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The photodisintegration cross section observed just above the neutron threshold energy in 9Be is discussed in the 
framework of an α + α + n three-cluster model and the complex scaling method. The observed cross sections 
shows a remarkable sharp peak, which has been discussed in association with photo-neutron reactions in 
nucleo-syntheses of chemical elements. It is discussed that the enhancement of the peak is understood by taking 
into account a virtual state but not a resonant state. The complex scaling method cannot reproduce an eigenvalue 
corresponding to the virtual pole, but provides us with a useful tool for investigation of the photodisintegration 
cross section.  

 
Key words: photodisintegration cross section, 11 / 2  state of 9Be, virtual state, cluster model, complex scaling method 
PACS number(s): 27.20.+n 6 19A  , 21.60.Gx, 24.30.Gd, 25.20.Lj 

 
 
1 Introduction 
 
It is a longstanding problem to determine its 

resonance energy and width of the first excited 1/2+ 
state of 9 Be, which is closely connected with the 
problem to clarify whether it is a resonant state or not 
[1 – 7]. Recently, we studied the 1/2+ state of 9Be and 
the photodisintegration cross section (PDXS) 
applying the complex scaling method (CSM) [8 – 11] 
to the α + α + n three-cluster model [12, 13]. The 
results indicate that there is no sharp resonant state 
corresponding to the distinct peak observed just 
above the 8Be+n threshold in the photodisintegration 
cross section of 9Be. On the other hand, the recent 
experimental cross section data [14 – 16] can be well 
explained by the α + α + n  calculation. From these 
results, we concluded that the first excited 1/2+ state 
in 9Be is a 8Be n  virtual state but not resonant one. 

The virtual states in nuclear systems have been 
discussed in the T = 1 states of two-nucleon systems 
for a long time [17, 18], and recently they attract 
much interest again in association with weak binding 
problems of neutron rich nuclei [19 – 21]. The 
low-energy photodisintegration reaction of 9Be has 
also received much attention from the viewpoint of 
the astrophysical interest [22, 23]. The 
photodisintegration cross section has been discussed 

to be negligibly small in the energy region between 
thresholds of α + α + n (1.5736 MeV) and 8Be n  
(1.6654 MeV) [14, 15, 16]. The observed cross 
section above the 8Be n  shows a prominent peak, 
although there are some discrepancies among the 
experimental absolute values. The cross section 
profile has an asymmetric shape and cannot be 
explained by a simple resonance formula like the 
Breit-Wigner form. 

In next section, we briefly explain the framework 
of the α + α + n three-body model and the CSM. In 
section 3, the results are shown. A conclution is 
given in section 4. 

 
2 Framework 
 
2.1 α + α + n model 
We briefly explain the α + α + n three-body 

model employed in the present work, whose details 
are given in Ref. [12]. We here solve the Schrödinger 
equation for the α + α + n system using the 
orthogonality condition model [26]. The Schrödinger 
equation is given as  

 
ˆ = ,

J J
H E 

   
              

(1) 
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where Jπ is the total spin and parity of the α + α + n 
system and v is the index of eigenstates. The energy 
eigenvalue E  is measured from the α + α + n 
threshold of 9Be. The Hamiltonian for the relative 
motion of the α + α + n  three-body system is given as  

 
3 2

. . 3
=1 =1

ˆ = ( ) ,i c m n i PF
i i

H t T V V V V      
   

(2) 

 
where ti and Tc.m. are kinetic operators for each 
particle and the center-of-mass of the system, 
respectively. The interaction between the neutron 
and theith α particle is given as ( )n iV  , where i  is 
the relative coordinate between them. We here 
employ the KKNN potential [27] for Vαn. For the α – 
α interaction Vαα we employ the same potential as 
used in Ref. [12], which is a folding potential of the 
effective NN interaction and the Coulomb 
interaction. The pseudopotential 

= | |PF PF PFV     is the projection operator to 
remove the Pauli forbidden states from the relative 
motions of α – α and α – n [28]. The Pauli forbidden 
state ФPF is defined as the harmonic oscillator wave 
functions by assuming the (0s)4 configuration, whose 
oscillator length is fixed to reproduce the observed 
charge radius of the α particle. We here take  as 106 
MeV. 

In the present calculation, we introduces the 
n    three-body potential V3. The explicit form 

of 3V  is given as  
 

2
3 3= exp( ),V v               (3) 

 
where ρ is the hyper-radius of the α + α + n  system. 
The hyper-radius is defined as 2 2 2= 2 (8 / 9)r R  , 
where r is the distance between two α's and R  is 
that between the neutron and the center-of-mass of 
the α – α subsystem. To reproduce the ground-state 
properties, we take the strength v3 and the width μ as 
1.10 MeV and 0.02 fm–2, respectively. For other 
spin-parity states, we employ the same value of μ as 
used in 3/2– states, but different strengths are used to 
reproduce the energy positions of the observed peaks 
in the photodisintegration cross section. 

We solve the Schrödinger equation with the 
coupled rearrangement-channel Gaussian expansion 
method [29]. In the present calculation, the 9Be wave 

function 
J

  is described in the Jacobi coordinate 

system as 
 

1/2= ( ) ( ) ( ) , ,i j
cij l c L cJ I Jcij

C J r R  
 

       
  

(4) 

 
where ( )cijC J   is a expansion coefficient and χ1/2 is 
the spin wave function. The relative coordinatesr c  
and Rc are those in three kinds of the Jacobi 
coordinate systems indexed by c = (1, 2, 3), and the 
indices for the basis functions are represented as i and 
j. The spatial part of the wave function is expanded 
with the Gaussian basis functions [29]. 

2.2 Complex scaling method 
To calculate the photodisintegration cross 

section, we use the complex scaling method (CSM) 
[24, 25]. In the CSM, the relative coordinates ξ ( r c  
and Rc) are transformed as  

 
1( ) ( ) = ,iU U e    

           (5) 
 

where ( )U   is a complex scaling operator and   
is a scaling angle being a real number. Applying this 
transformation to Eq. (1), we obtain the 
complex-scaled Schrödinger equation as  

 
ˆ ( ) = ( ).

J J
H E   

    
          

(6) 
 
By solving the complex-scaled Schrödinger 

equation with appropriate L2 basis functions, we obtain 
the energy eigenvalues E

  and eigenstates ( )
J


   

(their biorthogonal states ( )
J


  ) [24, 25]. 

 

 
Figure 1 – Schematic picture of energy eigenvalue 
distribution on the complex energy plane for the  

n    system 
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The energy eigenvalues E
  obtained on the 

complex energy plane are governed by the ABC 
theorem [8, 9]. A schematic picture of the energy 
eigenvalue distribution is shown in Fig. 1. In the 
CSM, the energies of bound states are given by real 
numbers and are invariant under the complex scaling. 
On the other hand, resonances and continuum states 
are obtained as eigenstates with complex energy 
eigenvalues. The resonances are obtained as isolated 
eigenstates on the complex energy plane, whose 
energies are given as = / 2rE E i

    . The 
resonance energies rE  and the decay widths   
are independent of the scaling angle θ. The 
complex-scaled continuum states are obtained on 
branch cuts rotated down by 2θ  as shown in Fig. 1. 
The branch cuts start from the different thresholds for 
two- and three-body continuum states in the case of 
the α + α + n system as shown in Fig. 1. This 
classification of the continuum states is useful in 
investigation of properties of the 9Be 
photodisintegration. 

Using the energy eigenvalues and eigenstates of 
the complex-scaled Hamiltonian Ĥ  , we define the 
complex-scaled Green's function as  

 
1( ; , ) = | | =ˆ

( ) ( )
.J J

G E
E H

E E




 
 

 

   

 



 


 


 


        
(7) 

In the derivation of the right-hand side of Eq. (7), 
we use the extended completeness relation, whose 
detailed explanation is given in Ref. [30]. 

We calculate the cross section of 9 Be
(3 / 2 ) n        in terms of the 
electromagnetic multipole responses. In the present 
calculation, we focus on the low-lying region of the 
photodisintegration cross section and take into 
account only the dipole responses. The 
photodisintegration cross section   is given by the 
sum of those by the 1E  and 1M  transitions as  

 
1 1( ) = ( ) ( ),E ME E E

            (8) 
 

where Eγ is the incident photon energy. The energy E 
in Eq. (7) is related to Eγ  as E = Eγ – Egs, where Egs 
is the binding energy of the 9Be ground state 
measured from the α + α + n threshold. The cross 
sections for the electromagnetic dipole transitions 

1EM  are expressed as the following form:  
 

3

1

( 1, )16( ) = .
9EM

E dB EM E
E

c dE
 





 
 
       

(9) 

 
Using the complex-scaled Green's function given 

in Eq. (7), the electromagnetic dipole transition 
strength is given as

  
 

1

( 1, ) 1 1 ˆ= ( ) || || ( )
2 1 gs EM

gs

dB EM E
Im O

dE J
  



 



    

    

 1
1 ˆ( ) || || ( ) ,EM gsO

E E
 




 


    


                                
(10) 

 
 
where Jgs and Ψgs (θ) are the total spin and the wave 
function of the ground state, respectively, and 1

ˆ
EMO  

is an electromagnetic dipole transition operator. 
 
3 Results 
 
We first show the calculated ground-state 

properties of 9Be and their v3 dependence. The 
calculated binding energy and charge and matter 
radii are listed in Table 1. Without the three-body 

potential in Eq. (2), the binding energy of the 9Be 
ground state is overbound and the charge radius is 
slightly small compared to experiments. To 
reproduce these quantities, we need the repulsive 
three-body potential whose parameters are given 
as v3 = 1.10 MeV and μ = 0.02 fm–2. As results, we 
reproduce the binding energy and charge radius of 
the 9Be ground state simultaneously, while the 
matter radius is slightly larger than the observed 
one. 
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Table 1 – 9Be ground-state properties in comparison with experiments. The calculated binding energies Egs in MeV, 
charge radii Rch, and matter radii Rm with different three-body potential strengths v3 are listed. 

 
3v  (MeV)  gsE  (MeV)  chR  (fm)  mR  (fm)  

.0   2.14 2.50  2.39 
.10   1.57 2.53  2.42 
exp.   1.5736[32] 2.519 0.012 [33]  2.38 0.01 [34]  

 
 

Next we confirm that no resonance of the 1/2+ 
state is found with the three-body potential given in 
Table 1 for the θ = 15o case. We discuss the 
photodisintegration cross section to 1/2+ states. In the 
present calculation, we fix the ground-state wave 
function obtained with the three-body potential in 
Table 1. In Fig. 2, we show the calculated cross 
sections using Eq. (9) in comparison with the two 
sets of the observed data [14, 15] which commonly 
have peaks just above the 8Be n  threshold. The 
dashed and dotted lines show the cross sections with 
and without the three-body potential for excited 1/2+ 
states, respectively, whose parameters are the same 
as those in Table 1. In both results, the calculated 
cross sections underestimate the low-lying peak 
above the 8Be n  threshold.  

 

 
Figure 2 – Calculated photodisintegration cross sections  

in comparison with experimental data. The arrow indicates 
the threshold energy of the 8Be(0+) + n channel 

 
 
To discuss the observed sharp peak just above the 

8 Be n  threshold in the photodisintegration cross 
section, we change the strength 3v  for the 1/2+ state 
to fit the observed data, but its range   is fixed as 
the same as used in the ground state. We here take the 
strength as v3 = – 1.02 MeV for the 1/2+ state and 
obtain the cross section as shown by the solid line in 
Fig. 2. Our result reproduces the observed peak by 
using the attractive three-body potential. The origin 
of the three-body potential would be a strong 

state-dependent tensor force and an antisym-
metrization of the nucleon among different three 
clusters. It can be estimated that the tensor force 
gives a repulsive effect for a p -shell neutron around 
two α clusters but an attractive one for a higher 
s-shell neutron [31]. We confirm that the calculated 
cross section rapidly increases just above the 8Be n  
threshold and there is negligibly small strength below 
this threshold. We also find that the calculated cross 
sections show the strong dependence on the strengths 
of the three-body potentials as shown in Fig. 2. This 
result is interesting and suggests the existence of the 
three-body unbound state of 9Be(1/2+), such as a 
resonance or virtual state. In relation to the cross 
section, we discuss the character of the 1/2+

 state. 
To see the origin of the low-lying peak above the 

8Be n  threshold in more detail, we show the 
distribution of the energy eigenvalues of the 1/2+ 
states by using the CSM. In the CSM, continuum 
states are obtained along the branch cuts which start 
from the threshold energies and are rotated down by 
2θ. A resonance is obtained as a solution with a 
complex energy of / 2rE i    which is isolated 
from the continuum states. However, the virtual 
states and broad resonances, which are located on the 
second Riemann sheet covered by the rotated first 
Riemann sheet, cannot be obtained as the isolated 
pole in the CSM. The contributions from these states 
to the cross section are scattered into the continuum 
states located on the 2θ lines. In Fig. 3, we show the 
distribution of the energy eigenvalues for the 1 / 2  
states calculated with v3 = – 1.02 MeV, which 
reproduces the observed peak as shown in Fig. 2. In 
the present calculation, we find no resonances in the 
energy eigenvalue distribution. All energy 
eigenvalues are located on the 2θ lines, 
corresponding to the branch cuts for the α + α + n, 
8Be (0 ) n  , and 5He(3/2–)+α continuum states.  

We investigate the contributions of two- and 
three-body continuum states to the cross section to 
understand the mechanism of the photodisin-
tegration.  
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Figure 3 – Distribution of energy eigenvalues  

of 1 / 2  states solved with the strength  
3 = 1.02v   MeV and the scaling angle = 15   

 
We decompose the cross section calculated with 

v3 = – 1.02 MeV into 8Be n  and α + α  components 
as shown in Fig. 4, to see the dominant contribution 
in the cross section. The 5 He   contribution is 
found to be negligible in the low-lying region, and 
we do not show it in Fig. 4. From Fig. 4, we see that 
the 8Be n  component is almost identical to the total 
cross section. This fact indicates that the 8Be+n 
breakup is dominant in the photodisintegration. This 
breakup process should be related to the structure of 
the 1/2+ state of 9Be. To investigate the structure of 
the 1/2+ state of 9Be, we calculate the energy 
eigenvalues of the α + α + n  system by changing 
the strength of the three-body potential v3, which is 
shown in Fig. 5. In the present calculation, when 
the strength of the three-body potential v3 = – 1.3 
MeV, the resonance pole suddenly appears just 
below the 8Be(0+) + n threshold. This resonance pole 
with a narrow decay width moves smoothly to the 
bound state region as the three-body potential 
becomes more attractive, and we finally obtain the 
9Be bound state with the region of v3 < – 1.8 MeV. 
On the other hand, we consider the pole trajectory in 
the opposite case of the three-body potential with v3 = 
– 1.3 MeV. If the resonance exists, the pole with a 
narrow decay width should appear above the 8Be n  
threshold as the analytical continuation from the 
resonance pole as shown with the crosses in Fig. 5. 
However, we found that no resonances appear above 
the 8Be(0+) + n  threshold for v3 = – 1.3 MeV of the 
three-body potential. These facts in the pole 
trajectory show the possibility of the virtual state of 
the 1/2+ state consisting of 8Be(0+) + n when we take 
v3 = – 1.02 MeV, which reproduces the experimental 
cross section. The existence of the virtual state is 
consistent with the dominant decay into 8Be + n in 
the photodisintegration of 9Be. 

 

 
Figure 4 – Decomposed photodisintegration cross 

sections. The solid and dashed lines are  
contributions of the n    and 8Be+n continuum 

states. The black thin line is the same as that in Figure 3 
 

 
Figure 5 – Pole trajectory of the 9 Be 1 / 2  state in a 

complex energy plane by changing the three-body 
potential. The closed circles represent the poles obtained 

as isolated three-body resonances in CSM. The open 
circles and crosses are speculated pole positions for the 

virtual states and broad resonances, respectively 
 
 
4 Conclusion 
 
We investigate the character of the 1/2+ state of 

9Be using the photodisintegration reaction with the 
α + α + n three body model and the CSM. The 
calculated photodisintegration cross sections into 
the 1/2+ states are shown to have a strong 
dependence on the strength of the three-body 
potential for the 1/2+ state. The experimental cross 
section shows a sharp peak just above the 8Be n  
threshold, which is nicely reproduced with the 
attractive three-body potential. We cannot find any 
resonance poles for the 1/2+ states in explaining the 
peak in the cross section. From the decomposition 
of the calculated cross section, it is shown that the 
8Be n  continuum states dominate the cross 
section to the 1/2+ states. These results indicate the 
possibility of the virtual-state nature of the first 
excited 1/2+ state. In addition, the pole trajectory 
suggests that the pole of the 1/2+ state is located on 
the second Riemann sheet of 8Be n  instead of the 
broad resonances of α + α + n. 
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To search undiscovered superheavy elements, a series of commissioning experiments for the new gas-filled 
separator GARIS-II at RIKEN was recently carried out. A new data acquisition method was tested to study the 
short-lived   decay. Both the   decay and evaporation residues were detected by the silicon detectors, and 
the preamplified waveforms were then directly registered by a flash ADC and analyzed by means of a pulse shape 
analysis. This paper describes the identification of two sequential pulses (pileup events) from short-lived   
decays and the determination of their energy and time difference by the template fitting method. The 
performance of the present system was evaluated by using a simulated data set and was successfully employed 
for online experimental data such as 220Ac → 216Fr. 

Key words: Superheavy elements, Pulse-shape analysis,   decays, short half-life 
PACS numbers: 25.70.Ji, 23.60.+e, 29.85.Fj 

1 Introduction 

A project for synthesizing the 113th element by 
the cold-fusion reaction 209Bi(70Zn, n)278113 started at 
RIKEN in 2003. Three decay chains originating from 
278113 were observed in 2004, 2005, and 2012 [1-3] . 
This project came to an end with the observation of 
the third decay chain. Our focus is now on the search 
for undiscovered heavier new elements such as Z = 
119 and beyond. A series of commissioning 
experiments for the new gas-filled separator 
GARIS-II [4] designed for hot fusion reaction has 
almost been completed. 

2 Data acquisition and analysis systems for 
the short lived decay 

The half-lives of undiscovered isotopes are 
calculated by many theoretical approaches. As for 
298120, typically if the Qα value is around 13 MeV, 
the half-life will be on the order of microseconds [5, 
6]. However, the measurement of the decay 
properties of such short-lived decays is difficult with 
the existing data acquisition system. The 
preampilfied waveforms have a long tail; therefore, 
in the case of a short-lived decay, two sequential 

pulses pile up. These piled-up pulses are shaped 
together in the shaping amplifier; thus, the 
information of an individual decay, such as the decay 
energy and time, will be lost. We overcome this 
problem by using a hybrid system utilizing analog 
and digital data acquisition systems; the former is the 
original system, whereas the latter is specialized for 
pileup events, where the time difference between two 
sequential events (ΔT) is less than 10 μ s. The 
waveforms from the preamplifiers of the silicon 
detectors are directly registered with flash ADCs to 
avoid the summing phenomenon. The readout system 
of GARIS-II is explained in [7]. 

Subsection 2.1 describes a method for analyzing 
the preamplifier waveforms to extract the decay 
information, and subsection 2.2 presents a 
performance evaluation of this system. 

2.1 Pulse shape analysis 
The left panel of Figure 1 shows preamplified 

piled-up pulses. Case (i) shows that both the first and 
second α particles are stopped in the double-sided 
silicon strip detector (DSSD). Case (ii) shows that the 
first α particle is stopped in the DSSD, and the 
second α particle escapes from DSSD; therefore, 
only part of the   energy is deposited in the DSSD, 
and vise-versa for case (iii). When the evaporation 
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residues are implanted and the subsequently 
decaying   particles are detected, the waveforms 
are also similar to case (ii). The decay properties are 
determined through a two-stage pulse shape analysis 

(PSA). The first stage is event identification to 
determine whether the detected pulses result from 
single events or pileup events, and the second stage is 
template fitting.

 
 

 
 

Figure 1 – Left: Original waveforms of pileup events. The sampling period is 8 μs (10 ns/ch).  
Right: the solid lines indicate the derivatives of the waveforms shown on the left.  

The blue line shows the threshold (vth.) for calculating the mean of the time over threshold (MTOT).  
The values of the first-pulse amplitude (V1st) and MTOT are shown for each case 

 

 
Figure 2 – (a) Relation between the MTOT and V1st.  

Single events are distributed around the logarithmic line. Pileup events are found above the line.  
The data point for case (ii) in Figure 1 is indicated by an arrow. (b) Histogram of the distribution of MTOT – MTOTsingle. 

