)

—Au(z) = f(z), z € Q, o = Y(x), v € 00. (4)

It is known that the solution of the Neumann problem (4) from class C2(2)NC*(Q) is not
unique up to the constant term. For the existence of a solution to the problem, it is necessary
and sufficient to fulfill the condition

/ fwdy+ [ w(y)ds, = o, (5)
Q o0

If a solution to problem (4) exists, then this solution can be represented in integral form
using the Green function of the Neumann problem Gy (z,y) according to the formula [1]

u(z) = / G, y) F(y)dy + /8 Gl )05}, + const (6)
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The Green function of the Neumann problem (4) is understood as [1] a function that has

the representation
1
Gnl(z,y) = — [eale —y) +g(z, )],

where g(x,y)— the harmonic function in region €.
In this case, the boundary condition must be met
G N 1
(xay):__7y€89' (7)

ony W

If such a Green’s function Gx(z,y) exists, then it follows from (5) and (7) that function
(6) satisfies all conditions of problem (4).

For a unit ball, the Green function of the Neumann problem is presented explicitly for
casesn =2 and n =3

1 1 1
Gy(z,y) = — |In +In ,n=2,
2 | |z =yl ’x| |-
Yl =
1 1 1
GN($5y>:_ + _1n1+($ay>+x‘y|_iH 7”237
A ||z —y| ‘:B|y|—— ||

where (z,y) = z1y1 + ... + £, y,— the scalar product in R"™ of vectors = and y.
The Green function of the Neumann problem (4) has the following representation [5]

1 N
Gn(z,y) = — [en(x —y)+en <x\y| - %) + €(x,y)] + const,

where £(x,y) expressed by the identity

1 1 2—n
~ d d
o) = [ 0= Dslaly = L1 -1] S = [ el - 2] -1 Tz,
0 i s 0 i s
and they are written through elementary functions
- 2 .
5($7 y) , = 3; (Z)
‘1 —(z,y) + ‘$|y| ‘y|
2112 — 2
E(z,y) = (=, y) arctan Vizlly z.9) In (z|y| — Y ,n=4; (i)
" TR - (@ 9 1 ( y) lyl
5 m—1 1-2k
e y) =In T ‘ vl - 1)+
L=y + |l -] = EE r
m—1m—k—1 i i i
2 k‘ +i—1)(2k = 3)!M (2, y)|=[* |y [* [Il‘lzlyl2 —(@y) (x y)]
& & (= DIk +2i - DI(PIyP — (x,u)) ™ er )

‘x|y| Tl
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n>5n=2m+1, m>2; (141)

m—1

1
oyl - ' +3
k=1

—2k

—1}+

m—1
V]z? Iyl2 y)? Z (2k — 1)! |z [y [**

I S T

Y

(x,y) arctan +

k=0

m—1m—k—1

(2k +2i = DU(E + D! (@) [Py rlallyl” = (,9)
> T~ Uk + P F — (o 7| i - o)

k=1 1

hW|\w
n>6,n=2m+2, m>2. (iv)

Along with the Dirichlet and Neumann problems, the Robin problem (the third boundary
value problem) for the Poisson equation is a classical and well-studied one

Ju(x)
on

—Au(z) = f(z), x € Q, +au(z) = ¢Y(z), x € 0. (8)

The solution of the problem Robin (8) from class C2(2) N C*(Q) is represented as follows

o) = [ Gutoa)fyty — [ ZEED oy, )

The Green function of the Robin problem (8) has the form [6]
a) if a > 0, then

™

—2—2a (!
e(r—y) — e(x]y\ - i) + u/ 3“715<sx\yl — i)ds,
[yl wnJo vl

1—¢
where vy =60 — ¢ u P(rps,vy) = R T—— the Poisson kernel;

b) if @ < 0 and a— non-integer, then

1 1
Gul.9) = Golw.v) + 5 [ 5 Plrps.n)ds =
0

Ga(z,y) = Gp(x,y) * cos ky+

2T

1 m
/ 51 (P(rps, v)+1-—2 Z(rps)kcoskv) ds] :
0

k=0

where m = —[a] + 1.
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4 Green’s function of the Dirichlet problem for a polyharmonic equation in a
multidimensional ball

Let m be a natural number and in the n— dimensional ball Q2 = {z € R" : || < r } consider
Dirichlet problem for a polyharmonic equation

AMu(z) = f(x), =€, (10)
Hu(x)
on

The classical solution u(x) € C?™(Q)NC™1(Q) to the Dirichlet problem (10), (11) exists,
is unique, and it is represented by the Green’s function Ga,, (2, y) in the following form [3]

=pj(r), 0<j<m—1, z €. (11)

m—1
0 L
/szn:cy >dy+2/ {aTA Gamn(,y) - A7 T p(y)—
Y

, 0 L
A Ganale 1) oAy ) | S, (12)
Ny

where i— external normal 0f).

y
The Green function of the Dirichlet problem (10), (11) is defined as follows
A"Gopmn(x,y) =0(x —y), x,y € 8, (13)

ajGQm,n ([E, y)
onl
where d(x — y)— the Dirac delta function.

=0,2€00yeQ 0<j<m-—1, (14)

Theorem 1 [7-9] a) In the case of odd n, as well as for even n, if 2m < n the Green’s
function of the Dirichlet problem (13), (14) can be represented in the form

m—1
GQmﬂ(x) y) = €2m,n($, y) - ggm,n(l’7 y) - ggm,n(x7 y)? (15)
k=1
where
52m,n(xa ?J) = d2m7n|x - y|2m n’
2m—n
0 Y Y 9
) =d n ’_‘ : 1 9 )
g2m,n<x y) 2m, [ r x |y|27’ ]
2m—n—2k
g;“m’n(x, y) = damn(2m —mn)...2(m—k+1) —n)- [ % x — ﬁrz ] .

T

r

Y

r

o\ K NF /2 \F
() () () e w12
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dy = 1 T'(n/2)
T m =)' 2m —n)(2(m —1) —n)...(4 —n)(2 —n) 2mgv/2’

()= gamma function;
b) In the case of even n and 2m > n, the Green’s function of the Dirichlet problem (13),
(14) can be represented in the form (15), where

52m,n(x7 y) = d2m,n|x - y|2m—n In |ZE - y|a

2m—n r

0 y y 2 ’[J y 9
gmn(xay):de,n ‘_’ r— —57T In ‘— T — ——7r ,

" [’f’ lyl? r y]?

2m—n—2k ) i , k
; Y Y 2 Yy X 2%
) = damn ‘_‘ : - — 1—1Z 1— 2 .
ng,n@ Y) 2m, [7’ x |y‘2fr ] . ) ( . ) ,

[ﬂ(gm —n)2(m—1)—n)...2(m—k+1)—n)ln [

4 (_1)77,/2—1
2 D(m)(m — nj2 + 1) - 22m—1gn/2’

Lemma 1 a) It is known [3] that in the case of odd n and even n, when 2m < n, the function

52m,n(x7 y) = d2m,n|x - y|2m_n

and in the case of even n, when 2m > n, the function
€2m,n(x7 y) = d?m,n|x - ?/|2m_n In |IL‘ - yl
is a fundamental solution to equation (10);

b) for all 0 < k <m — 1 functions

y Y 2m—n—2k y ) k 12 k

k o g1 . _d 2 . g I st 2k
ngm,(x?y) = dy, [’ T‘ X |y‘2r ] (1 . ) (1 ‘T ) T,
where .

are solutions to the homogeneous polyharmonic equation

A"gs o (@,y) =0, z,y€ Q. (16)
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Proof 1 Indeed, the function ggmm(x,y) can be represented in the form gé“m’n(x,y) =

g(x,y) far (||, |y|), where for(|z|, |y|)— polynomial of degree 2k in |z| for fized |y|, and g(x,y)
satisfy the equation A™ *g(x,y) = 0.
By Almanzi’s theorem [3], the function g(z,y) can be represented as

m—k—1
|20 (2, y),
7=0

where W;(x,y)— harmonic functions, i.e. AyW;(x,y) = 0. Then the function g5, . (z,y)
satisfies the representation

K‘

m—k—1 m—k—1

gh (@ y) = 220 (2, ) 2l Jo) = Y (2, y),

J 7=0

Il
o

where \le(x,y)— some harmonic functions.
Therefore, according to Almanzi’s theorem, the function ggm’n(:c, y) forall0 <k <m-—1
satisfies homogeneous polyharmonic equation (16).

It is easy to show that in the following notation

Y
]x—y]2:X2(x,y):X2, ; r = |y|27”2 _Y2($7y):Y2,
2 712
(1— = ) (1—’—‘ )rzzZQ(x,y):ZQ, (17)
r r
we have the identity
X2 —Y?=_-77% Va,y €. (18)

Proof 2 a) Using equality (18) and the expansion of functions f(z) = (1—x)*, 0 <z <1 [4],
we represent the fundamental solution of equation (10) as a series

Eomm(T,Y) = X2 = Y?m- (1 — ﬁ) =

m—1
—1)*
yemen gy (=) (m— 2)(m— = — 1)...(m - g —k+ 1>Y2m—”—2kz2k+

Z k" )(m—§—1)...(m—g—k—i—l)YQm_”_%Z%.
k=

Moving the m terms to the left, we get the required Green’s function in the following form:

GQm,n(x7y> ngnm n( ) ngin n( 7y>7

where
m—1
—1)*
Qﬁ;nm n( ) - d?m,n [XQm—n - Y2m—n - ( k") (m — g)<m — g —k + 1>Y2m—n—2k22k ,
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1)k
65?71,71(1‘7:1/) - dZm,n Z ( ) (m — E)(7’)’l — E — ]_)(m — E —k+ 1>Y2m—n—2kZ2k.