The threshold for discriminating single and pileup events is set at 14.2 ns 
 
 
The graphs on the right side of Figure 1 show the 

derivatives of the waveforms shown in the graphs on 
the left side. The identification of single or pileup 
events is performed by calculating the mean of the 
time over threshold (MTOT) [8] of these waveforms. 
The MTOT is defined as 
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where t is the time (10 ns/ch), tm is the sampling 
period, vt is the amplitude, vth. is the amplitude 

threshold, and T is the minimum t when wt =1. For 
pileup events, the MTOT depends on the ΔT and 
energy ratio (E1st / E2nd) between two pulses. The 
MTOT for each case is presented in Figure 1. In 
general, the MTOT is small when the ΔT is short or 
when the pulse height of second pulse is smaller than 
that of first pulse, as shown in case (ii). 

The MTOT is compared with the pulse height of 
the first pulse (V1st). The values of V1st are also shown 
in Figure 1. Figure 2(a) shows the relation between 
the MTOT and V1st. Single pulses are distributed 
along the logarithmic line 

 
1M = log( ),single stTOT a V b           (2) 
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where a and b are derived for each stripped channel 
of the DSSD. Figure 2(b) shows a histogram of the 
difference of the MTOT  from the logarithmic line, 
i.e., MTOT – MTOTsingle. The Gaussian distribution 
denotes single events, and the tail on the right side 
denotes pileup events. The threshold for 
discriminating single and pileup events is set at 14.2 
ns ( 2  of the single-event peak). 

Both the single and pileup waveforms are fitted 
with the template function. The fitting formula is  

 
( ) = [0] ( [1]) ,f t A template t A baseline       (3) 

where the free parameters [0]A  and [1]A  are the 
pulse height and time offset, respectively. The left 
panel of Figure 3 shows a typical example of the 
template function, which is created by averaging 
many waveforms. The right panel of Figure 3 
shows the reduced χ2 distribution for the fitting of 
single pulses. The number of events for creating a 
template was varied among the values of 2, 5, 10, 
and 200, and the energy range was 5-6 MeV. 
Under the present conditions, only five events are 
sufficient for the creation of an accurate template 
function.  

 

 
Figure 3 – The left panel shows the template function created by averaging many waveforms.  

The right panel shows the reduced χ2 distribution for the fitting of single pulses. 
 
 
Each pulse of a pileup event is fitted separately. 

Considering Etempl. as the calibrated energy of the 
template, the energy of the fitted pulse is deduced by 
A[0]· Etempl.. In addition, the decay time of the second 
event is determined as A2hd [1] – A1st [1]. 

2.2Performance evaluation 
To evaluate the performance of the PSA, a 

simulation study was performed. Pileup events were 
artificially created by summing two single pulses 
obtained in an online experiment. Pulses with 
energies of 1-20 MeV were selected. The T  were 
fixed at 50, 100, 200, 300, 400, 500, 600, and 700 ns. 

Figure 4 shows the efficiency of pileup 

separation by the MTOT method. Here, the 
efficiency is defined as the ratio of the number of 
identified pileup events relative to the total number 
of events. The efficiency is almost 100% down to a 
ΔT of 300 ns for E1st / E2nd ranging from 0.06 to 16. 
Figure 5 shows the energy and time-difference 
accuracy of the template fitting. Events that have the 
correct energy   380 keV and correct ΔT ± 30 ns 
were considered to be successfully fitted. The results 
are again satisfactory unless the ΔT is small. Note 
that for both the efficiency and accuracy of the PSA, 
the performance deteriorates when the E1st / E2nd is 
large.

 
 

Figure 4 – The efficiency of pileup-event  
separation by the MTOT method.  

This is the efficiency for identifying every event as  
a pileup event and not as a single event

Figure 5 – The accuracy of the template-fitted  
waveforms. As criteria for successful fitting, an energy 

width of ± 380 keV and a ΔT width of ± 30 ns with respect 
to the true energy and ΔT, respectively, were used
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The PSA was applied to online experimental 
data. Figure 6 shows some examples of 220Ac →216Fr 
pileup events. The top graphs show the derivative 
waveforms, the middle graphs show the fittings of 
the first pulses (220Ac), and the bottom graphs show 
the fittings of the second pulses (216Fr). The values of 
the extracted   decay energies and decay times are 
also indicated in the figure. These pileup events were 
assigned by confirming the decay chain of 224Pa 
→220Ac + 216Fr → 212At with the analog system. For 
these four events, the decay energies of the pileup 
events from 220Ac and 216Fr measured by the analog 
system are 16.8, 16.7, 16.7, and 16.8 ± 0.1 MeV from 
the left panel to right panel. The known values of the 
  decay energies for 220Ac and 216Fr are 7.86, 7.71, 
and 7.79 MeV ( 10I  ) and 9.01 MeV, respectively, 

and the half-life for 216Fr is 0.7 μs [9]. The cases 
shown in the three left-most panels are in good 
agreement with reference values. As the energy 
resolution depends on the T  of pileup events, the 
best resolution for < 200T  ns was 0.21 MeV 
(FWHM). In the right-most panel, the waveform 
could not be properly differentiated because of the 
slow rise time and noise. This situation also leads to 
the misidentification of the pulse type, i.e., single or 
pileup. Even if identification is successful, the energy 
and decay time are also likely to deviate from the 
correct values, as in this example. For better 
efficiency and accuracy, further improvements in the 
measurement conditions, such as a noise reduction or 
the tuning of the rise time of the preamplifier, are 
required.

 

 
Figure 6 – Waveforms for the decay chain of 220Ac →216Fr.  

The top graphs show the derivative waveforms, the middle graphs show the fittings of the first pulse (220Ac),  
and the bottom graphs show the fittings of the second pulse (216Fr) 

 
 
3 Summary 
 
The PSA method enables the identification of 

pileup events and the individual deduction of the 
energy and T  of two sequential pulses. The 
efficiency of finding pileup events is almost 100% 
down to the T  of 300 ns in the E1st / E2nd range of 
0.06-16. The identification efficiency and energy as 
well as the T  accuracy depend on the E1st / E2nd  
and attain the best values at 1 . The derived 
energies for the short-lived α correlations in an online 
experiment show good agreement with the reference 

values. The present PSA aids in the accurate 
assignment of short-lived decay chains for future 
new-element searches. 
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We investigate theoretical and observational constraints on the mass-radius relations for neutron stars. For that 
purpose we consider the model of neutron stars taking into considerations strong, weak, electromagnetic and 
gravitational interactions in the equation of state and integrate the structure equations within the Hartle-Thorne 
formalism for rotating configurations. On the basis of the theoretical restrictions imposed by general relativity, 
mass-shedding and axisymmetric secular instabilities we calculate the upper and lower bounds for the 
parameters of neutron stars. Our theoretical calculations have been compared and contrasted with the 
observational constraints and as a result we show that the observational constraints favor stiff equations of state. 
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1 Introduction 

Neutron stars are very compact and dense objects 
having average mass 1-2 Mʘ (solar mass) and the 
average radius is around 10-15 km. The density in 
their center can exceed the nuclear density several 
times. They are an ideal laboratory which represents 
extreme conditions with high gravity, 
electromagnetic fields, density and pressure to test 
our theoretical models in nuclear and elementary 
particle physics [1]. Probably, neutron stars are one 
of the fewest objects, where all fundamental 
interactions: strong, weak, electromagnetic and 
gravitational, take place [1, 2, 3]. 

In this work, we consider the equilibrium 
structure of rotating neutron stars within the model 
proposed and recently extended by Belvedere et al. 
(2012, 2014) [4, 5] including the effects of rotation in 
terms of the Hartle-Thorne formalism [6, 7]. By 
fulfilling all the stability criteria and the latest 
observational and theoretical constraints on neutron 
star mass-radius relations, we computed the mass, 
radius, rotation frequency, angular momentum, 
quadrupole moment and other parameters of neutron 
stars. 

Our paper is organized as follows: in Section 2, 
we consider the external Hartle-Thorne solution and 

the neutron star models; in Section 3, we discuss 
about the theoretical constraints on the mass-radius 
relations of neutron stars; in Section 4, we consider 
observational constraints. Finally, in Section 5, we 
summarize our main results, discuss their 
significance, and draw our conclusions. 

2 The Hartle-Thorne metric and equation of 
state 

In the physics of compact objects the 
Hartle-Thorne solutions both internal and external are 
applied to study the main characteristics and calculate 
the basic parameters of rotating configurations starting 
from white dwarfs to quark stars [2, 8]. It allows one, 
for a given equation of state (EoS), to construct the 
mass-central density, the mass-radius relations and 
other relations in a simple way. Although it is an 
approximate solution of the Einstein field equations 
with accuracy up to the second order terms in the 
angular velocity of the star, it can be safely used to 
investigate the physical structure and properties of the 
relativistic objects in the strong field regime with 
intermediate rotation rate [9, 10]. 

The Hartle-Thorne metric [7, 9] describing the 
exterior field of a slowly rotating slightly deformed 
object is given by
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     (2) 

 
are the associated Legendre functions of the second 
kind, with = / 1,x r M and 2

2(cos ) = (1/ 2)(3 1)cosP     
is the Legendre polynomial. The constants M, J and 
Q are the total mass, angular momentum and 
quadrupole moment of a rotating object, 
respectively. 

The exterior Hartle-Thorne metric describes the 
gravitational field of any slowly and rigidly rotating, 
stationary and axially symmetric body. As one can 
see from Eq. 1 the exterior solution is given with 
accuracy up to the second order terms in the body's 
angular momentum, and first order in its quadrupole 
moment. Unlike other solutions of the Einstein field 
equations this solution possesses its internal 
counterpart. That is essential for the construction of 
the equilibrium configurations of rotating objects and 
calculate physical parameters inside and outside the 
sources of the gravitational fields. 

There exist a number of models for neutron stars 
and correspondingly, the same number of equations 
of state. Depending on the nuclear compositions, 
theoretical assumptions and experimental data in 
nuclear physics the equations of state could be 
classified as soft, moderate and stiff. Different 
equations of state yield different mass-radius 
relations [11 - 15]. Hence there arises a natural 
question what EoS is more realistic? The only thing 
we know here is that the equation of state for 
neutron star must be constructed accounting for all 
fundamental interactions and the mass-radius 

relation must be in agreement with observational 
data. For this reason throughout this work we use 
the recent model of neutron stars formulated by 
Belvedere et al (2012) [4]. 

By employing both interior and the exterior 
Hartle-Thorne solutions with the equations of state 
given in Ref. [4] we obtained the mass-radius 
relations for static and rotating configurations in both 
local and global charge neutrality cases. As one can 
see in Fig. 1 rotating neutron stars will possess larger 
mass and larger radius with respect to the static case. 

 

 
Figure 1 – Theoretical mass-radius relations presented in 
Belvedere et al. [5]. The red and blue curves represent the 

configuration with global and local charge neutralities, 
respectively. Here dashed and solid curves are static and 
Keplerian sequences, respectively. The magenta and the 
purple lines represent the secular axisymmetric stability 

boundaries for the globally neutral and the locally neutral 
cases, respectively 
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We also constructed the dependence of the 
quadrupole moment on the angular momentum in 
Fig. 2. Here we considered only global charge 
neutrality case, since for the local charge neutrality 
we have similar behavior. All possible values of Q 
and J for uniformly rotating neutron stars will be 
inside the loop. For vanishing angular velocity both 
Q and J will vanish simultaneously. By embedding in 
this diagram constant mass and constant frequency 
sequences one can infer either Q or J or both from 
observations. 

Figure 2 – The dependence of the quadrupole moment on 
the angular momentum of the rotating neutron star in the 
global charge neutrality cases. The red solid curve is the 
Keplerian sequences and the magenta curve is the secular 

axisymmetric stability boundary 

While computing all these parameters we 
fulfilled stability criteria for rotating neutron star. 
Namely, the general relativistic instability related to 
the maximum mass, the mass-shedding limit 
(Keplerian limit) and the axisymmetric-secular 
instabilities have been taken into due account. 

3 Theoretical constraints 

In this section we discuss about theoretical 
constraints for neutron stars. First we consider the 
maximum mass. The maximum possible mass of 
neutron star was calculated by Rhoades and Ruffini 
(1974) [16]. They assumed that general relativity is 
the correct theory of gravity and the 
Tolman-Oppenheimer-Volkoff equation determines 
the equilibrium structure, the equation of state is 
known below a fiducial value of the nuclear density, 
and that causality is not violated in the neutron star 
interior, namely that the speed of sound is subluminal 
at any density in the interior. As a result they 
obtained maximum 3.2 Mʘ for unknown equation of 

state. Since then a lot attempts have been made to 
calculate maximum mass for different realistic 
equations of state [16, 17, 18, 19, 20, 21, 22, 23, 24, 
25, 26, 27]. As expected, for realistic neutron stars 
the maximum mass is always less than 3.2 Mʘ. 

Figure 3 – Dimensionless angular momentum versus 
total mass. Red and blue solid curves are the Keplerian 

sequences, and magenta and purple curves are 
axisymmetric secular instability boundaries of both global 

and local neutrality cases, respectively 

For rotating neutron star the dimensionless 
angular momentum j (spin parameter) can give an 
additional constraint. Relatively recently Lo & Lin 
[28] found that the maximum value of the 
dimensionless angular momentum jmax of a neutron 
star uniformly rotating at the Keplerian sequence has 
an upper bound of about 0.7, which is essentially 
independent on the mass of neutron star as long as the 
mass is larger than about 1M . However, the same 
parameter of a quark star does not have such a 
universal upper bound and could be larger than unity. 

The dimensionless angular momentum has been 
also calculated by Cipolletta et al. (2015) [29] for 
local charge neutrality cases with different equations 
of state and it has been also shown to be j ≈ 0.7 
independent of the equation of state. 

Furthermore, Qi et al. [30] extended the analyses 
of Lo & Lin [28] and Cipolletta et al. [29] 
considering different kinds of uniformly rotating 
compact stars, including the traditional neutron stars, 
hyperonic neutron stars and hybrid stars. It was 
shown that the crust structure was a key factor to 
determine the properties of the spin parameter of the 
compact stars. When the crust EoSs are considered, 
jmax ~ 0.7 for M > 0.5Mʘ is satisfied for three kinds of 
compact stars, no matter what the composition of the 
interior of the compact stars was. 

When the crust EoSs are not included, the jmax of 
the compact stars can be larger than 0.7  but less 
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than about 1  for M > 0.5Mʘ. Consequently, 
according to Qi et al. [30] the crust structure provides 
the physical origin to the stability of jmax but not the 
interior of the compact stars. The strange quark stars 
with a bare quark-matter surface are the unique one 
to have jmax >1. Thus, one can identify the strange 
quark stars based on the measured j > 1.0, while 
measured (0.7,1.0)j  could not be treated as a 
strong evidence of the existence of a strange quark 
star any more. 

We also calculated the spin parameter using the 
model of neutron stars given by Belvedere et al. 
(2012). In Fig. 3 the spin parameter is shown as a 
function of the total mass. Clearly, the value of j is 
different from those of Lo & Lin [28] since we used 
different approach and different EoS. Despite this, 
the behavior of j is more similar to those ones of Qi et 
al. [30] as we have crusts in both local and global 
neutrality cases. However, for the global charge 
neutrality the thickness of the crust is thiner than for 
the local charge neutrality and that is the reason for 
the spin parameter to be different in these cases. 

 
 

Table 1 – Maximum mass and corresponding radius, 
maximum frequency and minimum period of globally and 
locally neutral neutron stars. 

 
Physicalparameters Globalneutrality Localneutrality

=0 /J
maxM M  2.67 2.70 

=0J
maxR  (km) 12.38 12.71 

0 /J
maxM M

  2.76 2.79 
0J

maxR   (km) 12.66 13.06 

maxf  (kHz) 1.97 1.89 

minP  (ms) 0.51 0.53 

 
 
In Table 1 we show upper bounds for static and 

rotating neutron stars within the model proposed by 
Belvedere et al (2012). Here we have stiff equation of 
state and correspondingly the maximum mass is 
larger than 2.6 Mʘ and smaller than 3.2 Mʘ. 

 
4 Observational constraints 
 
According to observations, the most recent and 

stringent constraints to the mass-radius relation of 
neutron stars are provided from data for pulsars by 
the values of the largest mass, the largest radius, the 
highest rotational frequency, and the maximum 
surface gravity [31]. 

 
Figure 4 – Observational constraints on the mass-radius 

relation given by Trümper [31] and the theoretical 
mass-radius relation presented in Fig 1. The solid black 

curve is the observed upper limit of the surface gravity, the 
dotted-dashed black curve corresponds to the lower limit to 

the observed radius, and the dotted curves are the 90% 
confidence level contours of constant R∞ 

 
 
Up to now the largest neutron star mass measured 

with a high precision is the mass of the 39.12 
m i l l i s e c o n d  p u l s a r  P S R  J 0 3 4 8 + 0 4 3 2 ,   
M = 2.01±0.04Mʘ [32]. The largest radius is given by 
the lower limit to the radius of RX J1856-3754, as 
seen by an observer at infinity 

2 1/2= [1 2 / ( )] >16.8R R GM c R 
   km [33]; it gives 

the constraint 2 3 m 22 / > / ( )inGM c R R R , where 
m = 16.8inR  km. The maximum surface gravity is 

obtained by assuming a neutron star of M = 1.4Mʘ to 
fit the Chandra data of the low-mass X-ray binary 
X7, it turns out that the radius of the star satisfies 

1.8
1.6=14.5R 
  km, at 90 %  confidence level, 

corresponding to = [15.64,18.86]R  km, 
respectively [34]. The maximum rotation rate of a 
neutron star has been found to be 

1/2 3/2
m =1045( / ) (10k / )ax M M m R   Hz [12]. The 

fastest observed pulsar is PSR J1748-2246ad with a 
rotation frequency of 716 Hz [35], which results in 
the constraint 30.47( /10k )M R m M  .  

From a technical or practical standpoint, in order 
to include the above observational constraints in the 
mass-radius diagram it is convenient to rewrite them 
for a given range of the radius (for instance, 6 km   
R   22 km) as follows:  

1. The maximum mass:  
 

= 2.01.M
M

                  (3) 
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2. The maximum surface gravity:  
 

2
5< 2.4 10 .M c R

M G M


 

             (4) 

 
3. The lower limit for the radius surface gravity:  
 

5 2 2

m 2

10= 1 .
2 ( )in

M c R R
M G M R

 
 

  

          (5) 

 
4. The maximum rotation rate:  
 

3
3

0.47> .
10

M R
M

                (6) 

Note, that the last formula is valid only for the 
static mass-radius relations, since R  is the static 
radius. In order to include this constraint in the 
rotating mass-radius relation one should construct a 
constant frequency sequence for the fastest spinning 
pulsar with 716 Hz. For the sake of generality, we 
can just require that equilibrium models are bound by 
the Keplerian sequence (see Refs. [5, 29] for details). 
In all expressions above (3-6) the mass is normalized 
with respect to the solar mass Mʘ and the radius is 
expressed in km. 

In Fig. 4 we superposed the observational 
constraints introduced by Trümper [31] with the 
theoretical mass-radius relations presented here and 
in Belvedere et al. [4, 5] for static and uniformly 
rotating neutron stars. Any realistic mass-radius 
relation should pass through the area delimited by the 
solid black, the dotted-dashed black, the dotted 
curves and the Keplerian sequences. From here one 
can clearly see that the above observational 
constraints show a preference on stiff EoS that 
provide largest maximum masses for neutron stars. 
From the above constraints one can infer that the 
radius of a canonical neutron star of mass M = 1.4Mʘ 
is strongly constrained to 12R   km, disfavoring at 
the same time strange quark matter stars. It is evident 
from Fig. 4 that mass-radius relations for both the 
static and the rotating case presented here, are 
consistent with all the observational constraints. 

 
5 Conclusion 
 
In this work we have considered the local and 

global neutrality cases in the model of neutron stars 
formulated by Belvedere et al. (2012). We also 
constructed the mass-radius diagram for rotating 

neutron stars on the basis of the work of Belvedere et 
al. (2014) within the Hartle-Thorne formalism. In 
addition, we calculated the maximum rotating mass, 
corresponding radius, minimum rotation period, 
dimensionless angular momentum, quadrupole 
moment and other crucial parameters of rotating 
neutron stars. 

Furthermore, we considered theoretical 
constraints in the literature imposed on the 
mass-radius relations. Namely, we discussed about 
the maximum possible mass and maximum masses 
depending of the model of neutron stars, minimum 
periods, maximum dimensionless angular 
momentum, the relation between angular momentum 
and quadrupole moment etc. All these parameters are 
model dependent. Equations of state based on 
different models give different maximum and 
minimum values for all parameters. 

In order to favor or disfavor some models we 
considered observational constraints on the 
mass-radius relations of neutron stars related to the 
maximum observed mass, maximum surface gravity, 
largest mass, maximum rotation frequency. All these 
constraints are important not only in the physics of 
neutron stars, but also in nuclear physics to test 
theoretical hypothesis and assumptions made in the 
construction of the equations of state. As a result all 
observations favor stiff equations of state as 
indicated by Yakovlev (2016) [36]. 