V(-1

k=m

Because

(-7

then using the equalities

= _7?

_O’

z€IN,YeN €0N,yeN

T€IN,YEN r

¥ om e
A g = 07 J = 07 m — 17
on. €HNYeN
it 18 easy to show that the function
ngfn,n(xv y) =

72m [de,n i (—=1)* (m — g)(m _n_ 1).“<m _ g Ckdima 1)y2m—n—2kZ2k—2m] _

' Vo)

k=m

Xz

r

Y

r

<r2 (1 .

[dzm,n f: (_k—l,)k(m - g)(m - g —1)... (m - g —k+m+ 1>y2m—n—2kz2k—2m]

k=m

satisfies the boundary condition (14).
According to Lemma 1 and the last equality, we have

(_Al“)mG%%n(x?y) = (_Aw)mﬁgnm,n(‘xa y) = (5(1‘ - y)v x,y € Q>

8]
; G2m,n (ZL’, y)

on,
By virtue of the uniqueness of the solution to the Dirichlet problem for the polyharmonic
equation, the Green’s function of problem (13), (14) is

o

®2m,n (.7}, y)

=0,5=0m-—1.
€02 J m

€0 6ngc

Gomn(T,y) = domn [men — Yy — (m — T—l) <m D ks 1)Y2m*”*2’“22k _

2 2

b) Using Lemma 1 and the expansion of functions f(x) = In(1 —x),0 < x <1 [4], we
represent the fundamental solution of equation (10) as a series

€2m,n($7y) = ‘:U - y‘men In ‘-T - y\ = X" InX =

m—Z _n

2 Z2\m-3 1 72 2 ] Z2\m-3
2m—n _
vy 3o (1-55) THgn(-5) - X g (-5) =

p=1



B.D. Koshanov 45

m_n m_n 1
y2m—niny + Z cl e ZQVyZ(mfv)fn nY + Z (_1)Z/CV p) Z 2_22uy2(mfz/)fn+
v=1 v=1 M:m—y—i—l—% M
i e 1
(_1)m+17§ V m_ﬂzZ(m+y)fnY72u.
; wCy T
Mowing the m — 1 terms to the left, we get the equality
GQm,n(x7 y) = gg@mm(x’ y) = S;fn’n(x, y)7
where
;nm,n (ZL’, y) = d2m,n [X2m—n In X — Y2m—n InY—
m—n/2 B n/2-1 92m+2v—n
Z (_1)1/017/7’7,771/2 |:1I1Y + C:| 72y 2m—2v—n + (_1)mfn/2 — Z2(m+l/)Y72ufn:|’
= = 2wl
N ( ) ; i 92(m+v) R — 5 mzn:/Q 1
an,n T,Y)= —Qommn —— noav m V’ = —

Using this representation, just as in the proof of assertion a), we make sure that Gap, ,(z,y)
is the required Green’s function for even n for 2m > n. The theorem is proved.

5 Correct constrictions and extensions of differential operators

In the early 80s of the last century, M.O. Otelbaev and his students [21-23] constructed
an abstract theory that allows us to describe all correct constrictions of a certain maximum
operator and separately - all correct extensions of a certain minimum operator, independently
of each other, in terms of the inverse operator. Moreover, this theory was extended to the
case of Banach spaces and it was possible to partially abandon the linearity of operators. We
give a brief summary of this theory in the case of Hilbert spaces.

Let the Hilbert space H be a linear operator L with a domain of definition D(L) and a
domain of value R(L). The kernel of operator L is the set

KerL ={fe€ D(L): Lf=0}.

Definition 1 A linear closed operator L in a Hilbert space H is called maximal, if R(E) =H
and KerL # {0}.

Definition 2 A linear closed operator Lo in a Hilbert space H is called is called, if R(Lg) #
H and there is a bounded inverse operator Ly" by R(Ly).

Definition 3 A linear closed operator L in a Hilbert space H is called correct, if there is a
bounded inverse operator L~ defined on all H.

Definition 4 Operator L is called a contraction of operator Ly, and operator Ly is called an
extension of operator L, and briefly write L C Ly, if

1) D(L) € D(L),

2) Lf = Lif, Vf € D(L).
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Definition 5 The correct operator L in the Hilbert space H is called the correct contraction
of the maximum operator L (‘the correct extension of the minimum operator Lg), if L C

~

L (LoC L)

Definition 6 A correct operator L in a Hilbert space H is called a boundary-correct
extension, if L is both a correct contraction of the mazimum operator L and a correct
extension of the minimum operator Lg, i.e. Lo C L C L.

Theorem 2 [21,22] Let L be a mazimal linear operator in a Hilbert space H, L— a known
correct narrowing of operator L and K— an arbitrary linear operator bounded in H that
satisfies the following condition

R(K) C KerL. (19)
Then the operator Ly, defined by the formula

Lif=L"f+Kf VfeH, (20)

is the inverse of some correct narrowing of Lx of the mazimal operator E, 1.e. Lg C L.
Conversely, if Ly is some correct narrowing of the maximal operator L, then there exists a
linear operator K bounded in H that satisfies condition (19), such that the equality holds

Li'f = L7\ f+ K\f, Vf € H.

As a rule, it is difficult to describe the kernel of the maximal operator. Therefore, often
the following Theorem 3 is more effective than Theorem 2.

Theorem 3 /23] Let L be the mazimal operator, Ly be the known correct constriction of Z,

and K be the continuous operator acting from H to D(L) be the domain of the definition of
operator L. Then operator Ly, defined by the formula

L f=L;'f+(E—-L'L)Kf (21)

18 the inverse of some correct narrowing L, i.e. Lx C L.
Conversely, any correct narrowing of operator L is represented as (21) with some operator

K.
In what follows, this theorem will be applied to the polyharmonic operator.

6 Correct boundary value problems for a polyharmonic operator in a
multidimensional ball

In this section Q = {z € R": |z| < r}. On D(L) = W2™(Q) we define the maximal operator
L by the formula
Lu = A™u, Yu € D(L).

By definition R(E) = L5(Q2), and KerL is not trivial.



B.D. Koshanov 47

In the previous section, it was proved that the Dirichlet boundary value problem for the
polyharmonic equation

ATu(z) = f(z), zeQ={x:|z| <7},

.: j
Lou: PuT) o < i<m—1. xeon
on3,
has a unique solution u(zx) for any f € Ly(2), which has an integral representation
L' = u(e) = [ Gh(n.)r ) (22)
Q
where G2 (x,y) = Gamu(x,y)— Green’s function of the Dirichlet problem from (15).

Note that the zero Dirichlet boundary conditions for a polyharmonic equation are
equivalent to the following boundary conditions for the same equation.

Theorem 4 a) For any f € Lo(2), the function u(x) given by formula (22) with m = 2p is
a solution to the boundary value problem

Alu(z) = f(x), x€Q, (23)
w(x) o =0 iu(:c) =0, Ayu(z) s =0 iA u(z)| =0
00 on, 89_’ ’ o an, " BQ_’
......... AP~ ly(x) ‘aﬂ =0, 8?1 AP~ly(x)|  =0. (24)
x o9

b) For any f € Lo(Q2), the function u(x) given by formula (22) with m = 2p+ 1 is a
solution to the boundary value problem

Alu(z) = f(z), =€,

0 0
u(x) |y =0, a—u(x) =0, Ayu(x) |y, =0, aTAxu(x) =0,
x o0 T o0
......... iAgflu(:zc) =0, APu(z) |, = 0. (25)
ong 50
0? 0

Proof 3 Let us show that Aul|sq = WUL?Q =0, if ulgo =0 u 8_u|8ﬂ =0.
n
This fact follows from the following identity

1 0 ,,0 1 n
Au:rn_lgr §u+ﬁAgu,x:T-9€R.

In the case of the ball §2, the direction of the outward normal to the boundary OS2 coincides
with the direction of the radius of the vector 7, therefore the derivative with respect to the
outward normal at the boundary OS2 coincides with the derivative in the direction of the radius.
From here we get

0? n—1
AUl(’jQ = wﬂbg +

0 1
Eubg + T—2A9u|a§z =0,

0
because Aulgg = 0, —ulag = 0, u|gg = 0.

on
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In this section, based on the representation of the solution (12) of the Dirichlet problem,
we present other well-posed boundary value problems for an inhomogeneous polyharmonic

equation. For this we apply Theorem 3 to describe correct restrictions of the maximal operator
L.

Lemma 2 For any h € W3™(Q) fair representation

(B~ L;'L)h(z) =

(2.9) - -2 ATIn(y)| ds,.

m—1

0 .

2 ANJD CAM—1—j j D
E:/m[ NGD. (2,y) - AT h(y) — AIG o

8ny 2m,n 2m,n
J=

Proof 4 For this purpose, we introduce into consideration the integral
) = 1'Th = | G, hwd. (26)

where h(y) is sufficiently smooth, for example, from the class W3™(S2), and the rest is an
arbitrary function.

Taking into account the second Green’s formula for the polyharmonic equation, the integral
(26) can be written in the form

I(z) = / B(y)AGE, (. y)dy—

m—1
. 0 )
3D X m—1—j i D L2 AmMm—1—j —
g /8 |:anyA G2m n( ) Ay h( ) A G2m n( ) anyAy h<y):| dSZJ

h(:c)—mz_l/m [iNGD (z,y) - A h(y) — AIGY,

2m,mn 2m,mn
on,

(@, >-%A$-1-J’h<y>} s,

J=
From here, on the one hand, we get

17
h—L;'Lh=

m—1
0 j 0 )
R .7 D . m—1—j ] D . m—1—j

Lemma 2 s proved.