The results of this work can be applied to the 
investigation of the X-ray phenomena occurring in 
the accretion disks around neutron stars such as quasi 
periodic oscillations [37]. Combining both the quasi 
periodic oscillations data from low X-ray binary 
systems and physics of compact objects one can 
extract information not only on the properties of the 
accretion disks, but also infer the parameters of 
neutron stars and constrain the equations of state [38, 
39, 40, 41, 42, 43, 44]. 

Finally, the correct determination of neutron star 
critical mass, including its crust, plays also a very 
important role in understanding the progenitors of 
long gamma-ray burst (GRB), proposed to originate 
in binary systems composed of an evolved star 
exploding as a Ib/c supernova and triggering a 
hypercritical accretion process onto a companion 
neutron star [46], and short GRBs, originating from 
binary neutron star mergers. In both cases two 
outcomes are possible depending on whether or not 
the accretion process or the merger can push the 
neutron star or the merged core, respectively, beyond 
the critical mass [47, 45]. 
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We make theoretical analysis of bound and resonance states of 8Li and 8B nuclei. The analysis is carried out within a 
three-cluster microscopic model which account for polarizability of interacting clusters. Main attention is paid to the 
nature of resonances states embedded in two-cluster continuum. We also study effects of the cluster polarization on the 
spectrum of bound and resonance states, and on the elastic and inelastic n +  7Li and p+ 7Be scattering. 
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1 Introduction 

Analysis of the astrophysical data on the 
abundance of light atomic nuclei in the Universe 
stimulated new and more detail experimental and 
theoretical investigations of reactions induced by 
interaction of light nuclei. For the astrophysical 
applications one has to know the cross section of a 
reaction at the low energy region, which amounts 
several kiloelectron volts in the entrance channel of 
the reaction. This region of energy can be easily 
achieved at experimental facilities for the reactions 
induced by interaction of neutrons with light nuclei. 
However, it is not the case for interaction of light 
nuclei, containing one or more protons. Coulomb 
interaction between nuclei makes very difficult to 
measure the cross section. In this case theoretical 
methods are invaluable tool to determine or to 
evaluate the cross section of importance. 

As many of light nuclei are weakly bound, they 
could easy change their size or shape while 
interacting with neutrons, protons or other light 
nuclei. This phenomenon is called the polarization. A 
microscopic three-cluster model was formulated in 
Ref. [1] to take into account polarizability of the 
interacting clusters. We refer to it as "cluster 
polarization". It was shown in Refs [1 – 4] that 
cluster polarization plays an important role in 
formation of bound and resonance states in seven 
nucleon systems. It was also shown that cluster 
polarization has large impact on different types of 
reactions in 7Li and 7Be nuclei. Within the present 
paper, the effects of cluster polarization will be 
studied in light mirror nuclei 8Li and 8B, and 

interaction of neutron with 7Li and proton with 7Be. 
Both 7Li and 7Be nuclei have well established 
two-cluster structure: 4He + 3H and 4He + 3He, 
respectively. This fact is taken into account in the 
present model. We are also going to consider bound 
and resonance states of the mirror nuclei 8Li and 8B 
within three-cluster microscopic model. We study 
resonance states created by two-cluster and 
three-cluster configurations. 

Properties of mirror nuclei 8Li and 8B have been 
intensively investigated in microscopic and 
semimicroscopic models. Besides different 
experimental methods were used to determine 
structure of 8Li and 8B and nuclear reactions in these 
nuclei. In particular, new resonance states of 8B have 
been recently discovered in [5, 6] in elastic 7Be + p 
scattering. 

The novelty of our approach is that it allows us to 
consider cluster polarizations. It means that within 
the proposed model, size and shape of clusters are not 
fixed but depend on distance between interacting 
clusters. In the present case we consider how size of 
7Li (7Be) is changed when neutron (proton) moves 
toward 7Li(7Be). 

2 Method and model space 

We shall consider 8Li as a three-cluster 
configuration 8Li = α + t + n and nucleus 8B we shall 
represent as the configuration 8B = α + 7He + p. 
These configurations are dynamically distinguished 
from other three-cluster configurations as they have 
minimal threshold energy compared to other 
three-cluster configurations in 8Li and 8B. By using 
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such three-cluster configurations we can take into 
account the following set of two-cluster channels: 7Li 
+ n, 5He + 3He, 4He + 4He in 8Li and 7Be + p, 5Li + 
3He, 4Li + 4He in 8B. Moreover, with such 
three-cluster configurations, we can consider nuclei 
7Li, 5He, 4H, 7Be, 5Li, 4Li as two-cluster systems: 7Li = 
α + t, 5He = α + n, 4He = t + n, 7Be = α + 3He, 5Li = α 
+ p, 4Li = 3He + p and provide more advanced 
description of internal structure of these nuclei. 

To describe selected three-cluster configurations 
we employ Algebraic Model with Gaussian and 
Oscillator Basis (AMGOB) [1 – 4]. We start with 
construction of wave functions for two-cluster 
subsystems and for compound three-cluster system. 
Two-cluster wave function  

J



 , describing 

interaction of clusters with indexes β and γ, can be 
written as

 

   
          = , , E

E J JS
J

A s A s g x Y
             



     x  (1) 

 
Indexes α, β and γ form cyclic permutations of 1, 

2 and 3. 
Wave function of discrete and continuous 

spectrum states of three-cluster system is 
 

                3
,

, 1 1 1 2 2 2 3 3 3 ,
=1

= , , , ,E J
E J l L lS L J

A s A s A s f x y Y Y       


       x y
        

(2) 

 
where Фα(Аα, sα) is a many-particle shell-model wave 
function describing the internal motion of cluster α (α 
= 1, 2, 3), consisted of Аα nucleons (1 4A  ), and 
sα denotes spin of the cluster. 

Similarly to the case of three particles, we use 
three Faddeev amplitudes    ,

, ,E J
l Lf x y   

 and three 
sets of the Jacobi coordinates xα and yα. The Jacobi 
coordinates determine relative position of the center 
of mass of three clusters. In our notations, xα is the 
Jacobi vector, proportional to the distance between β  
and γ clusters, while yα is a Jacobi vector connecting 
the   cluster to the center of mass of the β and γ 
clusters. Vectors x

  and y
  denotes unit vectors 

x
 = /x x   and = / .y y y  

  Antisymmetri-

zation operators A


 and A  make antisymmetric 

wave functions of two- and three-cluster systems, 
respectively. Note that shell-model wave functions 

 ,A s    are antisymmetric, thus operator A


 

and 

  permute nucleons from different clusters. 

Note that the shell-model wave function Фα(Аα, 
sβ) explicitly depends on oscillator length b. In 
different realizations of the many-cluster model this 
parameter is used as a variational or adjustable 
parameter. As a rule oscillator length is adjusted to 
minimize bound state energy of clusters or to 
reproduce their size (i.e. mass or proton 
root-mean-square (rms) radius). Within all our 
models we use common oscillator length for all 
clusters involved in calculations. 

The Faddeev amplitudes    ,
, ,E J

l Lf x y   
 in eq. 

(2) is marked by two partial orbital momenta α and 
lα. They are associated with the Jacobi vectors xα and 
yα, respectively. In what follows we assumethat α is 
the orbital momentum of two-cluster subsystem and 
lα is the orbital momentum connected with rotation of 
a third cluster around center of mass of two-cluster 
subsystem. 

To solve correctly the three-cluster problems, we 
need to solve two-cluster Schrödinger equation for 
three different two-cluster partitions α (α = 1, 2, 3). 
Energy of two-cluster bound states  determine the 
threshold energy of two-body channels and wave 
functions determine an asymptotic form of 
three-body functions in the part of coordinate space 
which Faddeev and Merkuriev denoted as   (see 
pages 134-135 of book [7]), i.e. in the region where 
distance xα between selected pairs of clusters is much 
smaller that distance between other pairs of clusters  
( x x  , x x  ). Having solved the 
Schrödinger equationsfor all two-cluster subsystems, 
we can proceed with solving the Schrödinger 
equation for three-cluster system (see eq. (31) and 
(33) in Ref. [1]). It is well know [8] that the 
Schrödinger equations for two- and three-cluster 
systems can be reduced to two- and three-body 
equations, respectively, with nonlocal and 
energy-dependent potentials. The later needs special 
attention and has to taken into account. The most 
simple way of overcoming this problem is to use a 
square-integrable basis. 



26

Microscopic description of 8Li and 8B nuclei within ...                              Phys. Sci. Technol., Vol. 3 (No. 1), 2016: 24-29

The essence of the model, employed in the 
present investigations, is to use a discretization 
scheme with the help of square-integrable basis. It 
allows us to reduce the Schrödinger equation for 
many-channel system to the set of algebraic 
equations, which can be easily solved numerically. In 
present model we use of the Gaussian basis to 
describe bound and pseudo-bound states of 
two-cluster subsystems, and we employ the 
Oscillator basis to study interaction of the third 
cluster with two-cluster subsystem. The explicit 
definition of the Gauss and oscillator basis functions, 
deducing of set of linear equations for wave function 
and boundary conditions for wave function are 
presented in Refs. [1, 2]. 

 
3 Results 
 
We use two nucleon-nucleon potentials: the 

Minnesota potential (central components are taken 
from [9, 10]) and the Modified Hasegawa-Nagata 
potential (MHNP) [11, 12].Oscillator length b,  
 

which is common for all clusters, is adopted to 
minimize the threshold energy of the three-cluster 
channel. In this way we optimize description of the 
internal structure of all clusters. For 8Li (8B) and the 
MP it equals b =1.451 fm and for MHNPit equals b 
= 1.362 fm. In present calculations, we use the 
Majorana parameter m  of the MHNP [11, 12] and 
parameter u of the MP [9] as adjustable parameters. 
These parameters are slightly changed to reproduce 
the bound state energy of 8B.This is done in order to 
be consistent with the experimental situation in 8Li 
and 8B nuclei. In Table 1 we show spectrum of the 
8Li and 8B bound states, which is obtained with 
"optimal" input parameters. Experimental data are 
from Ref. [13]. Energy of bound states in 8Li and 8B 
is reckoned from the two-cluster threshold 7Li + n 
and 8Be + n, respectively. One can see that the 
MHNP provides more correct description of the 
bound state spectrum in 8Li. Meanwhile, the optimal 
input parameters of the MP leads to too very close 
position of the ground 2+ state and the first excited 
1+ state. 

 
Table 1 – Optimal input parameters and spectrum of bound states in 8Li and 8B. Energy of the bound states is determined from the 7Li + 
n and 8Be + p thresholds in 8Li and 8B, respectively 

 
Nucleus 8Li  8В 

Potential MP MHNP Exp. MP MHNP Exp. 

b, fm 1.3451 1.3620 1.3451 1.3620 
m (u) 0.9600 0.4157 0.9600 0.4157 

Jπ Е, MeV Е, MeV Е, MeV Е, MeV Е, MeV Е, MeV
2+ -1.958 -1.908 -2.032 -0.1368 -0.1393 -0.1375
1+ -1.607 -0.977 -1.051  

 
 
To achieve convergence of energy of the 8Li and 

8B bound states as a function of number of the 
Gaussian and oscillator functions, we investigated in 
detail how energy of bound and resonance states 
depends on number of basis functions. We found that 
4 Gaussian functions and 50 oscillator functions 
provide an acceptable precision of microscopic 
calculations of energy and other parameters of the 
bounds states, such as, for instance, the 
root-mean-square proton, neutron and mass radii. It 
is also established that, 4 Gaussian functions and 130 
oscillator functions guarantee a necessary precision 
of the scattering matrix and energy and width of 
resonance states calculations. 

In Table 2 we display the proton, neutron and 
mass rms radii of the ground state in 8Li and 8B 
nuclei. Experimental data are taken from Ref. [14]. 
Theoretical results are in a good agreement with the 
experimental data. One can see that our results 
confirm the existence of the neutron halo in 8Li and 
the proton halo in 8B, as neutron (proton) rms radius 
is larger than the proton (neutron) rms radius in 8Li 
(8B).This is confirmed by the last column of the 
Table, where the difference between proton and 
neutron rms radii is displayed. Our results are also in 
a good agreement with the results, obtained in similar 
microscopic models [15], [16].
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Table 2 – Proton (Rp), neutron (Rn) and mass (Rm) rms radii (in fm) of the ground state in 8Li and 8B. Energy of the ground state is in 
MeV 

 

 NNP E  pR  nR  mR  p nR R  

8 Li  

MP -2.001 2.174 2.516 2.394 0.342 

MHNP -1.908 2.174 2.548 2.415 0.374 
Exp.  2.266(0.02) 2.446(0.02) 2.376(0.02)  

8 B  

MP -0.137 2.724 2.217 2.546 0.507 
MHNP -0.139 2.756 2.244 2.576 0.512 

Exp.  2.496(0.03) 2.336(0.03) 2.436(0.03)  
 
 
Let us now tern our attention to the resonance 

states. Resonance states in 8Li and 8B, generated by 
interaction of neutron with 7Li and proton with 8Be 
respectively, are demonstrated in Table 3. 
Experimental parameters of resonance states are 
taken from Ref. [13]. As one can see energy and 
width of resonance states strongly depends on shape 
of resonance states. For instance, energy of the first 
3+ resonance state in 8Li obtained with the MHNP 

potential is 12 times larger than the one calculated 
with the MP, and width is almost 50 times large than 
the width calculated with the MP. There is one 
exception, when parameters of resonance state, 
calculated with both potentials are very close to each 
other. This is the 3+ resonance state in 8B. In this case 
energy and width of the resonance state do not differ 
so dramatically as for other resonance states.

 
 

Table 3 – Spectrum of resonance states in 8Li and 8B. Energy of resonances is given in MeV (Theory) or in MeV  keV (Experiment). 
Theoretical and experimental width of resonance states is indicated in keV 

 
8Li  8В 

Jπ  MP MHNP Exp Jπ MP MHNP Exp

3+ Е  0.049 0.610 0.223 3 3+ Е 2.480 2.560 2.183 20
Г 3 166 33 6  Г 495 572 350  30

1+ Е  1.535 1.002 1.178 1+ Е 0.090 0.615 0.632 2.5
Г  826 1433  1000  Г 0.4 43.7 35.6 0.6

1+ Е  4.619 2.129 3.368 1– Е 1.441 1.132 
Г  22 913  650  Г 989 1828  

3+ Е  2.458 3.625 0+ Е 1.644 1.128 
Г  2636 760 Г 870 299 

4+ Е  4.486 3.190 4.498 20 2– Е 4.209 3.363 3.363 500
Г  64 2 35  15  Г 632 4143 8000 4000

 
 
Comparing theoretical and experimental 

parameters of resonance states, we come to the 
conclusion that the MHNP provides more precise 
description of resonance states in 8Li and 8B than 
the MP. One can see from Table 3, the energy and 
with of the 1+ and 2– resonance states in 8B and the 
1+ resonance state in 8Li, calculated with the 
MHNP, are close to experimental values. 
However, the MP providesfairly good description 
of parameters of 4+ resonance statein 8Li and 3+ 
resonance state in 8B. 

The above mentioned results are obtained with 
taking into account the cluster polarization. To see 
explicitly the effects of cluster polarization, the 
polarizability of clusters is switched off. We 
demonstrate effects of the cluster polarization only 
for two bound states and two resonance states, 
determined with the MHNP. By switching off the 
cluster polarization in 8Li, we obtain energy of the 
bound states  2E  =-1.25 MeV and  1E 
=-0.54 MeV, which should be compared with 
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 2E  =-2.00 MeV and  1E  =-1.31 MeV. As we 
see, the cluster polarization decreases significantly 
energy of the bound states in 8Li. Let us turn our 
attention to the resonance states. Note, that most part 
of resonance states in 8Li (8B), displayed in Table 3, 
are determined in the 7Li + n (8Be + p) elastic 
scattering. Consider the 1+ resonance state in 8B. By 
neglecting the cluster polarization we obtain 
parameters of the resonance state: E = 0.94 MeV and 
Г = 163 keV. Comparing these parameters with the 
corresponding results in Table 3, we came to the 
conclusion that cluster polarization decreases 1.5 

times energy and almost 4 times the total width of the 
1+ resonance state. More stronger effects of the 
cluster polarization is observed in the 3+ resonance 
state in 8Li. Energy of the resonance state is 
decreased from 2.438 MeV to 0.61 MeV and width is 
reduced from 1227 keV to 166 keV due to the cluster 
polarization. 

Figures 1, 2 visualize effects of cluster 
polarization in 8Li and 8В. These results are obtained 
with the MHNP. In Figure 2, the orbital momentum l1 
denotes the orbital momentum of neutron with 
respect to 7Li nucleus.  

 

  
 

Figure 1 – Spectrum of two bound states and  
one resonance state in 8Li obtained withou (N) and  

with (Y) cluster polarization 

Figure 2 – Phase shifts of n + 7Li scattering  
with the total angular momentum 

 = 3J   . 
 
 

One can see, that cluster polarization influences 
significantly on the phase shift of n + 7Li scattering 
with the orbital momentum of neutron l1 = 1. 
However, effects of cluster polarization on n + 7Li  
scattering with l1 = 3 is very small. 

There is other way for visualization of cluster 
polarization. As was suggested in [1], by using 
wave function of a bound state of compound 
system, we can calculate how the average distance 
between two selected clusters depends on distance 
to the third cluster. For instance, we can calculate 
average distance between alpha particle and triton 
(3He) when neutron (proton) is moving toward to 
7Li (7Be).This quantity is displayed in Figure 3 for 
the ground 2+ and first excited 1+ states in 8Li. 
When neutron is far away from 7Li, the average 
distance between alpha particle and triton is 
approximately 4.5 fm. When neutron approach to 
7Li, theaverage distance is reduced slightly, and 
then it significantly stretched when the distance 
R(n – 7Li) is at range between 1.5 and 9 fm. 
Seems, at this range nucleus 7Li changes it 

orientation with respect to neutron which results 
in such tremendous size of the system α + t. And 
finally, when neutron is very close to the center of 
mass of 7Li it compressed to minimal size of 1.6 
fm. Thus, this figure demonstrates that 7Li as a 
two-cluster system is strongly affected byincident 
neutron. Some what different picture is observed 
for the ground state of 8B. Effects of incident 
proton on distance between alpha particle and 3He 
is demonstrated in Figure 4. The incident proton 
gradually decreases size of 7Be, which is due to a 
combination of nuclear forces and Coulomb 
interaction. The "phase transition", observed in 
bound states of 8Li in a wide range of distance R(n 
– 7Li), now takes place in a very small range of 
R(p – 7Li) distance. However, an amplitude ofthe 
"phase transition" in 8B is much more than in 8Li. 
It should be notes that without polarization, all 
curves in Figuresand are transformed into plain 
lines, i.e. radius of two-cluster subsystem is 
independent on position of third cluster when 
polarization is neglected. 
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Figure 3 – Average distance between α particle and triton 
as a function of distance between neutron and 7Li. 

Calculation is made with the MHNP 

Figure 4 – Dependence of average distance between  
alpha particle and 3He on distance to proton. Results are 

obtained with the MHNP 

We have applied a three-cluster microscopic 
model for studying structure of bound states and 
reactions in 8Li and 8B. The model took into account 
polarizability of interacting clusters. It was 
demonstrated that the cluster polarization has large 
impact on properties of bound and resonance states 
and on the elastic scattering of neutron on 7Li and 
proton on 7Be. The present model provides fairly 

good description of the bound and resonance states in 
mirror nuclei 8Li and 8B.  

Acknowledgment 

This work is partially supported by the Ministry 
of Education and Sciences of Republic of 
Kazakhstan, The Research Grant IPS 3106/GF4.

References 

[1] V. S. Vasilevsky. F. Arickx. J. Broeckhove. and 
T. P. Kovalenko.A microscopic three-cluster model with 
nuclear polarization applied to the resonances of 8Be and 
the reaction 6 3 4( , )Li p He He  // Nucl. Phys. A.– 2009.– 
Vol. 824. – P. 37–57. 

[2] A. V. Nesterov. V. S. Vasilevsky. and T. P. 
Kovalenko.Effect of cluster polarization on the spectrum 
of the 7Li nucleus and on the reaction 6 3 4( , )Li n H He  // 
Phys. Atom. Nucl.– 2009. – Vol. 72. – P. 1450–1464. 

[3] A. V. Nesterov. V. S. Vasilevsky. and T. P. 
Kovalenko.Microscopic model of the radiative capture 
reactions with cluster polarizability. Application to 8Be 
and 7Li // Ukr. J. Phys. – 2011.– Vol. 56. – P. 645–653. 

[4] V. S. Vasilevsky. A. V. Nesterov. and T. P. 
Kovalenko.Three–cluster model of radiative 
capture reactions in seven-nucleon systems. Effects 
of cluster polarization // Phys. Atom. Nucl. – 
2012. – P. 75. 818–831. 