Lemma 3 The Green function of the Dirichlet problem Gapy,,(z,y) on the boundary OS2 has
the following properties

A]Ggmn(az,y)]xem =0,j=0,1,...m—1, Yy € 99, (27.1)
0
o, — NG (@, ))eeon =0, =0,1,....,m—2, Vy € 09, (27.2)
a
%Am 1G2Dmn($7y>’x€39 = 0(x — Y)|zesn, Yy € 00 (27.3)
Yy

and (28.1) — (30.7) with m = 2p; (28.i) — (31.i) withm =2p+1,i=1,2,3.
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Proof 5 It follows from representation (26) that I(x) satisfies the Dirichlet boundary
conditions. Therefore, for x € 0, taking into account (24) or (25), we obtain the relation

0= I(z)lsean = h(@)]zeon — Z/@Q {%A]Gfmn(x,y)lxem Ay I h(y) -
)

0 L
A] GQDm n(xa y)|x66Q : %AZL ! Jh(y):| dSy,
Y

i.e. I(z) =0, Vo € 092, which is valid for all sufficiently smooth h(z). Since the function h(y)
is arbitrary, we conclude from this that the relations (27.3), i = 1,2, 3.
Using the second boundary condition of Dirichlet, arguing similarly, we obtain the relation

0 L
0= g e = oo = 3 ] [ St lcan 257500
0 O 1o
o MGl eon - G-I 8,
for an  arbitrary  sufficiently  smooth  function  h(y).  Since  the  wvalues
{Ayh(y), a%A;”_l_jh(y),j = 0,1,....m — 1} are linearly independent from each
other, therefore !
0 D :
o AJG2mn(m,y)|x€aQ =0,7=0,1,....,m— 2, Yy € 99, (28.1)
o0 0  i.p ,
5 o A Gy o (2,Y) |lecon =0, 7 =0,1,...,m — 1, Vy € 09, (28.2)
z Oy
0
an Am IGZDm n('r7y)|1639 - 5(I - y)’CCGafb vy € 0N (283)

Taking into account the above statement, the third Dirichlet boundary condition allows us to
write out the relation

m—1
) L
/ [A G G0l - A7 hy)
9]

0 L
A A]Gé)m n<x7y)|m€89 : aTAgL ! ]h(y)} dSy,
Y

for an arbitrary sufficiently smooth function h(y). Therefore

0
A, "B A]Ggmn(x,yﬂzeag =0,j=0,1,...m—1, j#m—2, Vy € 09, (29.1)
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ANGY () econ =0, j=0,1,...,m — 1, Vy € 09, (29.2)
0
A, aTAm 2Gh o (@,Y)|ocon = 0(z — Y)|scon, Yy € . (29.3)
)

Similarly, we write out other conditions that the Green’s function G5, . (x,y) on the boundary

0N) satisfies

form =2p
0?1 0 0
0= —— ——APTL] = AP 1p _
on2r—1 )| seon ~ On, I(z) wcoQ  Ong ° (z) 2€d0
2p—1
Z /8Q [anIAP ! AJGgm n(x7y)|$€39 ’ Azp_l_]h(y)_
0 p—1AJ D 0 2p—1—j
an A A GQm n(a:?y)’fl?639 ’ %Ay h’(y> dSlﬁ
y
form=2p+1
0= o I APT APh
- onZ (v scon ¢ (@ zco © (@ €00
2p a
> [ At Ao - A )~
§=0
APAJ G 0 A?P=Ip, s
2mn(T5Y)|weo - o, ()| dSy,
for an arbitrary sufficiently smooth function h(y). Therefore, for m = 2p
0 0
%Ag 16 NG (@) |scon =0, 5 =0,1,....,2p — 1, Yy € 99, (30.1)
0 p—1 AJ D ; ;
o ——AVTAI Gy, (T, Y)[ecoa = 0, 5 =0,1,...,2p — 1, j # p,Vy € 09, (30.2)
0
. ——APTIAPGY (2, |econ = —0(2 — ) |scon, Yy € O (30.3)
form=2p+1
)
Aga AGh (@, Y)|scon =0, j =0,1,...,2p, j # pVy € 0L, (31.1)
APNIGE(2,y)econ =0, § =0,1,...,2p, Vy € 09, (31.2)
APAPGsz n(xvy)‘SCGaQ = 5($ - y)|x€8Q; Vy € oq. (313)

Lemma 8 is proved.

Now we can describe the domain of the maximum operator L in terms of the Green’s function
GQm n:
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Lemma 4 The domain of the maximum operator L has the representation

D) = {w: we) = [ Ganalos)f)n+ Y [ |58l 87 hiy)-

im0 /o0 Iny
A o .. -
—A) Gomn(,y) - B_nyAy ! ]h(y)] dS,, Vf € Ly(2), Yh € W™ (Q)}. (32)
In particular, if
1 O i ‘
AT h(y)]yesn = 0, %Ay “Ih(y)|yeon =0, j =0, ....;m — 1,
y

then we get D(L,) domain of the operator Ly.

Now the question arises: how to describe the domains of definition of other possible correct
restrictions of the maximal operator L?

Let K be an operator that puts each function f(x) € Ly(€2) in there is a unique function
h(z) € W3™(Q), such that ||K f||1,) < C|fll1.()- Using the chosen operator K, construct
the set R

Dk ={w(x)e D(L): h=Kf}.

On the set D we define the operator

Dk

It follows from Theorem 3 that L is a correct restriction of the maximal operator L. In
conclusion, we give another description of the operator Lg in terms of boundary conditions.

~

Theorem 5 Let K be an arbitrary continuous operator acting from Lo(Q) to D(L). Then
the inhomogeneous operator equation Lxw = f is equivalent to the following boundary value
problem

a) for m =2p
Afw(z) = f(z), =€,
0 0
oo = K(A"0) g ——w| = = K(ATw)| ...
[2/9) oQ anz 00 8”3[: 00
At = A AT Larte| = LAt ame)|
b) form=2p+1
0 0
= K(A”" — = KA
w |6Q ( T w)|6§27 anmw 00 8n$ ( xw) 897 )
a p—l _ a p—l m P I p m
Ony o0 Nz o9

Other applications of M.Otelbaev’s results in various branches of the theory of differential
equations can be found in the works [26-29).



52

Green’s functions and correct restrictions ...

7 Conclusion

The studies carried out in this article are of significant importance in the theory of boundary
value problems of linear and nonlinear partial differential equations, spectral theory, and the
theory of numerical methods for approximate solutions of certain classes of boundary value
problems for differential equations.
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DETERMINATION OF THE SLIDING STATE OF THE SOILS OF THE
SHYMBULAK SLOPE WITH THE DEVELOPMENT OF THE CRITERION
OF FAILURE

On the basis of the known criterion for the destruction of Coulomb Mor applied to soils of isotropic
structure, developed the general criteria for the destruction of stratified, anisotropic, inclined layer
of soils. New expressions were obtained to determine the parameters of the mechanics of disruption
allowing not only the direction of disruption, but also the possible distribution of dislocations along
the layers of soil and perpendicular. Applying the proposed criterion, the problem of determining
the stressful condition of the soils of the dangerous rock slope of the slope, and on the joints of soils
of different geological structure, such as eluvium and delta. The results of the analysis are presented
in the form of tables, diagrams and graphs. Deductions are made on the reliability of the proposed
approach to the solution of the problem on the determination of the precondition of the soil of
mountain slopes. The first part of the work describes the different categories of communication
conditions. The second section gives various examples of the construction of individual elastic
curved joints and their connections, supplemented by certain connection conditions of the limit
problem. The result is a numerical calculation of the natural frequency of free oscillations of the
joints of elastic bent joints.

Key words: slope, soil, layers, stress, anisotropy, landslide.
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2Kaszak yJITTHIK KbI3Jap yHEHBepcuTeTi, Kasaxcran, AJIMAaTH K.
*e-mail: zukhra.abdiakhmetova@gmail.com
IIIBIMBYJIAK BOKTEPI TOIIBIPAKTAPBIHBIH KOIITKIH >KAFJIANBIHIA
BY3bIJIY KPUTEPUNIH O3IPJIEY APKbIJIbI AHBIKTAY

M3orponTsl TonbipakTap a KosganbuiaTeia oenriii Kymon Mopabia 6y3bLty KpuTepuiti Herisinmae
KYPBLIBIMbI KATIAPJIBI, aHU30TPOITHI, KOJIOEY KadATThI TOIMBIPAKTAD YIIIH YKAJIbIIAHFAH OY3bLITY
KPUTEpHi Kacasibl. By3blTy MeXaHUKACHIHBIH [TapaMeTPJIePiH aHBIKTAUTHIH XKaHa OPHEKTED aJIbIH-
b1, 6yJ1 TeK OYy3BLIYIbIH Tapasay OarbIThIH FaHa €MeC, COHBIMEH KaTap OY3bLIy CHI3BIFBIHBIH TO-
IBIpaK KabaTTaphl OOWBIMEH KOHE OFaH MEPIIeHINKY/IIp OONBIHIIA TapaaybiH /18 AHBIKTAyFa MYM-
KiHJTIK Oepe/ii. yChIHBLIFaH KPUTEPUHI KOIJIaHa OTBIPBII,KOJI0€y TOCEHIMTEPiH KOIIKiHre OeftiM Tl
Tay OeTKeiiHeri »KoHe 3JIIOBUIl MEH JIEeJIOBUIl CUSIKTHI OPTYPJI TEOJIOTUSIIBIK, KYPhLIBIMIAPIbIH,
TONBIPAKTAPBIHBIH, TYHICKEH YKePJIEePIHAET] TOMBIPAKTAP/IBIH, CTPECC YKAFJIalbIH aHbIKTAY Moceseci
menrgi. Tangay HoTmKesepl Kecresep, chi3baap koHe rpaduKTep TYpiHIe oChIHbLIFaH. Tay
OeTKeitTepi TOMBIPAKTAPBIHBIH KOIIKIH aJIIbIHIAFDI YKAFTAMBIH AHBIKTAY MOCEIECIH IIMenryre ycbi-
HBIJIFAH TOCLIJIIH, CEHIMIJIT TypaJjbl KOPBITHIH/IBI 2KacaIaIbl.
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ZKympicThin Gipinmt Oesrimi OGaltylaHbIC MAPTTAPBIHBIH, OPTYPJI KATErOpUsJIaPbIH CUTIATTAMNTHI.
Exinmi 6esiMae meKTiK ecenTin 6eriai 6ip 6aiiiaHbIic MapTTapbIMEH TOJIBIKTHIPLLIFAHIAFBI JKYKA
CepriM/Ii MiJITeH ©3€eKTep MEH OJIap/IblH OaillaHbICTAPBIHBIH KOHTPYKIMSIAPBIHBIH, 9PTYPJl MbI-
casitapsl KesaTipiared. KopbITeIHABIIA cepIiMIl 2KyKa UiJINeH ©3eKTePiH Tyiicmesnepinin 6oc Tep-
GesicTepiHil TAOUFN YKULIINH CAHIBIK €CenTeyi KeJITipiareH.
Tvyitin ce3nep: kesbey, TonbIpak, KabaTrap, CTpPecc, aHU30TPOINS, KOIIKIH.
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OIIPEJAEJIEHUVE OITIOJISBHEBOI'O COCTOAHUNA T'PYHTOB CKJIOHA IITBIMBVYJIAK
C PABPABOTKOM KPUTEPUSA PA3SPVIIIEHU Y

Ha 6aze usBectHOTO Kputepusi paspyiinenus Kymona Mopa mnpumeHsieMoro Jijis TPYHTOB H30-
TPOITHOTO CTPOEHUsl, pa3paboTaH OOODIIEHHBIN KpUTEPHUil paspylleHns JJisi TPYHTOB CJIOKCTOIO,
AHU30TPOIHOr0, HAKJIOHHO CJIOUCTOTO cTpoeHus. [losydeHbl HOBbIe BbIpajKeHUs I OIpejesie-
HUA IIapaMeTPOB MEXaHUKH Pa3pyIIeHUsd IIO3BOJIAIOIINX OIPENEe/IMTh He TOJIbKO HaIlpaBJICHUE
pacipocTpaHeHus pa3pylleHuii, HO U BO3MOKHOI'0O DACIPOCTPAaHEHUdA JIMHUUA PAa3pyNIeHUus BJOJb
CJIOEB T'DYHTA U NEPHEHIUKYIAPHO K Hemy. lIpmMeHeHMeM NIpeIIO’KEHHOTO KPHUTEPHUS DeNeHa
3a/1a4a 00 OIpeJieIeHuil HAIIPSI?KEHHOI'O COCTOsIHMSI I'PDYHTOB OIIOJI3HEOIIACHOI'O T'OPHOI'O CKJIOHA
HAKJIOHHOH CJIOMCTOCTH, W Ha CTBIKaX I'PYHTOB Pa3JIMYHOIO TIeOJIOTUYECKOI'O CTPOEHUd, THIIA
IIOBUS W JemioBus. llpuBomsarcst pe3ynabrarThl aHajgn3a B Buje TabJmi, SMOp U rpaduka.
Jenarorcst BBIBOABI O HAJIEKHOCTU IPEJJIOKEHHOI'O IOIX0a PEIIeHUs 3aJ[a9l 110 OIIPE/IETEHUIO
[IPE/IOTIOI3HEBOTO  COCTOSIHUSL TPYHTOB TOPHBIX CKJIOHOB. B mepBoil dactu paboThl OIMCAaHBI
pa3Hble KaTeropuu ycjaoBuit coobimerus. Bo BTOpoM pazjiesie MPUBEICHBI PA3JIUIHBIE MTPUMEPDI
HOCTPOEHUSI OTHEJIBHBIX YIPYTUX KPUBOJIMHEMHBIX COEJIMHEHUN U MX COeJIMHEHU, JIOOJHEHHbIE
HEKOTOPBIMH YCJIOBUSIMU CO€JIMHEHUS WpPeJIeIbHON 3a/aun. Pe3ynbTaToM sBIIsIeTCS YHUCIEHHBIN
pacdeTr cOOCTBEHHON YaCTOTHI CBOOOIHBIX KOJEOAHMI COEIMHEHNN YIIPYTUX THYTHIX COEIMHEHMUIA.

Key words: ck/oH, TPYHT, CJIOH, HAIPsXKEHIE, AaHI30TPOIINS, OIOJI3EHb.

1 Introduction

Due to the lack of a reliable criterion for the destruction of soils on slopes of complex structure,
it is still not possible to predict the landslide hazard of mountain slopes, at the immediate foot
of which there are buildings, houses, objects of the national economy and densely populated
areas. It is assumed that soil failure occurs when the value of stress concentration near the
heterogeneity of the soil structure reaches the maximum possible breaking stress. Despite
the large number of works on fracture mechanics, research in this area cannot be considered
complete, all the more complete, especially in the field of fracture mechanics on mountain
slopes, under the foundations of civil and engineering structures for various purposes.
The rapid development of computer technologies and methods of computer-mathematical
modeling makes it possible to solve specific practical problems with a high degree of reliability
in the application of the results. Among these methods of mathematical modeling, the most
widespread is the finite element method (FEM). Instantaneous, unexpected landslide masses
on the slopes represent a great danger and cause significant human and material damage. To
apply the results of the development of a new criterion, one of the specific mountain slopes of
the Northern Tien Shan, the Shym Bulak mountain slope, is considered. Landslides of various
types have often occurred here over the past decades. These include landslides, avalanches,
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embankments, and mixed-type landslides. This slope is located on a mountain gorge on a
mountain road between the Medeu dam and the Shym Bulak sports complex. The landslides
listed above occurred here in 2009, 2011, and in 2015, which are shown in figuresl. The types

KOTBIRGyTaK e =
-~ “Beckawhap .

«Shymbulak

<= Mountain:resort
P e
— = 2

Figure 1: View from space of the Shym Bulak mountain gorges together with the Kishi
Almaty River and the road from the Medeu dam to the sports complex

and characters of landslides are as follows: a -2009, species before the landslide; b - and ¢ -
landslides and collapses of boulder soils in 2011; d - landslide deluvial soil masses 2015.

2 Materials and Methods

After finding the FEM values of the stress components in the elements o,, ¢, and 7,., the
values of the principal stresses and the directions of the main areas alpha are calculated
using the following well-known expressions of the theory of elasticity [6].

Oya + O¢ 1
Omax — yTh + 5\/(0’2 - 0-1:)2 + 47—3357
z x 1
Omin = 710 - _\/(Uz - 01)2 + 4Tz2x7 (1)

2 2

2 2T mazx man

tanQa — L,Tmam — &

0, — Oy 2

Values of normal stress components 0,5, 0, <z, Tatz across and along layers of isotropy
planes of transtropic array @, calculated using the following relations, after applying
transformation formulas /7/
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1 1 o C o
Onp = 5(00 +0,) + 5(00 = 0,) 08 2P + 7oy 5in 2, 2)
1 1 _ .o
Orp = 5(00 +0y) = (02 = 0,) cOS 2P — Ty SN 25, ()
1
Tots = —5(% — 0y) sin 2¢ + 7, cos 2p (4)

The values of the normal stress components o, o, 7,; at the main sites are similarly
calculated for the angle alpha using the following formulas

1 1 .
o, = 5(% +0y) + é(agg — 0y) o8 200 + Ty, sin 20,

1 1
ot = 5(‘% +0y) — 5(03: — 0y) €08 200 — Ty sin 20,

1 )
Tot = —= (0, — 0y) sin 2a + 7, cos 2av.

2

For any angle 0 < @ [€90°, which defines an arbitrary direction measured from the isotropy
plane © to the perpendicular to them, for breaking shear stresses, we determine using the
Casagrande Carrillo condition in the form [6].

Ta = Tmaz, L + (Tmax,]_[ - Tmaac,L)COSQa (5)

or

Ta = Tmaxz,900 + (Tmax70 - Tmaw,QOO)COSQa (6)

where 700 1[, t0Umaz, 1 are the experimentally determined critical values of layered rocks
for the cases overlinea = 0 and overlinea = 90°. Comparing the calculated values of the
maximum tangential stresses T,,q, according to (1) with their critical values according to (4),
we determine the zones of destruction of soils and rocks.

If T4z < Ta, then the state of the array is stable.

If Tyae > Ta, then the array is destroyed in the direction of the @ corner.

3 Simulation of the Shymbulak slope using FEM

For the transition to mathematical modeling of the Shym Bulak mountain slope, the following
calculation scheme was developed with a West - East view shown in Figures 2 below. Here,
the red dotted line shows the slope surface before the landslide, the blue dotted line after the
landslide, that is, the current state of the slope. Pebbles and other lines show the movements
of the landslide mass and their accumulation on the road. Figure 3 shows the design scheme
of the slope consisting of the joints of eluvium, diluvium and proluvium. It also shows the



A.R. Baimakhan, et al.