[5] J. P. Mitchell. G. V. Rogachev. at el. Low-lying 
states in 8B // Phys. Rev. C.– 2010. – Vol.82. – P. 011601. 

[6] J. P. Mitchell. G. V. Rogachev. at el.Structure of 
8B from elastic and inelastic 7Be+p scattering // Phys. Rev. 
C. – 2013. – Vol. 87. – P. 054617. 

[7] L. D. Faddeev and S. P. Merkuriev. Quantum 
Scattering Theory for Several Particle Systems // Dordrecht. 
Boston. London: Kluwer Academic Publishers. – 1993. 

[8] K. Wildermuth and Y. Tang.A unified theory of 
the nucleus. Braunschweig: Vieweg Verlag. – 1977. 

[9] D. R. Thompson. M. LeMere. and Y. C. Tang. 
Systematic investigation of scattering problems with the 
resonating-group method // Nucl. Phys. A. – 1977. – Vol. 
286. – P. 53–66. 

[10] I. Reichstein and Y. C. Tang. Study of N   
system with the resonating-group method // Nucl. Phys. 
A.– 1970. – Vol. 158. – P. 529–545. 

[11] A. Hasegawa and S. Nagata. Ground state of 8Li 
// Prog. Theor. Phys.– 1971.– Vol. 45. – P. 1786–1807. 

[12] F. Tanabe. A. Tohsaki. and R. Tamagaki. αα 
scattering at intermediate energies // Prog. Theor. Phys. 
– 1975. – Vol. 53. – P. 677–691. 

[13] D. R. Tilley. J. H. Kelley. at el. Energy levels of 
light nuclei А=8. 9. 10 // Nucl. Phys. A. – 2004. – Vol. 745. 
– P. 155–362.

[14] M. M. Obuti. T. Kobayashi. at el. Interaction 
cross section and interaction radius of the 8B 
nucleus // Nucl. Phys. A. – 1996. –Vol. 609. – P74–90. 

[15] A. Csótó. Proton skin of 8B in a 
microscopic model // Phys. Lett. B. – 1993. – Vol. 315.  
– P. 24–28. 

[16] D. Baye. P. Descouvemont. and N. K. 
Timofeyuk. Matter densities of 8B and 8Li in a microscopic 
cluster model and the proton-halo problem of 8B // Nucl. 
Phys. A. – 1994. – Vol 577. – P. 624–640. 



30

Physical Sciences and Technology                                        Vol. 3 (No. 1), 2016: 30-35

UDC 539 
 

Formation and decay of resonance state in 9Be and 9B nuclei.  
Microscopic three-cluster model investigations 

 
Vasilevsky V.S.1*, Kato K.2, Takibayev N.Zh.3 

1Bogolyubov Institute for Theoretical Physics, 14-B, Metrolohichna str., Kiev, Ukraine 
2Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo, Japan 

3Department of Physics and Technology, al-Farabi Kazakh National University,  
71 al-Farabi av., Almaty, Kazakhstan 

*e-mail: vsvasilevsky@gmail.com 
 

 
 

We study nature of the low-lying resonance states in mirror nuclei 9Be and 9B. Investigations are performed 
within a three-cluster model. The model make uses of the hyperspherical harmonics, which provide convenient 
description of three-cluster continuum. Much attention is paid to the controversial 1/2+ resonance states in both 
nuclei. We study effects of Coulomb interaction on energy and width of three-cluster resonances in the mirror 
nuclei 9Be and 9B. We look for the Hoyle-analogue states which allows for alternative way of 9Be and 9B synthesis 
in a triple collision of clusters. 
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1 Introduction 
 
Resonance state is one of the challenging 

problems for theoretical and nuclear physics. There 
are common features of resonance states, observed in 
a few- or many-channel systems.However, there are 
some specific features connected with the way of 
excitation or generation of resonance statesand also 
in different way of resonance state decay in nuclear 
systems. Special attention is attracted by resonance 
states formed by three interacting clusters, i.e. 
resonance states embedded in three-cluster 
continuum. Such resonance states are repeatedly 
observed in nuclei with well-determined 
three-cluster structure. These nuclei have dominant 
three-cluster configuration, it means that bound 
states and many resonance states are lying bellow 
and above, respectively, threshold of three-cluster 
continuum. In other words, bound states and large 
part of resonance states in three-cluster nuclei are 
generated by an interaction of three clusters. 
Asexamples of such nuclei, we can mention 5Н, 6Нe 
and 6Be, 9Be and 9 B  and many others. 

In present paper, a microscopic three-cluster 
model is applied to study nature of resonance states 

in 9Be and 9B. Dominant three-cluster configurations 
α + α + n and α + α + p, respectively, are selected to 
describe the low excitation energy region in these 
nuclei. Microscopic model, which was formulated in 
[1], make uses of total basis of oscillator functions to 
describe intercluster motion. The model is called as 
AM HHB which stands for the Algebraic 
three-cluster Model with the Hyperspherical 
Harmonics Basis.The first application of this model 
to study resonance structure of 9Be and 9B was made 
in Ref. [2]. Results presented in [2] were obtained 
with the Minnesota potential.In present paper we 
make use of the modified Hasegawa-Nagata 
potential, and we pay much more attention to the 1/2+ 
resonance states, the Coulomb effects on resonance 
states in mirror nuclei. Besides, we look for the 
Hoyle analogue states in 9Be and 9B. 

 
2 Model formulation 
 
In this section we shortly outline main ideas of 

the model. We start with a wave function of nucleus 
consisting of three clusters, as this a key element of 
model formulation. To describe three-cluster system 
one has to construct a three-cluster function

 
           1 1 1 2 2 2 3 3 3= , , ,  ,J

JM LJ S JM J
A s A s A s f       x y  (1) 
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and by solving many body Schrödinger equation one 
has to determine intercluster wave function 

   ,J
Lf x y  and spectrum of bound state(s) or 

S-matrix for states of continuous spectrum. Jacobi 
vectors х and y determine relative position of 
clusters. Wave functions  ,A s    ( =1, 2, 3), 
describing internal motion of cluster consisted of Aα 
nucleons and with the spin sα, are assumed to be 
fixed, they posses some very important features, such 
as, for instance, they are antisymmetric 
andtranslation-invariant ones. Adiabaticity, 
connected with a fixed form of the wave functions 

 ,A s   , is the main assumption of the method 
which is well-known as the resonating group method 
[3]. Wave function is projector operator which 
reduces many-particle problem to three-body 
problem with nonlocal and energy-dependent 
potential (see detail in Ref. [3]). For amplitudes 
 

            , ; 3 3 ˆ ˆ, = ,J J
L l L l LM L

f f x y Y x Y y x y   (2)  

 
one can deduce an infinite set of the two-dimension 
integro-differential equations. This set of equations 
can be more simplified, if we introduce 
hyperspherical coordinates  ˆ ˆ= , ,x y  
 

= cos , = sin ,x y               (3) 
 

and construct full set of orthonormalized 
hyperspherical harmonics (see definition of the 
harmonics, for instance, in [4], [1]) 
 

        , , , , ,1 2 1 2
ˆ ˆ=K l l LM K l l l LML

Y x Y y    (4) 

 
then wave function (1) represented as

  

         1 1 1 2 2 2 3 3 3 , , ; , , ;1 2 1 2
, , ,1 2

= , , ,  ,JM K l l L K l l LJ S JM JK l l L
A s A s A s           

          
(5) 

 
where hyperradial components  , , ;1 2K l l L   of 
wave function obey an infinite set of 
integro-differential equations. Last step toward the 
simplification of numerical solution of such system 
of equations is to expand the hyperradial amplitudes

  , , ;1 2K l l L   over basis of hyperradial part of 

oscillator functions in six-dimension space 

 
     , , ; , , ; ,1 2 1 2

= , ,K l l L n K l l L n K
n

C b R b
 



      (6) 

 

where  , ,n KR b


  is an oscillator function 
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2
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and b  is oscillator length. 

Expansion over oscillator basis reduces the set of 
integro-differential equations to the system of linear 
algebraic equations for expansion coefficients 



    ,
,

ˆ, , , | , = 0,n c
n c

n c H n c E n c n c C   


 


                             (8) 

 
where multipole index c denotes channel of the 
hyperspherical basis  1 2= , , ;c K l l L . This system is 
relevant for bound states and for continuous 
spectrum states. To obtain spectrum of bound states, 
one can use diagonalization procedure for the 
reduced set of the equations. However, to find wave 
functions and elements of the scattering S -matrix, 
one has to implement in (8) proper boundary 
conditions for expansion coefficients. These 
conditions were thoroughly discussed in Ref. [1]. 

3 Spectrum of resonance states in 9Be and 9B 
 
To perform numerical calculations, we need to 

fix few parameters and select nucleon-nucleon 
potential. We start with selection of nucleon-nucleon 
potential. We exploit the Modified Hasegawa- 
Nagata potential (MHNP) [5, 6] to model 
nucleon-nucleon interaction. This is a semi-realstic 
potential and it was intensively used in numerous 
many-cluster systems, as it provides good description 
of the internal structure of clusters and interaction 
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between clusters as well After NN potential was 
selected, we need to fix three input parameters: 
oscillator length b , number of channels or number 
of hyperspherical harmonics and number of hyper 
radial excitations. We restrict ourselves with a finite 
set of the hyperspherical harmonics, which is 
determined by maximal value of the hyperspherical 
momentum Kmin. To describe the positive parity 
states we use allhyperspherical harmonics withthe 
hypermomentum K ≤ Kmin = 14, the negative parity 

states are described by the hyperspherical 
harmonics with K ≤ Kmin = 13.These amounts of 
the hyperspherical harmonics account for many 
different scenarios of three-cluster system decay. 
We also restrict ourselves with number of the 
hyperradial excitation nρ ≤ 100. This allows us to 
rich an asymptotic region, where all clusters are 
well separated and cluster-cluster interaction, 
induced by nucleon-nucleon potential, is 
negligible small.

 
 

Table 1 – Spectrum of bound and resonance states of 9Be calculated with the MHNP 
 

 Exp. AM HHB, MHNP 
J   E (MeV  keV)  (MeV  keV) E (MeV)  (MeV) 

3 / 2  -1.5735  -1.5743  
1 / 2  0.111 7  0.217  10 0.338 0.168 
5 / 2  0.8559 1.3  0.00077 0.15  0.897 2.363  10 5  
1 / 2  1.21 120  1.080  110 2.866 1.597 
5 / 2  1.476 9  0.282  11 2.086 0.112 
3 / 2  3.131 25  0.743  55 4.062 1.224 

23 / 2  4.02 100  1.33  360 2.704 2.534 

7 / 2  4.81 60  1.21  230 4.766 0.404 
9 / 2  5.19 60  1.33  90 4.913 1.272 

25 / 2    5.365 4.384 

7 / 2    5.791 3.479 
 
 

In present paper, the oscillator length b  is 
selected to minimize the bound state energy of alpha 
particle, which is obtained with b = 1.317 fm. This 
allows us to describe correctly the internal structure 
of the alpha particle. If we take original form of the 
modified Hasegawa-Nagata potential, we obtain the 
overbound ground state in 9Be and the bound state 
3/2– state in 9B. The latter contradicts to experiments. 
The similar situation was observed for the Minnesota 
potential.To avoid this unphysical situation, we 
changed slightly parameters of the MHNP in order to 
reproduce bound state energy of 9Be. Thus, by 
modifying the Majorana parameter, we obtain correct 
value of the binding energy of 9Be. This is achieved 
with m = 0.4389, which can be compared to the 
original value m = 0.4057. With this value of the 
Majorana parameter, the spectrum of resonance 
states in 9Be and 9B is calculated. 

Now we turn our attention to the spectrum of 9Be  
and 9B nuclei. Results of calculations with the MHNP 

is presented in Tables 1 and 2 where we compare our 
results with the experimental data [7]. Our 
calculations are in fairly good agreement with 
available experimental data. Energy and width of 
some resonance states are rather close to 
experimental data. For instance, parameters of 5/2– 

and 9/2+ resonance states in 9Be, and parameters 5/2–, 
1/2– and 5/2+ resonance states in 9B. 

That means that we found correct interaction 
between clusters in 9B and 9Be. In this paper as in the 
previous one [2], we use the same parameters of 
nucleon-nucleon interactions for all other Jπ states. 
Comparing results of presvious and present 
calculations, we conclude that the modified 
Hasegawa-Nagata potential generates more correct 
cluster-cluster interaction for large set of the Jπ states, 
thanthe Minnesota potential.We also conclude that 
spectrum of resonance states in 9B and 9Be strongly 
depends on peculiarities of nucleon-nucleon 
interaction.
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Table 2 – Experimental and theoretical spectrum of resonance states of 9B 
 

 Exp. AM HHB, MHNP 
J   E (MeV  keV)  (MeV  keV) E (MeV)  (MeV) 

3 / 2  0.277 0.00054 0.21  0.379 1.076  10 6  
1 / 2  (1.9)  0.7 0.636 0.477 
5 / 2  2.638 5  0.081  5 2.805 0.018 
1 / 2  3.11 3.130   200 3.398 3.428 
5 / 2  3.065 30  0.550  40 3.670 0.415 
3 / 2    4.367 3.876 

23 / 2    3.420 3.361 

7 / 2  7.25 60  2.0  200 6.779 0.896 
9 / 2    6.503 2.012 

25 / 2    5.697 5.146 

7 / 2    7.100 4.462 
 
 

Now we concentrate our attention on the 1/2+ 
resonance states in 9B and 9Be. In Figures 1 and 2 we 
display phase shifts of 33 scattering for the 1/2+ 
state in 9B and 9Be, respectively. These results are 
obtained with Kmax = 14 and with the MHNP. With 
such value of Kmax, 32 channels are involved in 
calculations and only three of them produces phase 
shifts which are not very small at energy region 0 ≤ E 
≤ 5 MeV. The phase shift connected with the channel 
c = {K = 0, l1 = l2 = L = 0} of 9Be shows resonance 
behavior at energies E = 0.338 MeV and Е = 1.432 

MeV.Second resonance state is also reflected in the 
second channel c = {K = 2, l1 = l2 = L = 0} as a 
shadow resonance. 

Phase shifts for 1/2+ state in 9B also exhibit 
resonance states at two energies Е = 0.636 MeV and 
E =2.875 MeV. As in case of 9Be, 1/2+ resonance 
states in 9B are connected with only one channel c = 
{K = l1 = l2 = L = 0}. Due to Coulomb interaction, 
resonance states in 9B are shifted to higher energy 
range with respect to position of these resonance 
states in 9Be. 

 
 

  
 

Figure 1 – Phase shifits for 3 3 scattering  
in 1/2+ state in 9Be 

Figure 2 – Phase shifts for 1/2+  
state in 9B 

 
 
 

To understand nature of 1/2+ and other resonance 
states in 9B and 9Be, we analyze wave functions. As 
was mentioned above wave function of three-cluster 
system is many-component and huge objects which 

is difficult to analyze. The simplest way for 
analyzing wave function of a resonance state is to 
study weights of oscillator shells. The weights are 
determined as follows 
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It is important to note that oscillator wave 

functions with small values of Nsh describe very 
compact configurations of three-cluster system, 
when distance between interacting clusters is very 
small. Oscillator functions with large values of Nsh  
account for configuration of three-cluster system 
with large distance between all clusters and/or when 
one cluster is far away from two other clusters. In 
Fig. 3 we show the weight Wsh of different oscillator 
shell Nsh (Nsh = 0, 1, 2, ...) in wave function of 
resonance states. One can see that wave function of 
the 1/2+ resonance in 9Be is similar to wave function 
of the resonance state in 9B and both of them are 
represented by the oscillator shells with large values 
of Nsh. Figure 3 display behavior of wave function 
which is typical for low-energy wave functions. In 
asymptotic region these functions has an oscillatory 
behavior. Like in two-body case with sort-range 
interaction, the smaller energy, the larger is distance 
to the first node of wave function. In oscillator space 
we have approximately the same picture as in 
coordinate space. This is because there is simple 
relation between wave function in coordinate space 
and expansion coefficients in oscillator 
representation (see detail, for instance, in [1]).  

 

 
 

Figure 3 – Weights of different oscillator shells in wave 
functions of 1/2+ resonance states in 9Be and 9B. 

 
 

By analyzing the total and partial widths, we 
determine the dominant decay channels of 
three-cluster resonance state. This analysis help us to 
shed some light on the nature of a resonance channel 
in many-channel system. It can be performed for two 
different trees of the Jacobi vectors, which were 
denoted as n = 9Be and 4He + 5He in Ref. [2]. The 1/2+ 
resonance state in 9Be and 9B has only dominant 

channel. In the first tree, the resonance prefer to 
decay into the channel, where the relative orbital 
momentum of two alpha particles and the orbital 
momentum of valence neutron (with respect to the 
center of mass of two alpha particles) equal zero. 
Partial width connected with that channel almost 
coincides with the total width. The same situation is 
observed in the second tree. There is also only one 
dominant channel with zero values of partial orbital 
momenta. The first orbital momentum represents 
relative motion of neutron around first alpha particle 
and the second one represents relative motion of 
second alpha particle with respect to the center of 
mass of the subsystem α + n. These properties of the 
1/2+ resonance states in 9Be and 9B are based on two 
important factors. First factor is the dominant role of 
the channel with the hypermomentum K = 0 in wave 
function of the resonance state. The second factor is 
connected with the essential properties of the 
hyperspherical harmonics with K = 0. With this value 
of hypermomentum, we have got only one 
hyperspherical harmonic which is independent on 
choice of the Jacobi vector tree. 

Let us now consider the Hoyle analogue states in 
9Be. We recall that the Hoyle state is a very narrow 
resonance state in 12C. It lies not far from the 
three-cluster threshold ( E = 0.38 MeV) and has very 
small width Г = 8.5 eV. This resonance state is 
created by collision of three alpha particles with total 
angular momentum and parity Jπ = 0+. As we see, the 
main features of the Hoyle resonance state that it is 
very long-lived resonance state (according to nuclear 
scale). If we look at Table 1, we find that 9Be has two 
resonance states (1/2+ and 5/2–) which lie close to the 
three-cluster threshold α + α + n. The 1/2+ resonance 
state is created by two values of the total orbital 
momentum L=0 and L=1. However, the resonance 
state is not narrow one, as ratio Г / Е is large Г / Е ≈ 
0.5. Meanwhile, the 5/2– resonance state is indeed 
narrow resonance state because width is small Г = 
23,6eV and besides ratio Г / Е is also very small: it 
equals Г / Е ≈ 2.63  10 5  in our model and 
experimental ratio is Г / Е ≈ 9,0 · 10–4. One can 
compare this ratio with the experimental ratio for the 
Hoyle state Г / Е ≈ 2,24 · 10–7. 

We believe that this resonance state is of the 
Hoyle-analogue state. This state has quite large 
half-life time, it could emit quadrupole gamma 
quanta and transit to the ground state of 9Be. This is 
one of possible ways for synthesis of 9Be. We 
assume, that in stars with large densities of 
alpha-particles and neutrons this is very plausible 
way of creating 9Be nuclei. 
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Figure 4 – Weights of different oscillator shells in wave 

function of the 5/2– resonance state in 9Be 
 
 
In Figure 4 we demonstrate weight Wsh of 

different shells in wave function of the 5/2– 
resonance state. It can be concluded from the Figure 
that the 5/2– resonance state is very compact object, 
as it mainly represented by the oscillator shells with 
small number of Nsh. Besides, wave function of the 
resonance state has a very large amplitude in internal  
 

 

region (Wsh ≤ 106). Such behavior of wave function 
of the 5/2– resonance state in 9Be is very similar to 
behavior of wave function of the Hoyle state in 12C.  

Three-cluster microscopic model was applied to 
study resonance states in mirror nuclei 9Be and 9B. 
The model make use of the hyperspherical harmonics 
to numerate channels of three cluster continuum and 
simplify of solving of the Schrödinger equation for 
many-particle and many-channel system. The 
modified Hasegawa-Nagata potential modelled 
nucleon-nucleon interaction. It was shown that the 
model with such NN interaction provides good 
description of parameters of resonance states. It was 
shown that 1/2+ states in 9Be and 9B are resonance 
states. Very narrow 5/2– resonance state in 9Be can be 
considered as the Hoyle-analogue state, we assume 
that this state is key resonance state for synthesis of 
9Be in a triple collision of alpha particles and neutron. 

 
Acknowledgment 
 
This work is partially supported by the Ministry 

of Education and Sciences of Republic of 
Kazakhstan, The Research Grant IPS 3106/GF4.

References 
 

[1] V. Vasilevsky. A. V. Nesterov. F. Arickx. and J. 
Broeckhove.Algebraic model for scattering in 
three-s-cluster systems. I. Theoretical background // – 
Phys. Rev.C. – 2001 – Vol. 63.–P. 034606. 

[2] A. V. Nesterov. V. S. Vasilevsky. and T. P. 
Kovalenko.Nature of Resonance States in the 9Ве and 9В 
Mirror Nuclei // Phys. Atom. Nucl.– 2014. – P. 77. 
–555–568. 