59

Peka
K Anmater

=

A
z 60 M I'opa [IIem bynak
- Ckio
o
=]
z it
opora
[ I —
5 60 M
% < Meney-Illsm By jak j:l
A= T e
g ‘F 1.‘-.\[""""20.\ 40M
7 10Mm T
-4 3’1116. e #'
=15u " 10M " 25u
20N

A

100M

Figure 2: Cross-sectional diagram of the "Shym Bulak'"landslide, which consists of granite-
basalt rock, soil deposits on a steep slope, a road and the Kishi Almaty river
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Figure 3: Design scheme of the "Shym Bulak"landslide, prepared for finite element modeling

geometrical dimensions prepared for mathematical modeling. It covers all real natural objects
with exact dimensions that are located near landslides and avalanches, shown in Figures 1.

Boundary conditions of the problem. To solve this problem, mixed boundary conditions
in stresses and displacements are set. On the two lateral boundaries there are no horizontal
displacement components (U = 0), based on the computational domain, there are no vertical
displacement components (V' = 0), everywhere at the upper boundaries, there are no normal
stress components on the free day surface (a,, = tan,, = 0).

The area shown in Figure 3 is divided into 1260 isoparametric quadrangular elements
with a total number of subdivisions of 1334. Slope soils consist of varieties of loam obtained
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with mixtures of eluvial, deluvial deposits. Therefore, it has an anisotropic structure. The
strength properties of the soils of the slope are given in Table 1. Calculations for determining
the stress-strain state of soils on the ShymBulak slope were carried out by FEM algorithms
and work programs [6] - [9].

N— Angles

Young’s Modules, | Poisson’s L Volume FOIC_CS internal

Soils MPa Ratios Hoduies; weight silhesion, friction
MPa MPa vsrre

E, E, 4! 5 Gy Y Cy Cy Y1 | ¥2

Loam | 30.0 15.0 0.36 | 0.24 7.60 2.00 0.03 | 0.06 | 19 | 23
Loam | 12.0 8.0 0.39 | 0.35 3.40 0.94 |0.010 | 0.014 | 20 | 24

4 Results and Discussion

Results of calculated stress values o,, 0, 7., and Gpaz, Tmin, Tmae |6] for different zones and
slope layers are shown in Table 2.

The northern slope of the Shym Bulak landslide
5 . Components Main
Stress components in g ;
) stresses at the main sites,
zo | lay | clem S zo | lay | clem sites, MPa degree
ne er Ne \I‘\ Oz \I"\. 0z Trz ne Ccr Ne \-\ Trnax \I'\. T i \'\ Tmax \I‘\ o
Ne | Nep| 8 - | 045 Ne | Nes | 8 : . - 31
= - £ = g = H (3 ot !"
I 1 9 1.18 | -1.05 049 1 1 9 0.62 1.53 0.59 69
16 ; ;
2 17 | -1.67 | -2.23 | -0.44 2 - -1.47 | -2.16 (.85 4{?
18 -82
18
69 69
95 | - _().C 5 _5
m 1 73 0.95 | -0.49 0.90 1 1 7 1.57 )1
77
2 8L | 041 | -1.24 | -1.08 2 82 -0.55 1.01 =70
82
131 52
131 -3.86
1 oo | “2.57 | 2249 | 2.29 1 132 2.59 . 3.18 48
I 132 III 133 -3.48 m
2 139 g _— : : 139 ; 5 B 56
2 140 -2.0 | -2.61 | 1.82 2 140 -3.48 2.65 43
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5 Conclusion

By generalizing the critical criteria of fracture mechanics known for an isotropic medium,
analytical expressions are obtained that make it possible to determine the type of fracture
and opening of cracks propagating along and across the layers of the isotropic plane in a
transtropic massif. Thus, the proposed model, research methodology, calculations performed,
results obtained for one of the real slopes of the Northern Tien Shan show its reliability.
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PARALLEL CUDA IMPLEMENTATION OF THE ALGORITHM FOR
SOLVING THE NAVIER-STOKES EQUATIONS USING THE FICTITIOUS
DOMAIN METHOD

An important direction of development of numerical modeling methods is the study of approximate
methods for solving problems of mathematical physics in complex multidimensional domains. To
solve many applied problems in irregular domains, the fictitious domain method is widely used,
the idea of which is to solve the problem not in the original, but in a simpler domain. This
approach allows to create application software packages for numerical modeling of processes in
arbitrary computational domains. In this paper, we develop a computational method for solving
the Navier-Stokes equations in the Boussinesq approximation in two-connected domains by the
fictitious domain method with continuation by lower coefficients. The problem formulation in the
current function, velocity vortex variables is considered. A computational algorithm for solving
the auxiliary problem of the fictitious domain method based on the finite difference method is
developed. A parallel implementation of the algorithm using the CUDA parallel computation
architecture is developed, which was tested on various configurations of the computational mesh.
The results of computational experiments for the problem under consideration are presented.
Key words: Navier-Stokes equations, stream function, velocity vortex, fictitious domain method,
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2ZKasnran obuibicTap aaicid nmaiigananbin HaBbe-CTOKC TeHieyIepiH IIelry ajJropuTMiHiH
napautenbai CUDA »xy3ere achIpbLiybI

CaHJIBIK MOJIEJIbJIEY OJIICTEPIH JaMBITYIBIH MaHBI3Ibl OAFBITHI - MATEMATHKAJBIK (PU3UKa €Ccell-
TepiH Kypzesi Kell eJireM i oOJbICTapa IIelIyIiH KYbIK 9JiCTepiH 3epTTey OOJIbII TadbLIAIb.
Kermrreren konmanbasbl ecenTepi Kypesi obJIbICTap/ia MLy YImiH YKaJfaH 00JIbICTap 9Iici KeHi-
HEH KOJIaHbLIa bl OHBIH UIesIChl eCcelTi 6acTalKbl 00JIBICTA eMec, KapanaibiM 00JIbICTa TIeILyre
Herizzmenren. By TocimmeMe epkin ecenTey OOJBICTAPBIHIA YP/ICTEP/l CAHMBIK, MOJIEIbIEYTe
apHaJIFaH KOJJaHOa bl OarjapsjaMaap MaKeTTePiH Kacayra MYMKIHIK Oepeii. By kymbicta
ki ko3 durmenTTepi OOWBIHIIA KAJFACTHIPBLIFAH KAJFaH 00JIBICTAD 9/IiCIMEH €Ki Oall/IaHBICTHI
obsbicta Byccuneck xaxpiHmaTybiHgarbl Habe-CTOKC TeHIEy/IepiH IIENIydiH, ecenrtey oici
Kacasabl. "ToK PYHKIUICHI, KYWBIH KbLIIaMIBIFBI afHBIMAIBLIAPBIHIATB €CENTIH, KOWBLIBIMbI
KapacThIpbLIa bl. 2Kaaran obJbIcTap OIICIiHIH KOMEKIM ecebiH IMIeNTyIiH, aKbIPJAbl albIPBIMIBIK,
oficine Herizgesren ecenrey ajropurmi xacayabl. CUDA mapastenbi ecenrey apXuTeKTYpPaChIH
KOJIJIJAHA OTBIPBIN, MapaslIebIiK aJrOPUTM 2KY3€ere achbIPBLIJIbI, OJ1 €CENTeY TOPBIHBIH OPTYPJIi
KOH(UTYpaIUAIapbIHAA ChIHAJIBI. KapacThIPBLIBIT OTHIPFAH €CEN YIMH eCernTey SKCIIEPUMEHT-
TePiHiH HOTHXKeJepl KeJITipliii.
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IMapamiensuass CUDA-peanusanus ajnropurMma pernenusi ypasHeuuii HaBbe-CTokca ¢
WCIIOJIb30BaHMEM MeTona PUKTUBHBIX 0bJjacTeit

BazkHbIM HalpaB/ieHHEM PA3BUTUS METOJIOB YUCJIEHHOTI'O MOJIEJIUPOBAHUST SIBJISIFOTCSI MICCJIETOBAHMS
MPUOJTMKEHHBIX METOJIOB DEIeHns 3aJad MATeMaTHIeCKoi (PUBUKU B CJIOKHBIX MHOTOMEDHBIX
obsactax. [jsa permeHuss MHOIMX TPHUKIAAHBIX 337@9 B HEPEryJsiPHBIX O0JIACTSX MIHPOKO
IIPUMEHSETCS MeTOJ, (PUKTUBHBIX O0JIacTell, Mjesd KOTOPOI'O 3aKJ/II0YAETCS B DENIeHUN 33/1a9u
HE B MCXOJIHOI, a B 6ojiee mpocroit obsiactu. JlaHHBIA I0JX0/ IO3BOJISIET CO3JABATh MAKETHI
MIPUKJIAHBIX ITPOIPAMM JIJIsl YUCJIEHHOIO MOJIEJIMPOBAHUS IIPOIECCOB B IPOM3BOJIBHBIX PACYETHBIX
obsactax. B Hacrosmeit pabore pa3paboTaH BBIUMHUCIATENBHBII METOJ PEIIeHUs ypaBHEHUH
Hagpe-Crokca B mpubimkennn Byccnnecka B JIBYXCBS3HBIX ODJIACTIX METOIOM (DUKTUBHBIX
obJtacTelt ¢ TPOIOIKEHNEM IO MMM Koddgdunnentam. PaccMaTpuBaeTcs MOCTAHOBKA 331891
B IepeMEeHHBIX '(PYHKIUS TOKa, BUXPb CKOpocTu . PaspaboTaH BBIYUCINTETbHBIH aJTOPUTM pe-
[IIeHNsT BCIIOMOTaTeJIbHON 3a/iaun MeToja (PUKTUBHBIX 00JIaCTell Ha OCHOBE KOHEYHO-PA3HOCTHOIO
meroga. OcyiecTBiieHa napaJjjelbHas pean3alus aJrOPUTMa C UCIOJb30BAHUEM aPXUTEKTYPhI
napaJjutesbabix Borauciaenuit CUDA, koropasi ObuIa MPOTECTUPOBAHA HA PA3IUIHBIX KOHPUTY-
paIusx BBIYUCIUTEIbHON ceTku. [IpuBeeHbl pe3ynbTaTsl BEIYUCIUTEIbHBIX YKCIIEPUMEHTOB I
paccMaTpuBaeMOi 3a/1a4u.

Kurouessbie cioBa: ypasaenusi Hapbe-CToKca, (DyHKIMS TOKA, BUXPh CKOPOCTHU, METOJ (DUKTUB-
HBIX obstacteit, rpanudnbie yeyosus, CUDA | napauieibHbIi aJIrOPUTM, BHICOKOITPOU3BOIUTEIHHBIE
BBIYHCJIEHUS.

1 Introduction

The growth of computer technology productivity and the development of parallel computing
contributed to the solution of important practical problems of the industry. One example
of such problems is the assessment of efficiency and forecasting of oil field development
indicators. Due to the complexity of the mathematical models describing these processes,
calculations for a single field can last from several hours to several days. Therefore, the
issue of developing effective parallel algorithms that can significantly speed up calculations
becomes relevant.

Along with the classical model of fluid flow in porous media based on Darcy’s law, a
number of other models are widely used in the study of fluid flows in oil reservoirs, such as
the models of N. E. Zhukovsky [1], Forchheimer [2]|, Navier-Stokes [1,2]. The use of these
models is associated with a violation of the Darcy law under certain conditions, the need for
a detailed study of flow processes near wells [3], etc.

The aim of this paper is to construct an algorithm for the numerical implementation of
the model of an incompressible fluid motion using the CUDA parallel computing software and
hardware architecture. The initial boundary value problem for the Navier-Stokes equations in
the current function, velocity vortex variables in a two-dimensional two-connected domain is
considered. To solve this problem, we consider an approximate method based on the fictitious
domain method with continuation by lower coefficients. The discretization of the obtained
equations is carried out by the finite difference method, but the obtained results will be used
in parallel implementation of finite element methods in subsequent works. In conclusion,
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the results of computational experiments for various mesh configurations and acceleration
analysis of the calculations are presented.

2 Literature review

Let us first give a literature review of recent works devoted to solving problems of fluid
motion in complex domains by the fictitious domain method. This method is applied for
solving a wide class of problems in computational fluid dynamics, including the problem of
flow around obstacles of a viscous incompressible fluid with boundary slip condition using the
Navier law [4], the two-phase Stokes problem with surface tension forces [5], the problem of
the non-Newtonian incompressible fluid motion [6], the problem of flow with arbitrary particle
density [7], the problem of modeling the interaction of movable or deformable structure with
an internal or surrounding fluid flow [8, 9|, simulations of superquadric particles in fluid
flows [10]. In [11], the fictitious domain method with H'-penalty for the Stokes problem with
the Dirichlet boundary condition is studied. [12] is devoted to the application of the fictitious
domain method in the numerical simulation of a pulse oscillation converter.

The papers [13, 14] are devoted to the study of the fictitious domain method for
problems with discontinuous coefficients. In [15,16], an elliptic equation with strongly varying
coefficients is considered. The interest in the study of such equations is caused by the fact
that equations of this type are obtained using the fictitious domain method. A special
method for the numerical solution of an elliptic equation with strongly varying coefficients is
proposed. A theorem is proved for estimating the convergence rate of the developed iterative
process. A computational algorithm is developed and numerical calculations are performed
to illustrate the effectiveness of the proposed method. In [17], modifications of well-known
iterative methods for solving grid problems are constructed that arise is the fictitious domain
method. The possibilities of the fictitious domain method are illustrated by examples of
solving the problems of ideal and viscous incompressible fluid, fluid flow in porous media
under a hydraulic structure.

Parallel implementations of the fictitious domain method are also known. For example,
in [18], a parallel fictitious domain method is constructed for the three-dimensional Helmholtz
equation, in [19] - for modeling particle-loaded flows and turbulent flow in a channel, in [20]
- for biomechanics problems.

Currently, high-performance computing is widely used in the field of scientific research.
Computer technologies and fluid dynamics models are developing every day, which allow
to evaluate and analyze various technological processes. In this regard, the efficiency of
solving scientific problems increases. Supercomputing technologies are widely used in many
industries. Calculations that are performed on graphics devices significantly speed up the
calculation of these "large problems due to their unique architecture [21,22].

Many papers have been devoted to the study of the applicability of the CUDA
parallel computing architecture to various applied problems which allows increasing
computing performance through the use of graphics processors. Its numerous applications
to computational fluid dynamics problems are known, including the problems of the oil
industry |21, 23|, the problems of the motion of a viscous incompressible fluid [24], the
problems of underground hydrogen storage [25], and others [22,26].
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3 Material and methods

3.1 The formulation of the problem

To model convective flows, we consider the Navier-Stokes equations in the Boussinesq

approximation [27] in the two-dimensional domain D = D U dD:
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with the following initial and boundary conditions:
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where u, v are components of the velocity, p is the pressure, 6 is the temperature, Re is the
Reynolds number, Gr is the Grashof number, Pr is the Prandtl number, 0D = v, U, is the

boundary of the domain D.

We introduce the current function ¢ and the velocity vortex w, which are related with

the velocity components u, v by the following relations:

o o du v

T oy’ T T o “:ay ox

u

The problem (1)-(6) in the variables ¢, w is written as follows [12]:
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a, ©, &, ni, Bi, t = 1,2 are given functions.
Introduce a uniform mesh in D:

Dh:{(xiayj)7 ml:(z_l)hb y]:(]_l)h27 7::1,...,711,

: Iy Iy
=1,...,n9, h1 = , ho = .
J g 1 n— 1 2 n2_1}

Assume that the inner subdomain Dy is a rectangle:

Dor = {(z,y), o1 <2 < Zpay Y1 <Y < Ymal}-

Consider the domain D; covering the domain Dy, that is Dy C D,. Dy =

{(z,9), 2k <o < Tpay Yms <Y < Yua}-
Consider the fictitious domain method for solving the problem (8)-(14):
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where

[ 1, (z,y) € Dy,
k(wy) = { 0, (z,y) € D\D,.

For the numerical solution of the obtained problem (15)-(18), the following explicit scheme
and the iterative method of successive over-relaxation are constructed. For simplicity, we
exclude the superscript . Replace the differential problem with its difference analog of the
following form:

Ay p 07+ Mg = W (20)
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The difference analogs of the corresponding differential operators are as follows:
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The numerical implementation algorithm is performed as follows: first, the values of w?jl

are calculated using the formula (19); then the values of ¢!} are found by (20). The obtained
values of wznjl are used to determine the values of ufjl and UZ;LI

(22); after that, using the new values of u?;rl and vZ;Ll, the values of 92}1 are calculated using
(23). The iterative process is continued until the following condition is met:

using the formulas (21),

max |w't — W] <e.
1<i<ni ) P
1<j<na

The algorithm described above is implemented using the CUDA parallel computing
architecture. The grids are divided into blocks, and each block copies the data to the shared
memory, after which each node of the individual block performs the calculation and saves
the calculated data to the global memory. In each subdomain, it is required to use data from
the neighboring subdomain, i.e. it is necessary to copy the boundary data from the global
memory, therefore, the size of each subdomain will be increased. The first stage (19), the
recalculation stage (21), (22) and the temperature calculation stage (23) are parallelizable,
since an explicit scheme is used to implement these stages. The second stage (20) is calculated
in global memory, since the neighboring values of the same iterative process are needed to
determine the current function.

4 Results and discussion

The method given above is used to numerically solve the test problem (1)-(6) for the Navier-
Stokes equations describing the motion of a viscous incompressible fluid in the current
function, velocity vortex variables in the Boussinesq approximation.
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Below, temperature distributions and current functions are presented as numerical results.
The results are obtained for different cavity sizes, temperature conditions at the boundary,
and values that determine the flow of dimensionless parameters, the Grashof Gr and Prandtl
Pr numbers.

Figures 1-4 show the results of solving the problem by the method of fictitious domain
with continuation by the lowest coefficients.
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Figure 1: Isolines of the current function. The cavity size is 1.0 x 1.0; # = 0.5, Pr = 5.39,
Gr = 100 on internal borders

The parallel algorithm of this problem was implemented using the CUDA architecture.
When implementing the parallel algorithm on CUDA, two optimization methods were used:

1. Computational data was copied to the internal subdomains, then it was copied from
global memory to shared memory. At the end of the optimization process, the boundary
data is copied from the global memory. In such cases, the size of the subdomain remains
unchanged [27].

2. In our case, it is impossible to avoid re-copying data at the border from the global
memory. In these cases, columns and rows are copied at the boundaries of the subdomain.
Therefore, the two-dimensional decomposition must be changed to a one-dimensional one.
As a result, we do not make repeated copies.