[3] K. Wildermuth and Y. Tang.A unified theory of 
the nucleus // Braunschweig: Vieweg Verlag, 1977. 

[4] R. Jibuti and N. Krupennikova. Method of 
Hyperspherical Functions in quantum mechanics of few  
 

body systems. (In Russian). // Tbilisi: Micniereba, 1984. 
[5] A. Hasegawa and S. Nagata. Ground state of 6Li 

// – Prog. Theor. Phys. – 1971. – Vol. 45. – P. – 
1786–1807. 

[6] F. Tanabe. A. Tohsaki. and R. Tamagaki.  
scattering at intermediate energies. // Prog. Theor. Phys. – 
1975. – Vol. 53. – P. 677–691. 

[7] D. R. Tilley. J. H. Kelley. J. L. Godwin. D. J. 
Millener. J. E. Purcell. C. G. Sheu. and H. R. Weller. 
Energy levels of light nuclei A =8. 9. 10 // Nucl. Phys. A. 
– 2004. – Vol. 745. – P. 155–362.

 



36

Physical Sciences and Technology                                        Vol. 3 (No. 1), 2016: 36-41

UDC 539.17; 539.1.01; 524.354.6 
 

Forced reverse reactions in neutron star matter 
 

Takibayev N.Zh. 
 

Department of Physics and Technology, al-Faraby KazNU, Almaty, Kazakhstan, 
Institute of Experimental and Theoretical Physics, Almaty, Kazakhstan, 

e-mail: takibayev@gmail.com 
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1 Introduction 
 
The main reactions and processes that take place 

in the neutron star envelopes can be described in the 
frame of modern physical theory and methods [1-6]. 
In the outer and inner crusts of the envelopes, which 
surrounding the liquid mantel in deep of neutron 
star, represent itself the dense crystalline structure. 
This crystalline structure created by the bare nuclei 
situated in the lattice nodes is sunk into degenerated 
fermi-liquid of electrons. This construction is an 
electrically neutral; the nuclei in nodes of the crystal 
still have the well-known properties. The distances 
between the nuclei in the structure are much smaller 
than the atomic size, but are still much larger than 
nuclear radius.  

However, the behavior of the matter in the 
region from 107 g·cm-3 up to 1014 g·cm-3 is governed 
not only by the two-body interactions, but also by 
the few-body forces and some sorts of quasi-
particles that act in the crystalline structure [5-8]. 

Here, we do not consider the effect of external 
fields, focusing our attention on the impact of close 
neighbors in the crystalline structure. We take into 
account the properties of matter at different depths 
of the structure layers created by the powerful 
gravitational pressure.  

The two-body interactions are undoubtedly 
important and essential at usual pressures and 
temperatures, and the applicable even more broadly, 
but for extremely high densities of matter, the few-
body dynamics becomes very important, especially 

in the ordered structure of matter that appears in the 
neutron star envelopes.   

In next sections, we investigate how the 
crystalline structure can affect the neutron 
resonances and create specific additional 
characteristics. We would also try to consider 
several intriguing questions.  

 
2 The electron capture reactions 
 
General characteristics of the overdense matter 

in the envelopes of neutron stars can be estimated 
employing an assumption that at ultrahigh pressures 
the structure of matter is simplified by acquiring the 
most favorable face-centered cubic structure [5].  

The nuclear reactions in the neutron star 
envelopes start from the reactions of electron 
capture by nuclei. These reactions depend on 
specific properties of the nuclides. Therefore, the 
each stable nucleus of original neutron star 
substance has its own chain of electron capture 
reactions. Remarkable that most part of even-
even nuclei give the two-step electron capture 
reactions because of after the first (i.e. mother) 
reaction follows the second (or daughter) 
reaction which is already open. The resulting 
daughter nuclei, which decay via the weak link 
in the terrestrial conditions, would remain stable 
in the overdense matter in the neutron star 
envelopes. They cannot emit the captured 
electrons owing to opposition of the degenerated 
Fermi electron liquid (see Fig.1). 
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Figure 1– Nuclei in degenerated electron Fermi-liquid 

 
 
It is remarkable that in many reactions that have 

the two-step characters the daughter nuclei, which 
appear in the second reactions, would arise both in 
the ground and in the excited states. The ban owing 
to quantum numbers between excited levels of 
nuclei demonstrates the interesting patterns. 

The excited nuclei arise mostly in reactions with 
the iron group nuclei. The chains of reactions 
generated by Fermi electrons with the iron group 
nuclei are given in the Table 1. 

Here, the following notations are used: Cr - is 
the name of a nuclide (chromium in this case), A is 
the number of nucleons in the nucleus, Z is the 
number of protons, e- is an electron and νe - electron 
neutrino; Ee;th is the threshold of the electron energy 
in reactions of the electron capture by a nucleus. 
The kinetic energy of an electron equals Ee = EF – 
mec2 and Ee ≥ Ee;th . The estimates of the threshold 
energies for the electron capture reactions were 
performed employing the data available in the 
nuclear databases [9-12].  

 
 

Table 1 – The chains of reactions generated by Fermi electrons with even-even nuclei of the iron group. The energies 
are given in MeV. 
 

 
 

 
Note that the first reactions of electron 

capture (the first column in Table 1) have the 
positive threshold energies (the second column) 
higher than the threshold for the next (daughter) 

reactions (the third column). It means that the 
Fermi-electron energies are sufficient in these 
reactions to overcome the threshold energy (the 
fourth column). 

 
As an example, we consider the isotope of 56Fe, 

25Mn3+ + e- → 24Cr0+ + νe; Eext = 2.066 MeV; 
 25Mn3+ + e- → 24Cr*2+ + νe; E* = 1.059 MeV;                                                (1) 
25Mn3+ + e- → 24Cr**2+ + νe; E** = 0.234 MeV.  

 
Here in (1), the two last reactions generate 56

24Cr   
nuclei that appear in the excited states. It is very 
important that these excited nuclei cannot emit 
gammas because the distances between the nuclei 
are much less than the wavelengths of the gamma 

radiation. Note that nuclei are fixed in the nodes of 
the lattice. 

For the nuclei with odd mass numbers, the 
threshold energies of the daughter reactions are 
higher than the threshold energies of the mother 
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reactions. So that the daughter nuclei in the excited 
states cannot appear in the electron capture 
reactions. 

 
3 Nonlinear interactions 
 
3.1 High harmonic generation.  
The nuclear reactions and processes that occur 

in neutron star envelopes were considered in the 
frame of their mutual influences. Most part of these 
are stimulated by overdense matter transforming it 
to exotic states, which cannot appear in ordinary 
terrestrial conditions or in laboratory experiments.  

At large amplitudes of the electromagnetic 
waves, the total dipole moment depends non-linearly 
on the amplitude of the incident wave. At higher 
densities, it leads to the birth of the secondary higher 
harmonic waves, i.e. the waves of doubled frequency, 
tripled, and even higher multiplicities. 

The phenomena of light frequency 
multiplications are observed in the processes of 
which has the abundance in nature 91.754 %, 
concerning other iron isotopes. The first electron 
capture reaction starts for this isotope at the kinetic 
energy of the Fermi-electron Ee = 3.695 MeV. It 
requires the matter density be ρ > ρth ≈ 7.155 109 
g/cm3. The daughterly reactions (Table 1, coulomb 
3) can undergo the following three possible ways 
(here A = 56): 

laser photonic interactions in special devices 
[13-15].  

At that, two or more electromagnetic waves are 
absorbed and one photon is emitted at a frequency 
equal to the amount of absorbed waves. It means the 
nonlinear medium absorbs two waves ω1, ω2 with 
frequency ω3= ω1 + ω2.  

High harmonic generation has interesting 
properties that result in terrestrial experiments as 
generation of light with frequencies much greater 
than the original ones (typically 100 to 1,000 times 
greater). This phenomenon depends on the driving 
field and generates the harmonics with similar 
temporal and spatial coherence properties [13, 16, 
17]. High harmonics are often generated with pulse 
durations shorter than those of the driving laser. 
This is due to the non-linearity of the generation 
process and the phase matching.  

Considering the overdense matter in the 
envelopes of neutron stars, one should note that the 
process of high-multiplicity gamma emission 
stimulated by nuclei depends on the density of these 
nuclei in the respective layers of the envelopes. 
Taking into account the diffusion rate of the 

impurity nuclei in the crystal structure, their 
grouping and localization, we can talk about their 
high local density. Accordingly, this should lead to a 
high probability of a collective emission of gamma 
rays of high multiplicity with energies of almost an 
order of magnitude greater than the excitation 
energy of an individual nucleus. 

In our case, we can consider the excited nuclei 
instead of the pump photons and their virtual 
emissions as photons, which also play the role of 
inducing waves. In the overdense crystalline 
structure, the excited nuclei interact non-linearly 
between each other and emit together the gamma 
rays of high multiplicity. The emission of gamma 
becomes induced in the case of any photons ≥ 1, 
which are already emitted in this mode.  

The excited nuclei can be considered in 
overdense crystal as the sources of compressed 
photons. The combined radiations from such 
sources would create the modes of high multiplicity, 
i.e. high-energy gammas.  

3.2 Tunneling Effects. 
Obviously, it is very challenging to consider the 

complete manifold of the interactions between the 
stable and excited nuclei in an overdense crystalline 
structure. However, particular significance in the 
super-dense crystalline structures acquires tunneling 
effects because, unlike the dense gas environments, 
here the tunneling phenomenon has its own ordered 
pattern. Imagine, for example, the quasi-particle 
motion inside the nucleus as the motion in the 
potential well. Let the energy of the quasiparticle 
excitation energy be equal to E*, and the height of 
the well be EF. 

The nuclei are immersed in a degenerate 
electron Fermi liquid, which prohibits the output of 
gamma rays that have energies below the Fermi 
energy of the electrons. Let us also consider two 
neighboring wells, i.e. two adjacent excited nuclei. 
The overlap coefficient of the wave functions can be 
defined in this simplified model employing a simple 
formula 

 
D(d*) = D0 /[1+ (k2 + κ2)2/4 k2· κ2 sh(κ·d*)]     (2) 

where 
k = [2m*·E*]1/2 /ħ ;  κ = [2m*·(EF - E*)]1/2 /ħ    (3) 

 
Here, D0 ≈ 1 is the normalized overlap integral 

of the two identical wave functions of the nuclear 
excited states taken at d* = 0 ; m* is the effective 
mass of the quasi-particle. In reality d* ≥ d , where d 
is the lattice constant.  



39

Takibayev N.Zh.                                                                                         Phys. Sci. Technol., Vol. 3 (No. 1), 2016: 36-41

Then one can write  d/d* = (ρ*/ ρ)1/3. 
Summing (2) over all the neighboring excited 

nuclei, one can obtain the dependence of the overlap 
integral of the excited nuclei density Ω (ρ*) in the 
lattice as:  

Ω (ρ*) = Σp D(p·dav)                   (4) 
 

where dav is the average distance between the single 
excited nuclei p = 1,2,3 … The overlap integrals 
with highly excited states are to be also included in 
the sum Ω (ρ*) by introducing the wave numbers  

 
kn = [2m*·En

*]1/2 /ħ  , 
κn = [2m*·(EF – En

*)]1/2 /ħ                (5) 
 

where En
* is the energy of the related states. 

Equating the sum (4) to unity, one can get the 
critical value for the density of the excited states of 
the nuclei in the lattice:  

 
ρ* / ρ = d3 (kn· κn)3/2                   (6) 

 
This shows that at low d and κn, the critical 

values can occur even with low concentrations of 
excited nuclei. 

 
4 Neutron Resonances of Few-Body Type in 

the Crystalline Structures 
 
We consider the model of neutron scattering on 

two fixed centers where the two-body scattering 
amplitudes have the resonant Breit-Wigner form: 
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          (7) 

 
The energy and width of the resonance are 

determined with real and imaginary parts of the 
resonance wave number:  
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We can assume that the form-factor i  is almost 
a constant value in a sufficiently wide range around 
the resonance point 

iREE  . Note that the two-
body scattering amplitude has the pole in the second 
sheet of complex plane of energy. Moreover, the 
resonant pole in the two-body system can give the 
series of poles for the three-body amplitude. 

The neutron resonance in the ordered structure 
becomes the relatively stable state via the resonant 
re-scattering in the subsystems of two (or more) 
heavy nuclei. The resonant re-scattering appears and 
exists in a crystal at specific distances between 
nuclei and energies of neutron. Both these values 
depend on the inner property of the nuclei. These 
values can also be defined in an analytical form 
[18,19].  

If the conditions are suitable for collective 
emission of high harmonic gammas, it means that 
nonlinear interactions between nuclei in the 
overdense crystal can stimulate these processes in 
deep layers of the neutron star envelopes.  

It is very important to take into account the 
solutions of more complex objects, particularly the 
four-body systems that consist of three heavy nuclei 
and one neutron. The solutions of these four-body 
systems can give us the tendency of resonance 
influences in the cells of corresponding layers of the 
crusts. As in the previous case, the problem of 
neutron scattering on this subsystem can be solved 
in an analytical form. To simplify this, we can 
consider that all three nuclei are identical.  

The resonant points can appear at larger 
distances between the nuclei than in the case of the 
three-body system above (see Fig. 1 and Fig. 2). The 
resonance picture in the neutron star envelopes can 
be more complicated and wealthy than in the frame 
of the two-body point of view. 

 

 
Figure 2 – Real and imaginary part of K in the case of (n + 55Mn + 55Mn) system 
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There are some difficulties in determination of 
the characteristics for neutron scattering on unstable 
neutron-excess nuclei. Firstly, it is the absence of 
data on neutron resonances for such nuclei. 
Secondly, it is the determination of nonlinear 
interactions and their manifestations that play 
important role at the lower layers of the neutron star 
envelopes. Therefore, in order to underline the role 
of the neutron resonances and related processes, we 
considered several simple examples of the neutron 
resonances with the iron group nuclei involved. 
These nuclei may not be preserved at considered 
depths, because they would be transformed in the 
electron capture reactions. Our aim is to show how 
the new processes can emerge in the deep layers of 
the neutron stars envelopes and how they can 
manifest themselves in the analysis of data, obtained 
by the external observer. Therefore, in order to 
underline the role of the neutron resonances and 
related processes, we considered several simple 
examples of the neutron resonances with the iron 
group nuclei involved. These nuclei may not be 
preserved at considered depths, because they would 
be transformed in the electron capture reactions. Our 
aim is to show how the new processes can emerge in 

the deep layers of the neutron stars envelopes and 
how they can manifest themselves in the analysis of 
data, obtained by the external observer. 

Note that every neutron-nucleus resonance 
creates own structural resonance levels in the three-
body system. Figure 2 and 3 demonstrate the 
behavior of the neutron amplitude for the re-
scattering in the subsystem of two nuclei. 

Our choice to consider the crystal structures 
with isotopes of the iron element is motivated by the 
fact that these elements are essential in the 
composition of the neutron star matter and, of 
course, for the neutron star envelopes. The 
calculations were carried out for the scattering 
channel, where every subsystem n + 55Mn has the 
similar quantum numbers: the total moment J = 3 
and the angular moment l = 0. The resonance levels 
were taken into account: ER0 = - 1.615 keV, and ER 
= kR

2 =1.098 keV with   = 18 eV [12]. Note that 
every neutron-nucleus resonance creates own 
structural resonance levels in the three-body system 
(see Fig 2 and 3).  

One can see that the resonant distances between 
the nuclei become larger and the dispositions of the 
resonances are more complicated. 

 
 

Figure 3 – Real and imaginary part of K in the case of (n + 57Fe + 57Fe) 
 

 
The calculations demonstrate that the structural 

neutron resonances mostly appear in a wide energy 
area around the resonance energy of the neutron-
nucleus resonance, and along the narrow trajectory 
in the space coordinate. Moreover, the two-body 
resonances with narrower widths produce the larger 
number of structural neutron resonances, some of 
them are more powerful and have very narrow 
peaks. 

We also estimated the nuclear jitter effect in the 
crystal lattice. Fluctuations were considered to be 
small so far, but they may be considered with 
selecting an appropriate wave function describing 
the heavy nucleus state in the lattice node. 

5 Conclusion 
 
We consider the forced reverse reactions, which 

are acting in neutron star envelopes and stimulated 
by huge pressure that leads to the transformation of 
matter, closes some reactions of beta decay and 
neutron-rich of matter.  

However, the remarkable distinctions have been 
also discovered. For example, the cardinal 
distinctions appear in the reactions and processes 
between nuclei of Fe group and the group of light 
elements.  

The chemical composition of primordial matter 
of a neutron star determines the evolution of the 
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neutron star matter and peculiarities of nuclear 
reactions and processes. The neutron resonances of 
few-body type that arise in crystalline structure have 
the selected character and take place only in suitable 
layers that lead to local oscillations of density. The 
nonlinear interactions can result to reactions with 
gammas, which knockout alpha particles from the 
nuclei. Then the inner crust layers will be enriched 
with free neutrons and alpha particles also.  

The detailed theoretical descriptions of such 
resonances were based on the few-body model and 
supported by sample calculations of the new three-
body and four-body neutron resonances. The study 
of the these resonances is focused at scattering of 

neutrons on a subsystem of two or three isotopes 
with the distances between these isotopes is 
considered as a key parameter. It was shown that 
each nucleus has its own resonance states at 
corresponding unique energies and lattice 
parameters. The new neutron resonances are 
calculated in the energy range close to the 
conventional neutron-nucleus resonances. In 
overdense matter like we deal with in neutron stars, 
the influence of the new resonances would increase 
and become very important.  

The research carried out in the framework of 
IPS 3106 / GF4 (2015-2017): “The study of nuclear 
reactions and processes in the stellar matter”.
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1 Introduction 
 
Einstein's equations [1] 
 

1 =
2

R Rg T   ,            (1) 

 
relate the geometric structure of spacetime, which is 

given by the Einstein tensor 1=
2

G R Rg   , 

with the matter content of spacetime, which is given 
by the energy-momentum tensor Tμv. Moreover, the 
equivalence principle allows us to establish a 
relationship between the geometric structure of 
spacetime and the gravitational field. This implies 
that the curvature of spacetime, interpreted as 
four-dimensional differential Riemannian manifold, 
can be considered as a measure of the gravitational 
interaction. For instance, if the spacetime is flat, Rμv 
= 0, the Einstein tensor vanishes, leading to the 
condition that the matter content of the spacetime 
vanishes too. The opposite is not true. If Tμv = 0, the 
Ricci tensor Rμv and the curvature scalar R vanish as 
well, but the curvature tensor Rμv can be different 
from zero. 

Einstein's general relativity is thus a theory of the 
gravitational interaction. As such, it should be able to 
describe all physical situations in which the 
gravitational field is involved. Consider, for instance, 
the case of astrophysical compact objects, i.e., 
objects that are small for their mass. In general, the 
class of astrophysical compact objects is often 

considered to contain collectively planet-like objects, 
white dwarfs, neutron stars, other exotic dense stars, 
and black holes. The problem of describing the 
gravitational field of compact objects can be split 
into two related problems, namely, the exterior and 
the interior field, each of them represented by a 
particular metric ig  and eg , respectively. The 
surface of the compact object represents the 
hypersurface at which the interior and the exterior 
fields must coincide. The exterior field corresponds 
to a vacuum spacetime Tμv = 0, for which Einstein's 
equations reduce to 

= 0 ,R                    (2) 

whereas for the interior field it is necessary to choose 
a particular energy-momentum tensor that would 
take into account all the physical properties of the 
internal structure of the compact object. A 
particularly simple choice is the perfect-fluid 
energy-momentum tensor [2]  

 
= ( ) ,T p u u pg              (3) 

where ρ and p are the density and the pressure of the 
fluid, respectively, and uμ is the 4-velocity. The case 
of fluids with anisotropic pressures is also used in the 
literature. 

Most compact objects, however, are 
characterized by the presence of internal and external 
electromagnetic fields. This implies that in general 
we should consider the Einstein-Maxwell theory. In 
this case, the exterior field should be described by an 
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exterior metric which satisfies the electrovacuum 
equations 

 

;
1= , = 0 ,
4

R F F g F F F  
        

 
    (4) 

 
where Fμv is the Faraday electromagnetic tensor. On 
the surface of the compact object, the exterior metric 
must be matched with the interior metric which 
satisfies the general equations 

 
1 = [( ) ]
2

1
4

R Rg p u u pg

F F g F F

    

 
   

 



   

   
 

,     (5) 

 
; = 0 .F 
                     (6) 

 
In this work, we present a brief review of the 

main exact solutions of Einstein-Maxwell equations 
which can be used to describe the exterior and 
interior field of astrophysical compact objects. We 
interpret the solutions in terms of their multipole 
solutions. To this end, we use the Geroch-Hansen [5, 
6] procedure which provides a relativistic and 
coordinate-invariant definition of multipole 
moments. According to this definition, any 
stationary, vacuum, asymptotically flat solution of 
Eistein's equations can be uniquely characterized by 
two sets of multipoles Mn and Jn (n = 0.1, ...), the first 
of which represents the field generated by the mass 
distribution whereas the second one is due to the 
rotation of the distribution. In the case of 
electrovacuum fields, two more sets En and Hn must 
be included, representing the electric and magnetic 
multipoles of the electromagnetic field, respectively. 
The concrete calculations necessary to find the 
explicit expressions of the multipole moments for 
particular solutions are not easy to be carried out. 
Some auxiliary procedures can be used which are 
based on particular representations of the solutions. 
Here, we will use the Ernst representation and the 
concrete formulas derived in [7, 8]. 

This paper is organized as follows. First, in Sec. 
2, we present the general line element that can be 
used to investigate the structure of the exterior and 
interior field equations. In Sec. 3, we present the Kerr 
metric with its multipole structure and its 
generalizations which include the electric charge and 
higher multipole moments. In Sec. 4, we mention the 
main problems associated with the search for 

perfect-fluid interior solutions of Einstein and 
Einstein-Maxwell equations. We propose an 
alternative approach that implies the inclusion of the 
quadrupole as an additional degree of freedom. This 
could contribute to solve the general set of 
Einstein-Maxwell equations. Section 5 contains the 
conclusions. We use throughout the paper geometric 
units with G = c = 1. 

 
2 Line element 
 
It is very difficult to find physically relevant 

solutions of Einstein's equations. To simplify the 
resulting system of differential equations, one 
usually assumes that certain conditions are satisfied 
which follow from the physical properties of the 
system under consideration. In the case of compact 
objects, two assumptions are made, namely, 
stationarity and axial symmetry. The first condition 
means that the field does not depend explicitly on the 
time coordinate, say t. This is in accordance with our 
experience since the shape and rotation of isolated 
compact objects have not been observed to change 
over long periods of time. The second condition is 
also based on observations. Indeed, all compact 
objects observed in Nature are characterized by a 
particular rotation with respect to an axis located 
inside the object. The rotation axis determines a 
privileged direction with respect to which compact 
objects are usually symmetric. It is therefore 
physically meaningful to assume that the 
gravitational field and, consequently, the spacetime 
metric are stationary and axially symmetric. Under 
these conditions, one can show that the line element 
reduces to the Weyl-Papapetrou-Lewis form [2] 

 
2 2

1 2 2 2 2 2

= ( )

( )

ds f dt d

f e d dz d

 

  

 

    
,       (7) 

 
where f, ω, μ, and γ are functions which depend on 
the spatial coordinates ρ and z only. Notice that the 
metric does not depend on the coordinates t and φ as 
a consequence of the stationarity and axial symmetry 
assumptions, respectively. 

The corresponding field equations are, in general, 
a highly non-linear and complicated system of 
second-order partial differential equations. Several 
representations for the field equations are known in 
the literature [2, 3]. The particular form of the line 
element (7) is convenient for the analysis of the field 
equations structure. For instance, in the limiting case 
of static vacuum field (ω = 0), the function f turns out 
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to satisfy a second-order linear differential equation, 
whereas all the non-linearities of Einstein's equations 
are contained in the metric function γ. In the case of 
electrovacuum spacetimes, the function μ turns out to 
satisfy a harmonic differential equation so that it can 
be chosen as μ = ρ to simplify the form of the 
remaining field equations. In the general case of 
interior perfect-fluid metrics with electromagnetic 
field, the functions f, ω and μ satisfy a system of three 
coupled, non-linear, second-order, partial differential 
equations and the function γ is determined by a set of 
two first-order differential equations which can be 
integrated by quadratures. 

As we will see below, for the representation of 
particular exact solutions, however, the 
cylindrical-like coordinates of the line element (7) 
are not very convenient. In fact, the physical 
significance of particular solutions can be understood 
more easily by using spherical-like coordinates. 
Also, the motion of test particles in the gravitational 
field of compact objects have been analyzed mostly 
in spherical-like coordinates [4]. 

An additional condition must be imposed in order 
for a particular solution to describe the exterior field 
of compact objects, namely, asymptotic flatness. 
This is a physical condition, implying that far away 
from the gravitational and electromagnetic source the 
fields must vanish, which is equivalent to saying that 
the metric reduces to the flat Minkowski metric. All 
the solutions presented in this work satisfy this 
physical condition. 

 
3 Exterior electrovacuum solutions 
 
The first vacuum solution of Einstein's equation 

was obtained by Schwarzschild in 1916. In 
spherical-like coordinates, it can be expressed as 

 
2

2 2

2 2 22

2= 1 21

( )sin

m drds dt mr
r

r d d  

    
  

 

.        (8) 

 
It represents the exterior field of a static 

spherically symmetric mass distribution. In this case, 
only one multipole moment is different from zero, 
namely, the monopole M0 = m. This is due to the 
spherical symmetry and the lack of rotation and 
electromagnetic field. The complexity of the field 
equations for the general stationary case is so high 
that it took almost fifty years to take into account the 
rotation of the source in the Kerr metric [9] 

2 2 22 2
2 2

2 2 2 2 2
2 2 22

( ) 2 ( )sin sin=

( ) sin sin

a a r ads dt dtd

r a a d dr d

  

   

    
 

 
    

     

,(9) 

 
where 

 
2 2 2 2 2= 2 , = .cosr mr a r a          (10) 

 
The parameter α stands for the angular 

momentum per unit mass, J/m, as measured by a 
distant observer. This can also be seen at the level of 
the multipole moments which in this case can be 
expressed as1 

 
2

2

2 1 2

2 1
2 1

= ( 1) ,
= 0 , = 0 ,

= ( 1) .

k k
k

k k
k k

k

M ma
M J

J ma








         (11) 

 
Notice that the odd mass multipoles and the even 

angular-momentum multipoles vanish identically as 
a result of the additional symmetry of the Kerr 
solution with respect to the equatorial plane θ = π / 2. 

The charged generalization of the Kerr metric is 
obtained by considering the electromagnetic vector 
potential as the 1-form 

 

 2= ,sin
QrA dt a d  


        (12) 

 
which depends on the charge Q and the specific 
angular momentum α. It then follows that the 
magnetic field is generated by the rotation of the 
charge distribution. To find the corresponding 
metric, it is necessary to solve the complete set of 
Einstein-Maxwell equations (4) simultaneously. The 
final expression for the solution turns out to be 
identical to (9) and the only difference is at the level 
of the function Δ, namely, 

 
2 2 2= 2 .r mr a Q             (13) 

 
 The corresponding electromagnetic multipoles 

En and Hn turn out to proportional to Mn and Jn, 
                                                      

1  Notice that the original Geroch-Hansen definition of 
multipole moments leads to expressions with the opposite sign in 
front of Mn so that, for instance, the total mass is negative, 

0 = .GHM m However, a conventional normalization of the 
multipoles can be performed so that a positive sign for the total 
mass is obtained. Weuseherethisconvention. 
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respectively, as a result of the non-linear 
gravitational interaction between the mass and the 
charge distribution. 

According to the black hole uniqueness theorems 
[10], the charged Kerr solution is the most general 
electrovacuum solution that describes the 
gravitational and electromagnetic field of a black 
hole. This means that for a black hole all multipole 
moments must be given in terms of the mass (M0= 
m), the angular momentum (J1= J), and the electric 
charge (E0 = Q). All the remaining higher multipoles 
must depend explicitly on only these three 
parameters. In the case of other astrophysical 

compact objects, like white dwarfs or neutron stars, 
the uniqueness theorems are not valid. This means 
that higher multipoles, like the mass quadrupole or 
the electric dipole, could play an important role in the 
description of the gravitational field. 

To begin with, let us consider a static mass with a 
quadrupole deformation. There are several solutions 
in the literature that can be used to describe a mass 
with a quadrupole [11 – 16]. The common feature of 
most solutions is that they are given in terms of quite 
complicated analytical expressions. To our 
knowledge, the simplest solution for a mass with a 
quadrupole is the q – metric [16]
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(14) 

 
which was originally found by Zipoy [17] and 
Voorhees [18] in prolate spheroidal coordinates. If 
the quadrupole parameter vanishes (q = 0), we 
recover the spherically symmetric Schwarzschild 
solution. 

Static solutions with higher multipoles are also 
known. For instance, the most general Weyl solution 
in cylindrical-like coordinates (7) takes the form 
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where αn (n = 0.1, ...) are arbitrary constants, and 
Pn(cosθ) represents the Legendre polynomials of 

degree n. The expression for the metric function γ can 
be calculated by quadratures. Then,
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Although, in principle, the Weyl solution should 

contain all asymptotically flat static metrics, it is not 
very convenient for the investigation of the physical 
significance of the metrics. For instance, the 
Schwarzschild solution can be obtained by selecting 
the values of the parameters = S

n na a  in such a way 
that the infinite sum 
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converges to the Schwarzschild value. An alternative 
representation which is more suitable for the physical 
analysis of the metrics is given in terms of prolate 
spheroidal coordinates
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where m is a constant. The general asymptotically 
flat vacuum solution can be written as [12, 19] 
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where Pn(y) are the Legendre polynomials, and Qn(x) 
are the Legendre functions of second kind. The 
metric function γ is quite cumbersome and cannot be 
written in a compact form. The physical significance 
of the parameters qn can be obtained by calculating 
the corresponding Geroch multipole moments. In this 
case, we have that 
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where Nn represent the Newtonian multipole 
moments and Rn are relativistic corrections which 
must be calculated explicitly for each value of n. For 

instance, 0 1 2= = = 0,R R R 2
3 1

2= ,
5

R m N  

2 2
4 2 1

2 6=
7 7

R m N mN  , etc. We conclude that the 

parameters qn are the Newtonian multipoles, modulo 
a constant multiplicative factor, and determine also 
the relativistic corrections. 

The Schwarzschild metric is a particular case of 
the general solution (19) with q0 = 1 and qk = 0 (k > 
0), and can be written as 
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It reduces to the standard form in spherical-like 

coordinates after applying the coordinate 
transformation x = r / m – 1 and y = cosθ. Moreover, 
the q – metric corresponds to 
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for which the leading mass multipoles are 
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This shows that the parameter q determines the 

quadrupole, but it also affects the total mass of the 
object. 

As for the stationary generalizations of the above 
static solutions, many of them have been obtained by 
using different solution generating techniques. For 
instance, the first generalization of the Kerr metric 
with an arbitrary mass quadrupole moment was 
obtained in [20]. Other stationary generalizations 

with quadrupole and higher moments were obtained 
in [21 – 25]. The general form of all these metrics 
does not allow to express them in a simple manner. 
All the metric that generalizes the stationary Kerr 
metric are expected to be equivalent at the level of 
the quadrupole moment, up to a redefinition of the 
parameters that determine the mass quadrupole. 

This short review of electrovacuum solutions 
shows that the situation is not complicated when we 
limit ourselves to the case of a rotating charged mass. 
This is due to the uniqueness theorems according to 
which the charged Kerr metric can be used to 
described any black hole in general relativity. Once 
we pretend to take into account the effects of a mass 
quadrupole, the situation becomes more and more 
complicated due to the increasing number of exact 
solutions. As mentioned above, one expects that all 
these solutions are equivalent at the level of the 
quadrupole moment due to the deformation and the 
rotation of the source. We believe that other physical 
conditions should be imposed in order to establish 
the difference between all available exact solutions. 
Further work in this direction is necessary in order to 
determine the physical relevance of all the solutions 
available in the literature. 

 
4 Interior solutions 
 
In the previous section, it was shown that in 

principle it is possible to describe the exterior field of 
compact objects by using exact electrovacuum 
solutions of Einstein-Maxwell equations. Each 
exterior solution, however, should be matched at the 
surface of the compact object with a physically 
meaningful interior solution. Consider, for instance, 
the simplest exterior solution with a mass monopole, 
i.e., the exterior Schwarzschild solution. If we 
suppose a perfect-fluid model for the interior 
counterpart with constant energy density (ρ = ρ0 = 
const) and no charge distribution (Fμv = 0), the 
resulting field equations can be integrated 
analytically, leading to the interior metric 
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Moreover, the pressure of the perfect fluid turns 
out to be a function of the radial coordinate r only 
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( ) ( )= .

3 ( ) ( )
f r f Rp
f R f r
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          (26) 

 
This solution satisfies the matching conditions at 

the surface of a sphere of radius R. From this point of 
view, it is a good candidate for describing the interior 
of a spherically symmetric mass distribution. From a 
physical point of view, however, this solution is not 
acceptable. Indeed, the assumption of constant inner 
density implies that the fluid is incompressible which 
leads to an infinite speed of sound. There are many 
other static perfect-fluid solutions (see [2] for a list of 
the most relevant solutions). Nevertheless, none of 
them has a meaningful physical significance. The 
generalizations that include charge distributions 
present similar problems. 

In the case of rotating fields, the situation is 
similar. Einstein's field equations have no known and 
physically acceptable interior solution that could be 
matched to the exterior Kerr metric. In particular, 
there are no interior solutions that could represent 
objects like the Earth or other rigidly rotating 
astrophysical objects. This is a major problem in 
general relativity. 

There exist some exact interior solutions of 
Einstein's equations with a perfect-fluid source 
equipped with an electromagnetic field [26] that 
satisfy all the energy conditions and are 
well-behaved in the entire spacetime. They are 
interpreted as describing the gravitational and 
electromagnetic fields of disk-halos. However, this 
kind of solutions cannot be matched with any known 
exterior solution. 

One century after the discovery of the exterior 
Schwarzschild solution, we see that even the simplest 
case of an interior field with only mass monopole 
moment does not have a definite solution in general 
relativity. In view of this situation, it seems 
convenient to try new and different approaches. We 
propose the following idea. The charged Kerr metric 
describes the exterior field of black holes. Once a 
particle crosses the horizon of a black hole, according 
to classical general relativity, it undoubtedly must 
end at the singularity. This means that the interior of 
black hole is a singularity where the classical theory 
breaks down. Consequently, it is not possible to 
describe the interior field of a black hole by using 
only classical general relativity; instead, it should be 
a problem of quantum gravity. In fact, we know that a 
crucial test of any quantum gravity model must be the 

avoidance of the classical singularities. 
Consequently, the interior counterpart of the charged 
Kerr metric cannot be found by using Einstein's 
equations only. 

Consider now classical compact objects, not 
including black holes. In the static vacuum case, we 
usually assume that they are described by the 
spherically symmetric Schwarzschild metric, the 
same which is used for black holes. This assumption 
should be changed. Indeed, it is hard to imagine in 
Nature a completely spherically symmetric compact 
object. Therefore, it is necessary to take into account 
the natural deviations from spherical symmetry. The 
simplest way to reach this end is to consider the 
contribution of an axially symmetric quadrupole 
moment. As we mentioned in the previous section, 
there are several exterior metrics which represent the 
gravitational field of mass with quadrupole. The 
search for the corresponding interior counterparts 
with quadrupole moment will certainly contribute to 
understand the difference between the exterior 
metrics. It could be, for instance, that each exterior 
metric corresponds to an interior metric with a 
particular physical structure. Also, if it turns out that 
an explicit exterior metric does not allow the 
existence of a reasonable interior counterpart, it 
should not be considered as physically relevant. 

We already started a program in which the main 
goal is to find interior solutions with quadrupole. The 
starting point is the exterior q – metric presented in 
the previous section. To search for the corresponding 
interior metric, it is very important to choose a 
convenient line element because the structure of the 
field equations depends on its explicit form. In [27], 
we proposed the following line element 
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Moreover, the metric function γ is determined by 
two first-order differential equations that can be 
integrated once the remaining metric functions are 
known explicitly. This is an advantage of the above 
line element. An additional advantage is that the 
conservation of the energy-momentum tensor leads 
to two simple expressions 

, , , ,= ( ) , = ( ) ,r rp p p p           (30) 

which resemble the Tolman-Openheimer-Volkov 
relation of the spherically symmetric case [2]. This is 
particularly important when trying to perform the 
integration of the main field equations. It is still very 
difficult to solve the above system of differential 
equations. We therefore propose to use solution 
generation techniques. The first step in this direction 
was taken in [27] where a transformation was derived 
by means of which it is possible to generate interior 
solutions with quadrupole moment, starting from 
spherically symmetric interior solutions. The 
investigation of the resulting axially symmetric 
solutions with quadrupole is currently under 
investigation. 

5 Conclusions 

In this work, we presented a brief review of the 
problem of describing the gravitational and 
electromagnetic field of astrophysical compact 
objects by using the multipole structure of exact 
solutions of the Einstein-Maxwell equations. In the 
case of the exterior field, we presented the properties 
of the main solutions and its multipole moments. 
Using the black hole uniqueness theorems, we 
observe that the charged Kerr solution is the only 
metric which contains the mass monopole, the dipole 
angular momentum and the charge monopole. Once 
higher multipoles are taken into account, the 
uniqueness theorems are no more valid and several 
solutions are available in the literature. We mention 

the q – metric as the simplest solution with 
quadrupole moment. We showed that there exist 
general static solutions with an infinite number of 
parameters which determine the Newtonian and the 
relativistic Geroch-Hansen multipole moments. We 
mentioned that it is possible to find the corres-
ponding stationary electrovacuum generalizations by 
using solution generating techniques. In this manner, 
one can say that the problem of describing the 
exterior field of astrophysical compact objects can be 
solved by using multipole moments. 

In the case of interior solutions, the situation is 
completely different. Even the simplest case of 
perfect-fluid source with only mass monopole cannot 
be solved completely. A major problem, for instance, 
is that there is no known physically meaningful 
interior solution that could be matched with the 
exterior Kerr metric. We therefore propose an 
alternative approach. The interior counterpart of the 
charged Kerr solution cannot be found in classical 
general relativity because inside the horizon a 
curvature singularity exists which implies the break 
down of the classical theory. Quantum gravity should 
be used to investigate the internal structure of black 
holes. As for other compact objects, it is necessary to 
take into account the natural deviations from 
spherical symmetry by adding higher multipoles. In 
particular, we propose to use the exterior q  metric 
to search for an interior solution with quadrupole. 
Preliminary calculations show that it is possible to 
find interior solutions by using a particular 
transformation which allows one to generate interior 
axially symmetric solutions with quadrupole 
moment. This task is currently under investigation. 
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We present our study of kaonic three-body KNN , KNN  and KKK  and four-body KNNN , and KKNN  
clusters within the framework of a potential model using the method of hyperspherical functions in momentum 
representation. To perform a numerical calculations for the bound state energy of the light kaonic system, we use 
a set of different potentials for the nucleon-nucleon and KN  interactions, as well as for the kaon-kaon 
interaction. The calculations show that a quasibound state energy is not sensitive to the NN  interaction, and it 
shows very strong dependence on the KN  potential. We also compare our results with those obtained using 
different theoretical approaches. The theoretical discrepancies in the binding energy and width for the lightest 
kaonic system related to the different NN  and KN  interactions are addressed.  
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1 Introduction 
 
Nowadays, the study of exotic nuclear systems 

involving a K  is an important topic in hadron 
physics, because the existence of kaonic nuclear 
states is related to kaon condensation and to physics 
of the core of neutron stars that by today’s 
understanding are built up from exotic matter: pion 
and kaon condensates and quark matter [1, 2]. 
Kaonic nuclei carry important information 
concerning the K nucleon interaction in the nuclear 
medium. This information is very important in 
understanding kaon properties at finite density and in 
determining of the constraints on kaon condensation 
in high-density matter. The latter will allow one to 
adjust the methods developed in condensed matter 
physics for exciton and excitonic polariton 
condensates (see, for example, [3, 4]) to study the 
kaon condensation. The best way to understand the 
many body kaonic nuclear system is to study the 
simplest two-, three- and four-body clusters: ,KN  
KNN  and ,KNNN as well as double kaonic 
clusters, when one nucleon in the three- or four-body 
kaonic cluster is replaced by the K  meson. The 
light kaonic clusters KNN  and KNNN  represent 
three- and four-body systems and theoretically can be 

treated within the framework of a few-body physics 
approaches. In the recent past much efforts have been 
focused on the calculations of quasibound state 
energies and widths for three- and four-body kaonic 
clusters. A variety of methods have been used in 
configuration and momentum spaces, to obtain 
eigenvalues for energy and width of quasibound 
states using diverse sets of KN  and NN  
interactions. These include but are not limited by 
variational method approaches [5-15], the method of 
Faddeev equations in momentum and configuration 
spaces [16-28], Faddeev-Yakubovsky equations [26] 
and the method of hyperspherical harmonics in 
configuration and momentum spaces [29-28]. 
However, the predicted values for the binding energy 
and the width are in considerable disagreement. For 
example, for the K–

pp cluster the predicted values for 
the binding energy and the width are 9–95 MeV and 
20–110 MeV, respectively. 