A uniform grid with dimensions of 128x128, 256x256, 512x512, 1024x1024 and 2048x2048
is used in the calculations. All data was represented as single-precision real numbers. The
computational experiment was conducted on a personal computer with an Intel Core i7-3770
3.40 GHz quad-core processor and an Nvidia GeForce GTX 550 Ti graphics card. The test
result is shown in Figure 5. During the calculation, the following optimal block size was
chosen: 16x16 (the number of threads in one block is 256). Figure 6 shows the performance
gain compared to the sequential algorithm, depending on the mesh size.
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Figure 2: Isotherms. The cavity size is 1.0 x 1.0; § = 1, Pr = 5.39, Gr = 100 on internal
borders
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Figure 3: Isolines of the current function. The cavity size is 1.0 x 1.0; § = 0.5, Pr = 5.39,
Gr = 100 on internal borders

5 Conclusion

Thus, the paper deals with the numerical implementation of the Navier-Stokes equations in
a two-dimensional two-connected domain using the CUDA parallel computing architecture.
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Figure 4: Isotherms. The cavity size is 1.0 x 1.0; the temperature on the right part of the
border is # = 0.5, the temperature on the left part of the border is §# = —0.5, Pr = 5.39,
Gr =100
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Figure 5: Execution time of a parallel algorithm on different computational meshes

The results of computational experiments show that the use of parallel algorithms using
CUDA for this kind of tasks gives a good acceleration.

Further research will focus on the creation of parallel algorithms and acceleration of
calculations related to the solution of nonlinear problems of multiphase fluid flows in porous
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Speedup
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Figure 6: Parallel algorithm acceleration on CUDA

media considered in [28] by finite element methods using the CUDA software and hardware
architecture of parallel computing.
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NUMERICAL SIMULATION OF CONTAMINANTS TRANSPORT IN
HUMAN SETTLEMENTS TAKING INTO ACCOUNT CHEMICAL
REACTIONS

In this paper, we performed a numerical simulation of the spread of pollutants due to a chemical
reaction near the roadway inside an urban street canyon. In the course of our study, we studied
the dispersion properties of the gas when it collides with the idealized buildings that make up
the urban canyon. In conclusion, a qualitative assessment was given that characterizes the nature
of the distribution of the concentration of the pollutant and the process of the appearance of
zones with increased turbulence, in which vortices are formed that interfere with the ventilation
properties of the horizontal flow, which significantly affects the health and life of people. NO and
NO; released into the canyon area were chosen as the considered reactive substances, and ozone
O,, which is present in the moving air stream, was chosen as the third reactive substance. The
results obtained can be used in the future for use by transport designers and road engineers, whose
goal is to reduce the concentration of nitrogen oxides near the pedestrian zone of the city. All the
results obtained were first tested on test problems, the results of which are in excellent agreement
with the numerical and experimental values of other authors.

Key words: urban street canyon, turbulent model, Navier-Stokes equations, LES model, chemical
reaction, air pollution, concentration, polluting emission, ozone.

A.A. Ucaxos, 2K.E. Bexkxkururosa®, 9.2K. Carkanosa

os-Qapabu arbingarsl Kazak YarTeik yausepcureri, Kazakcran, AaMars K.
*e-mail: bekzhigitova.zhangyl@gmail.com
XI/IMI/Iﬂ.TIbIK peakKnudaJsgapAabl eCKepe OTbIPDbIII, e.n,z[i MeKeH/Jep/de JIaCTaylIbl 3aTTapAblH
TachIMaJIJAHYbIH CaH/IbIK, MOJEJbIEeY

Bya xxyMbIcTa KAJAIBIK, KOTIIe KAHBOHBIHBIH, I HIET] 2KOJIIBIH YKAHBIH I8 XUMUASIBIK, PEaKIiisa HOTH-
2KEeCIHJIe JIaCTayIIbl 3aTTap/IbIH TapaJlyblH CaHJBIK MOJIEJbIeY Kyprizinai. Bisnin seprrey 6apbl-
CBIHJIa, KAJIAJIBIK, KAHBOH/IbI KYPANUTBHIH HUJICaIU3aIUIIaHFAaH FUMapaTTapMEH COKTBIFBICKAH Ke3J1e
ra3/IblH JUCIEPCUsLIBIK, KacuerTepi 3eprresi. OCchl *KyMBICTBI KOPBITBIHIBLIIANE KeJle, JIACTAYIIIbI
KOHITEHTPAIISTHBIH TaPaJIy KO3FAJIbICHI MEH OAFBITHIH CHIATTANTHIH HOTHZKEIEpl Oepiial XKoHe KoJI-
JIeHEeH arbIHHBIH YKeJIIeTy KachueTTepine KeJaepri KeaTipeTin KyWbIHaap maliga 00JIaThlH TypPOyIeHT-
Tiiri yKorapbl aftMaKTapbIH THaiiga 00JIy MPOIeCci TaJIaH/Ibl KoHe Jie Oy aJaMIap/IblH JeHCa~
VJBIFBIMEH OMipiHe afiTapsbIikTail ocep eTeTiHiH JpJene. KapacTbIpbLIFaH XUMUSIIBIK OCJICeH T
3aTTap peTiHie KaHbOH aiiMarbiHa IbirapbliaThiH N O kone N (g TaHIaIIbI, >KOHE Jie YITHII
PEaKTHUBTI 3aT peTiHAe KO3FAJATHIH aya arbIHBIHLIH KYPaMbIHAa 00JaThiH 030H (o TaHIAJIBIHBIIT
aaeraabl. Kasma xKasty »KYpriHimiaep aifMarbiHa KaKbIH TAPAJATHIH YJIbl Ta3IapIblH, SFHI a30TOK-
CUJIIHIH, KOHIIEHTPAITUSICHIH TOMEHIETY MAKCATHI OOJIBIIT TaObLIATHIH KOJIK KO0aJIayIIbLIapbIMEH
2KOJI MHXKEHEPJIEPIHIH Hali1aaHybl VIIiH aJbIHFAH HOTHXKEJIEepIl Haijatanyra 6osaasl. AJbHFaH
OapJIbIK, HOTUXKEJIED AJIJILIMEH TECT TAIChIPMAaJIAPBIHJIA CHIHAJBII 3€PTTEN YKOHE JI€ OJapiIbIH
HOTHXKeJIepl DacKa J1a FaJbIMIAPIbIH YKYMBICTAPBIMEH CAJIBICTBIPBIIBII, OJIAPIBIH, CAHBIK, YKOHE
9KCIIEPUMEHTTIK HOTHUIKeIePl KAKChl COMKECTiK KOPCETTI.

Tyitin ce3aep: KAJTAJbIK KoIlle MAaTKAJIbl, TypOyseHTTi Mojenb, HaBbe-Croke Temeyrepi, LES
IVIOJ:LQJIL XUMUAJBIK peaKInud, ayaHblH JIaCTaHYbI.
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YucsieHHOEe MO/IeJIMPOBAHUE MEPEHOCA 3arpsA3HSIIONINX BEIECTB B HACEJIEHHBIX ITYHKTaX C
y4eTOM XMMUYECKUX PeaKI[uil

B macrositeit pabore GbLIO TPOU3BEIEHO YUCIEHHOE MOJIETUPOBAHNE PACIIPOCTPAHEHUST 3arpsi3Hsi-
IOIUX BEIECTB BCJIEJICTBHE IPOTEKAHMS] XUMUYIECKONW peaknuy BOJIU3U MPOe3KeH J9acTh BHYTPH
rOPOJICKOTO YJIMYHOI'O KaHbOHA. B X0/1e HaIllero nmpoBeIeHHOIO UCC/Ie0BaHusI ObLIM U3y YeHbl JUC-
IIEPCUOHHBIE CBONCTBA Ia3a IIPU CTOJKHOBEHUU C UJeATU3NPOBAHHBIMUI 3IaHUSIMU, COCTABJISIOIIAMHU
TOPOJICKOI KaHBOH. B 3ak/oueHnn Obljia JTaHA KAIeCTBEHHAs OIEHKA, XaPAKTEPU3YIOMAs XapaK-
Tep PacIpOCTPAHEHNE KOHIIEHTPAINH 3arPsA3HUTEIsI U IIPOAHAIN3UPOBAH IIPOIECC MMOABJICHUS 30H
C TOBBIIMIEHHON TYyPOYJIEHTHOCTHIO, B KOTOPBIX 00PA30BBIBAIOTCS BUXPH, IPEISITCTBYIOININE BEHTH-
JISIMUOHHBIM CBOMCTBAM T'OPU30HTAJIBHOIO IIOTOKA, YTO B 3HAYUTEIbHON CTEIIEHU CKAa3bIBAETCS HA
3JI0POBbe U YKU3HEEeATeIbHOCTH JIofleil. B KadecTBe paccMaTpuBaeMbIX XUMIYIECKN aKTUBHBIX Be-
mectB 6 BeIOpaHbl NO u NOs, BeIOpacbiBaeMbie B 00/1aCTh KAHBOHA, TPETHUM PEaKITHOHHBIM
BemecTBOM ObLT BeIOpaH 030H (Jo, TPUCYTCTBYIONINIT B COCTaBE JBUXKYINETOCH ITOTOKA BO3IyXa.
[Moyuennble pe3yabTaThl MOTYT OBITH UCIIOJIB30BAHBI B JAJbBHENIIEM JIJIs UCIOJIb30BAHIS TPAHC-
ITOPTHBIMU TPOEKTUPOBITUKAMY U JIOPOYKHBIMI NHKEHEPAMU, TEJIBI0 KOTOPBIX SIBJISIETCS CHUYKEHUE
KOHIIEHTPAIUU OKCHUOB a30Ta BOJIM3U IEIIeXOMHON 30HbI IOpojia. Bce MmojiydyeHHbIE PE3y/IbTaThI
ObLIN CHAYAJIA AllPOOMPOBAHBI HAa TECTOBBIX 3a/ad, PE3YJIBTAThI KOTOPBIX OTIMYHO COIVIACYIOTCS C
YUCJIEHHBIMU ¥ 9KCIEPUMEHTAIbHBIMY 3HAYECHUSIMU JIPYTUX aBTOPOB.

KurodeBble cjioBa: TOpOACKON YAWYHBIN KaHbOH, TypOyJIeHTHas MOAe b, ypaBHeHuss Habbe-
Crokca, mozens LES, xuMudeckast peakiusi, 3arps3HeHne BO3/LyXa.

1 Introduction

Every year, with the growth of technological progress and widespread urbanization of cities,
we can observe a colossal increase in vehicles and the growth of industrial zones, which in turn
led to the maximization of daytime traffic and a commensurate increase in the concentration
of exhaust gases in the pedestrian zone [1], [2]. Transport is a source of toxic gases such
as sulfur dioxide SO,, nitrogen N, nitrogen oxides NO,, carbon monoxide C'O, carbon
dioxide C'O,, aldehydes, heavy metal compounds, benzene CgHg, carcinogenic benzopyrene
C50H 2, as well as particulate matter and soot hazardous to health. The height of the
building in the street canyon is much greater than the width of the road, which creates a
harmful environment in the space without air circulation due to weak gusts of wind. The
high concentration of pollutants from exhaust gases in the air pool is harmful to human
health, especially asthma, chronic diseases of the digestive, cardiac, nervous and respiratory
systems [3]. Tominaga Y., Stathopoulos T. [4], [5] conducted a number of studies to study the
mechanism of the formation of pollutants in the pedestrian zone. In these studies, wind tunnel
experiments were performed and numerical simulations were performed using computational
fluid dynamics (CFD).

One of the most ambitious problems in the field of chemical reactions is the interaction
of ozone with NOx molecules: as you know, the air contains a fraction of ozone, which
periodically interacts with nitrogen mono- and dioxides, entering into an exchange reaction.
The resulting substances have a detrimental effect on the health of all living organisms.
This problem has been studied by Carpenter, L.J., Clemitshaw, K.C. [6], in addition,
recommendations and analysis of the quality of the air in the areas adjacent to the canyon
were given. Also in Baker, J., et al. [7] took into account the photochemical properties of
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the ongoing reactions. In studies Zhong J. et al. [8] the numerical results that were solved
using the LES model coincide with the experimental values. Also, with the LES model, good
results were seen for the emerging product with a compound of ozone O3 and nitrogen oxide
NO. This problem was studied by Kim M. et al. [9]. The paper [10] examines the sensitivity
of O3 to NOx and VOC emissions. This study is an attempt to analyze the spread of dozens
of reactive pollutants in and over a street canyon using a CFD model.

In this article, numerical results were presented, in which the course of a chemical reaction
was considered, a comparative analysis of the results obtained with experimental data was
made, after which a qualitative conclusion was made about the consistency of the obtained
data with empirical values. In the task, a mixture of ozone with carbon monoxide was
investigated, which, as a result of chemical reactions, decomposes into carbon dioxide and
oxygen. All numerical calculations were carried out in an idealized street canyon, which
consists of two buildings, in addition, a pollutant emerges in the middle of the street along
the entire length of the roadway.

2 Formulation of the problem

Denev J, A., Frohlich J., Bockhorn H. [11] carried out a direct numerical simulation (DNS) of
a transverse flow with a jet emerging from a circular cylindrical tube; as a result of collision
of flows, a chemical reaction occurs in the forward direction. This simulation was calculated
with a small value of the Reynolds number, equal to Re = 275. For the study, a three-
dimensional model of a microreactor was built in the center, consisting of two transverse
flows. All dimensions are reduced to dimensionless, with the value of the pipe diameter,
where D = 8mm (D is the pipe diameter). The vertical axis is located at a 3D distance from
the horizontal axis. Height and width of horizontal pipe 13,5D, length 20D, pipe height 2D.
The tube configuration is shown in detail in figure(Puc.1).

Figure 1: Parameter of the calculated area

An unstructured mesh was created for the simulation. In the geometry, a computational
subdomain was created, to which the mesh was refined, the location of the subdomain was
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chosen near the cylindrical pipe. The total number of elements is 1104850, the number of
nodes is 192787. Figure (Puc.2) show the groups of the studied territories.

Figure 2: Through the calculated area in the plane (a) XOZ (b) XOY

Damkehler’s number Da = 1.0 is chosen so that the simulation estimate is available. As
the calculated indicators in the calculation, it was assumed that the kinematic viscosity of
air v = 1.406107° m?/s, density p = 1.225 kg/m3, velocity is u = 0.48 m/s. All values are
obtained empirically and are completely physical [12].

3 Materials and Methods

Determination of the reactive flow velocity with the main velocity is denoted as R =
Upjet/U = 2.42. The volumetric flow rate is Up jer = 1.16 m/s. The flow velocity from the
cylindrical pipe is characterized by the following velocity profile:

w (r) /Upjee =2 [1 = (r/ (D/2)%)], (1)

here, r - is the radial coordinate, w - is the vertical velocity component. The velocity profile
at the flow boundary can be described as follows:

u(dy) = 1.0 — exp(—3.0d,), (2)
here, d,, - the closest distance to the channel wall, that is [11]:
d,, = min(x, L, — x). (3)

All limited conditions The reference area is shown in more detail in the pictures(Puc.3).

In this work, the numerical results were compared with the experimental and numerical
values of Denev J, A. [11]. Figure (Puc.4) shows the average velocity of the horizontal velocity
component.

Figure (Puc.5) shown is the average speed v of the speed component. The figure (Puc.5)
compares the profiles of the middle conceptions of the B version, with a freely selectable

To solve the problem inside the urban canyon, the study by Baker, J. [7] was used. It
was accepted that H/W = 1. When creating a computational model, a three-dimensional
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Figure 4: Comparison of the profiles of the average velocity u at the indicated points

computational domain was adopted. Figure (Puc.7) 8 illustrates the configuration of the
computational domain. The height of the buildings is the same and equal to the value of
H = 18, the width of the canyon is equal to W = 18. In the center of the pedestrian part,
there is a source of pollutant, 0.3 m by 0.3 m in size. Gas C'O and NO, come out of the
source, which enters into a chemical reaction with ozone O3, moving in a cross-flow.

Os + NO = NOy + O, (4)

Os +CO = COy + O, (5)
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Unlike the initial gases, the reaction products have a detrimental effect on the health of
living organisms, as a result of which the substitution reaction is the object of close study.

Figure (Puc.8) shows an image of the computational domain. Thickening was carried out
along the street of the canyon at a height of 30 above the source of pollution. The total
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Figure 7: 3D model of the investigated term; Parameter of the calculated range from the
XOY and YOZ planes

-,,L.II-— .--—1

Figure 8: Powerful area

number of elements and nodes is 1526580 and 264265 respectively.

4 Numerical results

The study was carried out using the ANSYS Fluent. The time step size is 1. The total
computation time was one hour, and the result was visualized. The LES model was used
in conjunction with calculations of the chemical reaction caused by pollutants within the
canyon. The numerical calculation was carried out using the SIMPLE algorithm (partially
closed method for pressure-dependent equations).

The chemical reaction was solved using the Smagorinsky model. Smagorinsky’s constant
is equal to Cs = 0.1. According to reaction (4) figure (Puc.9) shows the mass fraction of mean
concentrations in the windward and lateral relief of NO, NOy, Os.

The mass fraction profile of the average concentration of CO, COy and O3 -coating at a
height of 0,3 m from the pollution source is shown in figure (Puc.11). According to reaction
(5) figure (Puc.11) shows the mass fraction of the average concentrations of CO, CO, and Oj
in the windward and lateral relief. In figures (Puc.10) and (Puc.12) the detection of pollutant
concentrations was visualized using ANSYS Fluent Volume Rendering.
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5 Conclusion

At the beginning of the work, a literature review was carried out on modeling the chemical
reaction that occurs when pollutants from vehicles are detected in the city street gorge in
order to identify the main problems in this industry. A mathematical model was developed
to describe the flow. To ensure the correctness of the mathematical model and numerical
algorithm, the test problem was solved using the ANSY'S Fluent software package. The results
of the study show that to check the growth rate and determine the mass of the formed chemical
products of a chemical reaction, a test task was performed, and then checked and compared
with the results of experimental and numerical studies by well-known authors; the search for
the most efficient turbulence model was carried out; the geometry of the real dimensions of
the city street canyon was created, divided into groups and the computational domain was
condensed; reactive substances NO, C'O, interacting with ozone from the source of pollution
and emitting toxic gases such as NOy, COs, harmful to human health, were quantified and
visualized.

In street canyons, depending on the length of buildings and the configuration of the
street, gases such as NOsy, CO,, are dispersed, which leads to disruption of the normal
circulation of the wind flow. Even in the gorge, this leads to an increase in temperature and
an accumulation of concentrations of life-threatening gases. The direction of the wind can
change and intensify, causing a hurricane. In addition, the slope of the gorge is 4 times more
polluted with ultrafine particles than the wind slope. This means that the most polluted air
is breathed in the pedestrian zone. The research results can be applied to numerical modeling
in the future to solve new questions and problems in the studied area of knowledge.
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