On the experimental side, several experiments 
have been performed to search for the kaonic clusters 
using various nuclear reactions starting from the first 
measurement reported by the FINUDA collaboration 
for the K–

pp cluster [31] and including the most recent 
reports of J-PARC E15 and J-PARC E27 
collaborations [32, 33] and HADES collaboration 
[34]. Recent HADES collaboration partial wave 
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analysis of the reaction pp pK   at 3.5 GeV to 
search for the K–

pp bound state shows that at a 
confidence level 95% such a cluster cannot 
contribute more than 2–12% to the total cross section 
with a pK+Λ final state [34]. However, there are 
important reports of K–

pp search experiments done by 
DISTO collaboration and J-PARC E27 
collaboration. They reported some signal at 100 MeV 
below the K   and two protons threshold, which 
may be related to the kaonic cluster K–

pp. J-PARC 
E27 collaboration has observed a K–

pp – like structure 
in the d (  , K  ) reaction at 1.69 GeV/c, while 
Ref. [35] reports an indication of a deeply bound K–

pp 
state in the pp p K    reaction at 2.85 GeV. The 
situation is still controversial and the existence, for 
example, of the K–

pp quasibound state has not been 
established yet. Thus, the theoretical and 
experimental study of composite systems of K – 
mesons and nucleons is still a challenging issue in 
nuclear physics. 

Below we present a study of the lightest kaonic 
nuclear clusters using the method of hyperspherical 
functions. We focus on three- and four-body 
nonrelativistic calculations within the framework of 
a potential model for the three- and four-body kaonic 
clusters using the method of hyperspherical 
harmonics (HH) in momentum representation. 
Calculations for a binding energy and width of the 
kaonic three- and four-body system are performed 
using different NN potentials and kaon-nucleon 
interactions, as well as kaon-kaon interactions. Such 
approach allows one to understand the key role of the 
kaon-nucleon interaction and the importance of 
nucleon-nucleon interaction in the formation of 
quasibound states of the kaonic three- and four-body 
systems. 

 
2 Theoretical formalism 
 
The Hamiltonians of the three and four 

nonrelativistic particles for the KNN  and KNNN  
systems, respectively, read as 

 


33 _ _1 2
1 2

= ,N N
K N K N

H T V V V  
        

 (1) 

 3

44 _
1 < 3 =1

= ,N Ni j K Ni j i i

H T V V
 

           (2) 

where  3T and  4T are the operators of the kinetic 
energy for three- and four-particle system, 
respectively, N Ni j

V  is the nucleon-nucleon potential 

and 
iKNV  is a pairwise effective antikaon interaction 

with the nucleon. The effective interactions of the 
,KN ,KN KK  and KK  two-body subsystems are 

discussed in detail in Refs. [5, 6, 10, 14, 36 – 39]. 
Below, we use two effective KN  interactions that 
were derived in different ways. The effective  KN
interactions can be derived phenomenologically or 
constructed using the chiral SU(3) effective field 
theory, which identifies the Tomozawa-Weinberg 
terms as the main contribution to the low-energy 
KN  interaction [37]. The potential for the 
description of the KN  interaction was derived in 
Refs. [5, 10] phenomenologically, using KN  
scattering and kaonic hydrogen data and reproducing 
the (1405)  resonance as a K–

pp bound state at 1405 
MeV, and the decay width of (1405)  is also taken 
into account in this potential. We refer to this as the 
Akaishi-Yamazaki (AY) potential. The AY potential 
is energy independent. The other KN  interaction 
given in Ref. [36] was derived based on the chiral 
unitary approach for the s – wave scattering 
amplitude with strangeness S = –1, and reproduces 
the total cross sections for the elastic and inelastic 
K–p scattering, threshold branching ratios, and the 
  mass spectrum associated with the  (1405). 
Hereafter we refer to this energy-dependent potential 
for the parametrization [40] as the HW potential. 
Both potentials are constructed in the coordinate 
space, are local, and can be written in the one-range 
Gaussian form as 

 

 2
_ _

=0,1
( ) = exp / ,I I

K N K NI
V r U r b P         (3) 

 
where r is the distance between the kaon and the 
nucleon, b is the range parameter and I

KNP  is the 
isospin projection operator .  The values of the 
potential depth UI–0 and UI–1 for eachinteraction are 
given in Refs. [10] and [36] and the range parameter 
is chosen to be = 0.66b  fm for the AY potential and 

= 0.47b  fm for the HW potential. 
To describe the 

i jN NV  nucleon-nucleon 
interaction, we use several different NN  potentials: 
the realistic Argonne V14 (AV14) and V18 (AV18) 
[41, 42] potentials, the semi-realistic Malfliet and 
Tjon MT-I-III (MT) [43] potential, the Tamagaki 
G3RS potential [44], which we hereafter refer to as 
the T potential, and potential [45], which we refer to 
as the M potential. Therefore, the use of different NN 
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potentials and KN  interactions allows one to 
perform a validity test for the lightest kaonic clusters 
against various NN  and KN  interactions. 

The binding energies and the wave functions of 
the three and four nonrelativistic particle can be 
obtained by solving the Schrödinger equation with 
the Hamiltonians (1) and (2), respectively. In our 
approach we use the hyperspherical harmonics 
method that represents a technique of solution of the 
Schrödinger equation to find the bound and 
scattering states for a few body system. The main 
idea of this method is the expansion of the wave 
function of the corresponding nuclear system in 
terms ofhyperspherical harmonics that are the 
eigenfunctions of the angular part of the Laplace 
operator in the six-dimensional space (three-body 
problem) or in the nine-dimensional space 
(four-body problem). The details of this method can 
be found in the monographs [46, 47, 48]. In our 
calculations we use the HH method in momentum 
representation [49, 48]. One starts from the 
Schrödinger equation for the three or four particles 
with the Hamiltonians (1) and (2), respectively, and 
rewrites this equation in the integral form in the 
momentum representation using the set of the Jacobi 
momenta qi in 3(N – 1) – dimensional momentum 
space. These momenta are the trees of Jacobi 
coordinates for three- or four-particle system 

12... 1
1

=112... 1 12...

1= ,
i

i i
i j j i

ji i

m m m
m m






 
 

 
q q q i = 1, 2, ..., N 

– 1, where mj and qj are the particles masses and 
momentum vectors conjugated to the position 

vectors rj respectively, 12...
=1

=
i

i j
j

m m  and N is the 

number of particles. After that, one introduces the set 
of the hyperspherical coordinates in the momentum 

space given by the hyperradius 2 = 
1

2

=1

N

i
i

q


  and the 

set of angles  , which define the direction of the 
vector ϰ in 3(N – 1) – dimensional momentum space, 
as well as the symmetrized hyperspherical harmonics 
in momentum representation ( , , )

     that are 
written as a sum of products of spin and isospin 
functions and hyperspherical harmonics [50]. Above, 
for the sake of simplicity, we denoted by  the 
totality of quantum numbers on which the N – body 
hyperspherical harmonics depend and the integer μ is 
the global momentum in the 3(N – 1) – dimensional 
configuration space, which is the analog of angular 
momentum in case of N – 2. The HH are the 

eigenfunctions of the angular part of the 3(N – 1) – 
dimensional Laplace operator in configuration space 
with eigenvalue LN(LN + 1), where LN = μ + 3(N – 2) / 
2 and they are expressible in terms of spherical 
harmonics and Jacobi polynomials [46, 47, 48]. By 
expanding the wave function of N bound particles in 
terms of the symmetrized hyperspherical harmonics 
in momentum space 

 
3 4

2

,
( , ) = ( ) ( , , ),

N

u 
 

 

 



      

    
(4) 

and substituting Eq. (4) into the corresponding 
integral Schrödinger equation in the momentum 
representation, one obtains a system of coupled 
integral equations for the hyperradial functions 

( )u
   for the system of three or four particles. The 

detailed description of the formalism for the K–
pp 

cluster can be found in Ref. [28]. Here we expand the 
wave function of three bound particles in terms of the 
symmetrized hyperspherical harmonics 

( , , )
l l Lp q
     in momentum representation: 

( , ) = ( ) ( , , ),
l l L l l Lp q p q

l lp q

u 


   p q   where   is 

the grand angular momentum, L is the total orbital 
momentum, lp and lq are the angular momenta 
corresponding to the Jacobi momenta p and q that are 
conjugated to the standard Jacobi coordinates for 
three particles, ϰ is the hyperradius in the six 
dimensional momentum space ,  and Ω ϰ is the set of 
fiveangles which define the direction of the vector ϰ. 
The functions ( , , )

l l Lp q
     are written as a sum 

of products of spin and isospin functions and HH, 
using the Raynal-Révai coefficients [51]. For the 
system K–

pp the wave function is antisymmetrized 
with respect to two protons, while for the K–K–

p 
system it is symmetrized with respect to two 

antikaons. For the hyperradial functions ( )
l l Lq pu


  

we obtain the coupled integral equations. By solving 
the coupled integral equations one can find the 

hyperradial functions ( )
l l Lq pu


  for a given L and 

the binding energies for the K–
pp and K–K–

p systems. 
For the system KNNN  the wave function is 
antisymmetrized with respect to three nucleons, 
while for the K–K–

pp system it is symmetrized with 
respect to two antikaons and antisymmetrized with 
respect to two protons. The hyperradial functions 
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( )u


  for four-body systems can be found by 

solving the coupled integral equations and use them 
to construct the corresponding wave functions (4). 
To solve the coupled integral equations for the 
hyperradial functions ( )u

   for the system of three 
or four particles obtained from the corresponding 
Schrödinger equations, we include only the real part 

of the KN
_

K K  and KK  interactions, quite in the 
same way as the earlier variational studies [13, 14, 
29]. Using the wave function, the width of the bound 
state can be evaluated in a perturbative way from the 
imaginary part of the KN  interaction as Г = – 2 

 12 13Im ( ) ( )KN KNV r V r    for K–
pp and K–K–

p  

clusters. As it is stated in review [52], as well as 
demonstrated in the recent calculations of the width 
for the  K–

pp system [54] using a coupled-channel 
complex scaling method with Feshbach projection, 
this is a reasonable approximation. For an 
approximate evaluation of the width the imaginary 
part of the complex potential has often been treated 
perturbatively in the early variational studies [13, 14, 
29] and by many authors, see for example [8, 9, 12, 
13, 14, 15, 29, 30, 39]. In the same way the width of 
the bound state for KKK  system is evaluated from 

the imaginary part of the 
_

K K  interactions as 

=  2 _ 12 _ 23Im ( ) ( )
K K K K

V r V r    
 

 and the 

widths for the KNNN  clusters are evaluated 

through the expression _= 2 Im ,
K N

v   

where 
KN

v  sums over all pairwise KN  
interactions. 

In calculations with the energy dependent HW 
potential we follow Ref. [14] and use a “ corrected” 
energy dependent complex potential, where the 
strength for each channel is determined so as to 
reproduce the KN  scattering amplitude predicted in 
Ref. [40] and is parametrized by polynomial in terms 
of the KN  energy. Also, to determine the KN  
energy in the K–

pp system, the authors of Ref. [14] 
examined two ansatz, "Type I" and "Type II", which 
are given as Eqs. (20) and (21) in Ref. [14], 
respectively. In the current study is employed the 
"Type II" ansatz. 

In the following Section we present results for a 
single-channel calculation using effective KN , KK  
and KK  interactions. 

3 Results of numerical calculations and 
discussion 

 
3.1 K–

pp cluster 
Let’s start with the results of our calculations of 

the K–
pp cluster recently reported in Ref. [28]. Results 

of these calculations for the K–
pp cluster are presented 

in Table 1. For the calculations of the binding energy 
and the width with the method of HH we use as input 
MT, T, and AV14 potentials for the NN  interaction, 
while for the KN  interaction we use the 
energy-dependent effective HW and the 
phenomenological AY potentials. Such an approach 
allowed us to examine how the K–

pp cluster’s 
structure depends on different choices of the KN  
interactions for the same NN  potential, as well as to 
investigate its dependence on different choices of the 
NN  interaction for the same KN  interaction, and 
to understand the sensitivity of the system to the 
input interactions.The analysis of the calculations 
presented in Table 1 show that the AY potential as 
the KN  interaction input falls into the 46-47 MeV 
range forthe binding energyof the K–

pp cluster, while 
the chiral HW KN  potential gives about 17-21 
MeV for the binding energy. Thus, the values for the 
binding energy for the K–

pp system obtained for the 
different NN  potentials are in reasonable 
agreement, and the ground state energy is not very 
sensitive to the NN  interaction. However, there is a 
very strong dependence on the antikaon-nucleon 
interaction. When we employ the effective 
energy-dependent chiral theory based HW potential 
for the KN  interaction and different NN  
interactions, as inputs, we predict a weakly bound 
K–

pp cluster. This is similar to Ref. [14], where the 
authors employed several versions of 
energy-dependent effective KN  interactions 
derived from chiral SU(3) dynamics together with 
the realistic AV18 NN  potential. Our calculations 
also confirm results reported in earlier studies [13, 
21, 29] employing the same type of KN  interaction. 
The energy of the bound state, as well as the width 
calculated for the AY potential are more than twice 
as big as those obtained for the energy-dependent 
chiral KN  HW potential. Therefore, the highest 
binding energies are obtained for the 
phenomenological AY potential. Let’s compare our 
results with those obtained with different variational 
approaches. Our result for the binding energy is in 
good agreement with the result from Ref. [10], where 
the binding energy for the K–

pp cluster was calculated 
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by employing the AY potential as the KN  
interaction and T potential as the NN interaction. 
However, the decay width seems rather different 
among two studies: in the present study the width is 
74.5 MeV, while that obtained in Ref. [10] is 61 
MeV. This should be related to the different behavior 
of the waves functions obtained using the variational 
approach and the method of hyperspherical 
functions. Recently it was reported that "resonance 
and coupled-channel problem are key ingredients in 
the theoretical study of the K–

pp" [54]. Those authors 
employ a coupled-channel Complex Scaling Method 
combined with the Feshbach method since this 
approach can simultaneously treat these two 
ingredients. Interestingly enough, their calculations 
[54, 53] for the binding energy and width are 
consistent with our results obtained within the single 
channel potential model. The comparison of our 
calculations with results obtained using the HH 
method in configuration space [29] and differential 
Faddeev equations [28] also are in reasonable 
agreement. This is a good indication that the binding 
energy does not depend significantly on the method 
of calculation. 

3.2 K K p  cluster 
Three-body problem with two mesons and one 

baryon have received considerable attention in the 
recent literature [38, 39, 55, 56]. The baryonic 
systems KKN  and KKN  with two kaons were 

investigated in Refs. [38, 39, 57]. We study a 
possible bound state of the K–K–

p cluster with S = –2, 
I = 1/2, J+ = 1/2+ using the effective s – wave AY and 
HW potentials assuming that this state is formed due 
to the strong K–

p attraction.  
The strength of the s  wave KK  interaction 

for the isospin I = 0 is zero due to Bose statistics, and 
we consider a weak repulsion for the isospin I = 1 
that reproduces the scattering lengths = 0.14

K K
a   

fm for the range parameter b = 0.66 fm (AY 
potential) and = 0.47b  fm (HW potential). The 
results of calculations for the binding energies for the 
K–

p and K–K–
p, the bound K–K–

p state without K–K– 
interaction, and the root-mean-square radius of the 
K  distribution are presented in Table 2. For the AY 
potential, the K–K–

p system is still bound even with a 
much stronger KK  repulsion, while for the HW 
potential there is the bound state with the energy 0.01 
MeV relative to the K–

p + K– threshold. Thus, 
although the KN  with I = 1 is attractive, the 
attraction is not strong enough to overcome the KK  
repulsion. For the width within the method of HH we 
obtain 58.6 MeV and 41.6 MeV with the AY and HW 
potentials, respectively. Our results for the binding 
energy of thesystem obtained by the method of HH 
are in reasonable agreement with calculations 
obtained using a variational method [39] and the 
Faddeev calculations [26].

K p
E 

Table 1 – The binding energy B and width Γ for the K–
pp system calculated in the framework of the method of HH in 

the momentum representation for different interactions. NN potentials: AV14 [41], MT [43] and T [44]. KN interactions: 
AY [10] and HW [36].  is two-body energy in the K–

pp cluster. 

AV14+AY MT+AY T+AY AV14+HW MT+HW T+HW
B, Mev 46.2 46.5 46.3 17.2 20.5 20.6
Γ, MeV 66.7 84.3 74.5 44.3 48.1 49.5

EK-p, Mev 29.9 10.9 

Table 2 – The bound state energies of K p (E2) and K K p  (B) systems, and the root-mean-square radius of 
thedistribution.is the binding energy measured from the two-body threshold 

���� ��� � �� >���, �� ��,��� �,��� ��,��� 
�� �� 1.36 30.0 31.7 1.7

����� = 0 �� 35.3 5.3
HW �� 1.96 11.42 11.43 0.01

����� = 0 �� 12.21 0.79
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3.3 KKK system 
Recently, there has been increased interest in 

few-body systems constituted by two or more 
kaons. Particularly noteworthy is the possibility 
of formation of the quasibound states in a KKK
system. We study the KKK system using a 
nonrelativistic potential model in the framework 
of the method of HH in momentum representation 
and consider the KKK system as three interacting 
kaons. Once the two-body interactions for the KK
and KK subsystems are determined one can 
determine the wave function of the KKK system 
by solving the Schrödinger equation for the 
Hamiltonian 3 12

ˆ ( )KKH T V r   13 23( ) ( )KK KKV r V r 

where the potential energy is the sum of the 
effective KK and KK interactions that are the 
functions of the interparticle distances rij. For the 
description of the effective kaon-kaon 
interactions we use the local potentials from Refs. 
[39] and [38] that can be written in one-range 
Gaussian form (3). The set of values of the 
potential depth I

AU for eachinteraction is given in 
Refs. [39, 38] and the range parameteris chosen to 
be the same forandinteractions. We choose two 

optimized values for the range parameter: b = 0.66 
fm (set A) and b = 0.47 fm (set B). The strength of 
strongly attractive s – wave KK interactions was 
assumed to be the same for the isospin I = 0 and 
isospin I = 1, while the strength of the s – wave
KK interaction for the isospin I = 0 is 0I

KKU  due to 
Bose statistics and we consider a weak repulsion 
for the isospin I = 1. In Ref. [39] the KK  
interaction is derived under the assumption 
thatforms the quasibound states f0 (980) and a0 
(980) in I = 0 and I = 1 channel, respectively, and 
it reproduces the masses and widths of these 
resonances. The strength of the repulsive KK
interaction inwas fixed to reproduce a lattice QCD 
calculation [58] for the scattering length

0.14
K K

a     fm, and a weaker repulsion that 
corresponds to the scattering length 0.10

K K
a      

fm. Results of calculations for the set of potentials 
A when the KK interaction reproduces the 
scattering lengths 0.14

K K
a     fm and 0.10

K K
a    

fm are denoted as A1 and A2, respectively. 
Correspondingly, the set of potentials Bthat 
reproduces those different scattering lengths 
hereafter we refer as B1 and B2.

 
 

Table 3 – Results of calculations of different characteristics of the KKK  system  
 

 Fadeev[59] A1[59] A1 A2 B1 B2 Separable AMY [60] 
potential 

Mass, Mev 1420 1467 1469.4 1468.2 1464.1 1463.8 1463.4 
� 2� , MeV 25 55 42 41.1 48.4 49.1 – 

�, Mev  21 18.6 19.8 23.9 24.2 24.6 

√� �� >, Mev  1.6 1.72 1.65 1.61 1.56 1.52 

�� distance, fm  2.8 3.2 2.92 2.72 2.70 2.68 
���� � ��, fm  1.7 1.78 1.68 1.66 1.62 1.60 

������ distance, fm  1.6 1.68 1.65 1.64 1.58 1.55 
����� � �� distance, fm  2.6 2.9 2.86 2.55 2.50 2.47 
 
 
The solution of a system of coupled integral 

equations for the hyperradial functions allows us to 
construct the wave functionΨ for the KKK system 
and to determine the binding energy B. A reasonable 
convergence for the ground state energy is reached 
for the grand angular momentum max 10  and we 
limit our considerations to this value. The results of 
our calculations for the binding energy and the width 
for the KKK system along with the results obtained 

with a coupled-channel approach based on the 
solution of the Faddeev equations in momentum 
representation and the variational method [59] are 
presented in Table 3. The total mass the KKK system 
ranges from 1463.4 to 1469.4 MeV when we 
consider the sameK meson mass 496Km  MeV as in 
Ref. [59]. The width falls within the 41 - 49 MeV 
range for all sets of theandinteractions. The 
quasibound state for the KKK with spin-parity0-and 
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total isospin 1/2 is found to be below the three-kaon 
threshold. The comparison of our results with the 
results for the binding energy 21 MeV (the mass is 
1467 MeV) and the width 110 MeV obtained with 
the variational method in Ref. [59] shows that while 
the binding energy found within the HH and 
variational calculations are close enough, the percent 
differences of the results for the width is less than 
26%. A reason of this difference is related to the 
different behavior of the wave function of the KKK
system obtained within the variational method and 
the method of HH. The wave function within the 
method of HH is obtained using the criterion of 
conversion of the binding energy with the accuracy 
about 0.2 MeV and consideration of the next terms 
with 10  in the expansions (4) only very slightly 
changes the binding energy. However, the width that 
is calculated using the perturbative approach more 
sensitive to the wave function and does not converge 
so fast as a binding energy. This leads to the different 
overlapping of the imaginary part of the ( )KKV r
potential. The difference between the HH and 
Faddeev calculations [59] is understandable because 
in Ref. [59] thesystem is studied with a 
coupled-channel approach based on solving the 
Faddeev equations considering the KKK , K , and 
K channels and using as input two-body matrices 
that generate f0 (980) and a0 (980)resonances, while 
in the present calculations we use a single-channel 
three-body potential model. In addition our 
calculation is carried out in non-relativistic approach, 
whereas the Faddeev calculation is done in 
semi-relativistic approach using two-body 
amplitudes that are calculated by solving a 
relativistically covariant Bethe-Salpeter equation in a 
coupled-channel approach and using the on-shell 
factorization method. Such a difference could make 
large discrepancy in the obtained results. 

We also perform calculations for the KKK
system using s–wave two-body separable potentials 
with Yamaguchi form factors from Ref. [60] that also 
used in Faddeev and Faddeev-Yakubovsky 
calculations [26] for K K p  theand K K pp  kaonic 
clusters. The corresponding results are presented in 
the last column of Table 3 and are very close to the  
 

results obtained using the effective local kaon-kaon 
interactions for the set B. Thus, our calculations 
within three body nonrelativistic potential model 
predict a quasibound state for the KKK system with 
mass around 1460 MeV that can be associated with 
the K(1460) resonance. Our results support the 
conclusion obtained through the variational 
calculations that K(1460) could be considered as a 
dynamically generated resonance. 

3.4 KNNN clusters 
Recently Faddeev-Yakubovsky calculations [26] 

were made for the four-particle K ppn and K K pp 

kaonic clusters, where the quasibound states were 
treated as bound states by employing real s–wave 
two-body separable potential models for the KK and 
K the nucleon interactions as well as for 
theinteraction. Fully four-body nonrelativistic 
realistic calculations of KNNN  and KKNN
quasibound states within the method of HH in 
configuration space, using realistic NNpotentials and 
subthreshold energy dependent chiral KN
interactions, were presented in Ref. [29]. Giving that 
below we present the results of our calculations for 
the KNNN  and KKNN quasibound states in the 
framework of method of HH in momentum 
representation using AV18 [42] and M [45]potentials 
and AY and HW KN interactions as inputs. To find 
the binding energies with above mentioned set of 
potentials, we solve a system of coupled integral 
equations for the hyperradial functions ( )u

  . In the 
calculations we limit our consideration with the value 
μmax = 10 getting a reasonable convergence for the 
binding energy. In Table 4 we present our results for
KNNN cluster that we compare with those obtained 
via different methods. The results of our calculations 
for the energy and the width show dependence on 
theNN potentials and on the KN interactions. 
However, this dependence is dramatically different: 
for the same KN interaction and different NN 
potentials the ground state energy and the width 
change by about 3-15 %, while for the sameNN 
potential and differentinteraction the energy changes 
by a factor of more than 3 and the width changes by 
more than twice.
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Table 4 – The binding energyand widthfor thesystem calculated in the framework of the method of HH in the momentum 
representation for different interactions with results from Refs. [9], [26] and [29]. The parity includes the eigen parity of 
antikaon. 

�� T AV18+AY M+AY AV18+HW M+HW [29] [26] [9]

������ 12
�� 0 �, Mev 92.1 97.9 28.6 28.9 29.3 69 110.3

�, Mev 83.4 84.1 30.3 30.8 32.9  21.2

������ 12
�� 1 �, Mev 64.6 66.7 17.2 18.7 18.5

�, Mev 74.2 80.4 27.1 31.4 31.0

������ 12
�� 1 �, Mev 101.9 107.6 25.8 28.1  96.7 

�, Mev 87.9 89.8 28.1 31.2  12.5

Figure 1 – Nucleon density distributions 
for and clusters 

Figure 2 – Dependence of the two-nucleon density 
distributions in and clusters on the internucleon distance

Figure 3 – Dependence of thedensity  
with isospininandclusters onrelative distance 

For the comparison let’s mention that the authors 
of Ref. [29] obtained 29.3 MeV and 32.9 MeV, and 
18.5 MeV and 31.0 MeV for the binding energy and 
the width ofthe K–ppn and K–pnn clusters, 
respectively, while calculation within the 
Faddeev-Yakubovsky equations [26] with separable 
potential models for the K –nucleon and the 
nucleon-nucleon interactions leads to very deep 

ground state energyMeV forsystem. The comparison 
of our results for the K–ppn and K–pnn clusters 
obtained for AV18NN interaction and HW KN
interaction with calculations [29] within the 
variational HH method for the AV14 NNinteraction 
and shallow chiral KN interaction shows a reasonable 
agreement. The predictions [9] for the binding 
energy and the width for the kaonic clusters studied 
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based on a framework of antisymmetrized molecular 
dynamics and employing adopted AY [5] potential as 
a bare KN interaction and the type of T [44] potential 
as a bare NNinteraction are presented in the last 
column of Table 4. In our calculations we use the 
same parametrization of the AY and HW potentials 
as in Section III A. As is seen from Table IV there is a 
reasonable agreement for the widths for the K–ppn 
and K–pnn clusters among the present study and 
study [29] in case of HW potential. However, the 
widths of the K–ppn and K–pnn systems are largely 
different among our study and an earlier study [9] in 
the case of AY potential. To understand these 
discrepancies and compare our results with Ref. [9], 
we performed the calculations for the KN interaction

0 2
0( ) (593 )exp[ ( / 0.66) ]I

KNV r i r     and use for the 
imaginary part of the potential the different values of

0 20  , 40, 83 MeV, respectively [5, 9]. The results 
are the following: K–pрр = (101.9, 19.8) MeV, 
(101.9, 38.7) MeV, (101.9, 87.9) MeV; K–pрn, ( , )B 
=(92.1, 18.7) MeV, (92.1, 37.4) MeV, (92.1, 83.4) 
MeV; K–pnn, ( , )B  =(64.6, 16.3) MeV, (64.6, 32.6) 
MeV, (64.6, 74.2) MeV, that are in agreement with 
the corresponding calculations from Refs. [5, 9] that 
lead to narrow widths only for small values of 0 . If 
the binding energy is large and lies below the 
threshold of the main decay channel   , as a result 
we have the width of the quasi-stable discrete bound 
state less than the binding energy and complex part of 
the KN potential should be small. The value 0 20 
MeV can reproduce the results of the width from 
Refs. [5, 6, 7, 8, 9]. In our approach we can reproduce 
the narrow width reported in Ref. [9] only for the 
small value of the the imaginary part of the AY 
potential. Interestingly enough, our calculations for 
the AY interaction indicate that for the system
KNNN  the cluster K–pрр is more deeply bound 
K–pрn than thethat contradicts to the results [9]. In a 
shell-model picture, one of three protons in the K–pрр 
should be raised up to 0p orbit due to Pauli principle, 
while all nucleons in K–pрn occupy the 0s orbit. So, 
the naϊve expectation is that the K–pрn is lower than 
the K–pрр energetically. From the other side the 
larger number of the strongly attractive K–p pairs in 
the 3

2( ,1)  state than in 1
2( ,0)  state may cause a 

lowering of theT=1 state, even below the T = 0, 
although the third proton in the T = 1 state should be 
flipped up to the orbital 3/2(0 )p . The final picture 
depends on the strength of KN interaction. The 
attractive AY interaction is much stronger than the 

effective HW interaction. The strength of KN
interaction plays an important role that may lead to 
the nuclear compression. Following Ref. [61] we 
calculated a nucleon density distribution ϛN(r) 
averaged over angular dependence multiplied by r2, 
wherer is the distance of the nucleon from the center 
of mass for K–pрр, or K–pрn clusters, shown in Fig. 1. 
For K–pрр cluster one can observe a significant 
spatial shrinkage when the AY KN interaction is 
used. Since the KN potential is much more attractive 
in the I = 0 channel than in the I=1channel, different 
distribution of protons and neutrons is expected in 
kaonic clusters. Such results have already been 
reported in the early study within a new framework 
of the antisymmetrized molecular dynamics method 
in Refs. [8] and [9]. Probably in a K  – nuclear 
system is preferable a structure where the proton 
distribution differs from the neutron distribution, 
such a structure dynamically produced in the 
hyperspherical function treatment. Particularly, the 
composition of the K ppp wave function within our 
formalism is the following: 

 
3/2 ,1[ ( 1 / 2, 0) ] , 93%,K pp T J p

      
3/2 ,1[ ( 0, 1 / 2) ] , 6.4%,K p T J pp

      
3/2 ,1[ ( )( 3 / 2, 3 / 2) ] , 0.6%K ppp T J p

      . 
 
Our calculations show that the dominant 

contribution into the total wave function of the 
K–pрр system is the 3/2 ,1[ ( 1 / 2, 0) ]K pp T J p

   
configuration. While the K–p interaction is much 
stronger than the K–n, the protons preferably 
allocate near the K– and their kinetic energy 
increase. However, the total energy decreases due to 
the strongly attractive AY K–p interaction. As a 
result the K–pрр binding energy of thebecomes 
larger than that for the K–pрn. In Table 5 are 
presented the kinetic energy per nucleon for a 
proton and a neutron in KNNN , as well as the 
expectation value of the KN interaction. To estimate 
the expectation values of the kinetic energy and of 
the KN potential energy per nucleon the particle 
numbers are counted following Ref. [9] using 
Clebsch-Gordan coefficients. The particular 
numbers of protons and neutrons are 2.67 and 0.33, 
respectively, for K–pрр and both are equal 1.5 for 
K–pрn. Analysis of Table 5 and all above notes gives 
a possible explanation why the K–pрр cluster is 
more deeply bound than the K–pрn when the 
strongly attractive AY potential [10] is used, while 
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when the input is the HW potential we have an 
opposite picture. To reveal the characteristic 
structure of K–pрр and enhancing the difference 
between the K–pрр and K–pрn clusters we calculate 
density distributions of the NN and KN pairs as 
functions of the respective nucleon-nucleon and 
antikaon-nucleon distances using Eq. (32) from Ref. 
[14]. In Fig. 2 is shown two-nucleon density 
distribution ϛNN(r) multiplied by r2 in the K–pрр and 
K–pрn clusters for the AY and HW potentials. The 
two-nucleon distribution shows the pronounced 
maximum at the short-distances 0.63 fm and 1.34 
fm for the K–pрр and K–pрn clusters, respectively, in 
the case of strong AY interaction. For relatively 
shallowly bound by the HW potential K–pрр and 
K–pрn clusters the maximum is pronounced at 2.02 
fm and 2.05 fm, respectively, that reflects relatively 
weak binding of the systems. One can also 
understand a reason for the deeper binding of K–pрр 
and K–pрn thanin case of AY potential by analyzing 
thedensity distribution. Because the KN potential in 
isospin-zero channel plays a key role in the deep 
binding of K clusters, we calculate the projected 
density distributions for KN pairs with isospin I = 0 

in the K–pрр and K–pрn clusters. The results of 
calculations of the normalized projected density

, 0 ( )KN I r  are shown in Fig. 3. As is seen in Fig. 3 the

KN density distribution with isospin I = 0 has its 
maximum at zero distance between the antikaon and 
each nucleon that reflects the strong KN attraction in 
the I = 0 channel. The comparison of the KN density 
distribution shows that one is bigger for the K–pрр 
cluster compare to that for the K–pрn. From the 
projected density distributions for the KN pairs with 
isospin I = 0 configuration calculated mean-square 
distances KNR are 1.45 fm and 2.04 fm for the K–pрр 
and K–pрn clusters, respectively. The later facts 
reflect relatively strong binding of the K–pрр 
system. Thus, the K–pрр is compacter than the 
K–pрn cluster.  

Based on the results of our calculations, we can 
conclude that the pairwise KN interaction plays a 
major role in the formation of the kaonic bound state 
and the effective KN interaction based on chiral 
SU(3) dynamics [36] leads to a relatively modest 
binding for the K–pрт, K–pтт and K–pрр clusters. 
Our results confirm the calculations [29]. 

 
 
Table 5 – Nucleon energy inandclusters. Expectation values of the kinetic energyand of theinteraction per nucleon 
calculated in the framework of the method of HH in the momentum representation for the AY and AV18 interactions 

 
  MeV/N  MeV/N

 Proton 78.1 -195.2
 Neutron 49.3 -29.1

 Proton 72.4 160
 Neutron 55 38.2

 
 

KKNN cluster 
A decade ago in Ref. [7] a deeply bound double 

K–K–рр cluster was predicted to be deeply bound 
with binding energy of 117 MeV and width 35 
MeV. Barnea, Gal and Liverts [29] perform a 
variational HH calculation in configuration space 
for the K–K–pр system based on the shallow chiral
KN interaction model with the self-consistent 
energy dependence taken into account and 
obtained very shallow bound states with a binding 
energy that is substantially smaller than earlier 
prediction [7]. When in our calculation the HW 
potential is used the similar result to the early study 
[29] is obtained. In our calculations with the AY 
interaction, as in Section III D, we employ the 
potential 0 2

0( ) (593 )exp[ ( / 0.66) ]I
KNV r i r     using 

for the imaginary part of the potential the values ω0 
= 20, 40, 83 MeV, respectively. In Table VI are 
presented results when ω0 = 83 MeV. The 
corresponding values for the width are 72.4 MeV 
and 73.7 MeV for AV18 and M potentials, 
respectively, that are close enough to the widths 
obtained using the HW interaction. However, the 
binding energy is almost three times bigger. When

0  20MeV and 40 MeV, respectively, Г = 17.9 
MeV and Г = 35.8 MeV for the AV18 potential, 
and Γ = 18.5 MeV and Γ = 37.1 MeV for M 
potential. Thus, our results with the AY KN
interaction are close to the earlier prediction [7] 
when ω0 = 40 MeV and the binding energy is in a 
reasonable agreement with recent 
Faddeev-Yakubovsky calculations [26].
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Table 6 – The binding energyand widthfor thesystem calculated in the framework of the method of HH in the momentum 
representation for different interactions with results from Refs. [7], [26] and [29]. 

 
  AV18+AY M+AY AV18+HW M+HW [29] [26] [7]

 , Mev 91.6 92.7 31.5 31.9 32.1 93 117 
 , Mev 72.4 73.7 78.1 79.2 80.5  35 

 
 

4 Conclusions 
 
Within the framework of a potential model for 

the kaonic clusters K–pр, K–K–р, KKK , KNNN , 
and K–K–pр we perform nonrelativistic three- and 
four-body calculations using the method of 
hyperspherical harmonics in the momentum 
representation. We examine how the binding energy 
and width of the K–pр cluster depends on different 
choices of the KN and NN interactions. Our 
consideration includes the realistic Argonne V14 
[41], the semi-realistic MT [43] and T [44] potentials 
as inputs for the NN interaction and we employ the 
phenomenological AY potential and HW potential 
constructed based on chiral SU(3) dynamics, as 
inputs for the KN  interaction. For all types of 
considered NN interactions, our calculations predict 
deeply bound states for the AY KN interaction and a 
relatively shallowly boundcluster for the effective 
chiralinteraction. Moreover, the K–pр cluster is the 
most strongly quasibound three-body system. The 
results of our calculations show that the binding 
energy of the K–pр system depends entirely on the 
ansatz for the KN interaction and substantially 
changes when we use the AY and HW KN
interaction. In regard to the sensitivity of the binding 
energy to the details of the NN potentials, Ref. [14] 
found that when the K–pр system is weakly or deeply 
bound, the dependence on different types of NN 
interactions is weak. In fact, our study confirms this 
conclusion using in calculations Argonne V14 [41], 
the semi-realistic MT [43] and T [44] NN potentials. 

The strong AY KN interaction is responsible for 
the formation of the K–K–p system and this cluster is 
still bound even with a much stronger KK repulsion, 

while the HW potential leads to the bound state with 
energy of only 0.01 MeV relative to the K–p + K–

 
threshold. The mass (binding energy) of the KKK
system slightly depends on the sets of parameters that 
determine KK and KK interactions and the width falls 
into the 41-49 MeV range for all sets of these 
parameters. There is reasonable agreement between 
these results, the mass obtained using separable 
AMY interactions [60] and the variational 
calculation [59]. Our results for the KKK system 
support the conclusion that K (1460) could be 
considered as a dynamically generated resonance. 

Based on the results of our calculations for 
four-particle kaonic systems we also can conclude 
that the pairwise KN interaction plays a major role in 
the formation of the kaonic bound state and the 
effective chiral KN interaction gives relatively 
modest binding for the K–pрт, K–pрр and K–K–pр 
clusters. 

All our calculations with the effective chiral KN
interaction show that the width is always larger than 
the bindingenergy. In some cases the width is more 
than twice as large as the binding energy. Only for 
some four-particle kaonic clusters when the input for 
the KN interaction is the AY potential, the binding 
energy is larger than the width. As a consequence, 
perhaps, we are facing a situation where it is hard to 
identify the resonances which would make the 
experimental observation challenging. 
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1 Introduction 
 
The cataclysmic events that occur near the end of 

the life of a star lead to one of only three possible 
final states: a white dwarf, a neutron star, or a black 
hole. The mass of the star, particularly that of the 
core, appears to be the primary factor in determining 
the final state. A more massive star would need to be 
hotter to balance its stronger gravitational attraction. 
While a star is burning, the heat in the star pushes out 
and balances the force of gravity. When the star’s 
fuel is spent, and it stops burning, there is no heat left 
to counteract the force of gravity. How much mass 
the star had when it died determines what it becomes. 
Detailed calculations have shown that for star with 
mass less than about 1.4 times the mass of our sun 
electron degeneracy pressure permanently halts 
collapse. White dwarfs are stable cold stars that are 
supported by electron degeneracy pressure. 
Calculations show that stars that have between 1.4 
and 3 times the mass of the sun implode into neutron 
stars that are the end product of stellar evolution, and 
their outer core is composed of neutrons at truly 
enormous densities. The central region of the neutron 
star is supported by the degeneracy pressure of 
neutrons. A star with mass greater than 3 times than 
of the sun gets crushed into a single point - a black 
hole. 

At high density, when the sum of masses of a 
proton and electron and Fermi energy exceeds the 
neutron mass, it is energetically favorable to combine 
a proton and an electron into a neutron: p + e– ↔ n + 
vе. Both neutron and neutrino rich matter are 

produced at the core. Therefore, at higher densities, 
matter becomes more and more neutron-rich. A 
progressive neutronization of matter at higher and 
higher densities makes a lower energy state. An 
attractive pairing interaction between neutrons, can 
couple them to form a state with integer spin and, 
therefore, paired neutrons act like bosons. These 
"bosons" can form a condensate-like state in which 
all of the bosons occupy the same quantum state and 
form a superfluid. Just as the pairing of protons that 
are charged fermions forms a superconductor. In that 
same general sense, we also can have 
superconductivity and superfluidity in neutron stars. 
Thus, we can have superconductivity and 
superfluidity in the outer core of neutron stars. 
Superconductivity and superfluidity, if observed in 
neutron stars, could tell us a lot about the pairing and 
hence inform us about aspects of nuclear physics that 
are mighty difficult to get from laboratories. 
Information on multineutron forces obtained in 
studies of multineutron systems is a critical input into 
theories of neutron stars [1, 2]. Therefore, the study 
of dineutrons, trineutrons, tetraneutrons as well as 
multineutrons and neutron drops is important for 
understanding the structure and processes in neutron 
stars. From another side, early suggestions for kaon 
condensate in dense matter [3 – 6] motivated the 
search for bound states of kaons in nuclei, since the 
kaon–nucleus interaction could answer the question 
of whether kaon condensation takes place in the inner 
core of neutron stars. This is one of the reasons why 
the study of few-body kaonic systems have attracted 
much attention in the last decade. Today, our 
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understanding of the details of the process of neutron 
star formation is not very well defined. This is 
presently an active area of research. 

Below, I am reviewing and presenting the status 
of studies of three- and four-body neutron and kaonic 
systems. 

 
2 Few-body neutron clusters 
 
A simple fact has now been established: all 

nuclei that are heavier than the hydrogen nucleus are 
made up of both protons and neutrons. The question 
then arises as to whether a nuclei made up of only 
neutrons or protons can exist. On the basis of current 
knowledge the theoretical answer is probably ... 
Well, let’s discuss this! 

During the last 60 years, experimental search and 
theoretical investigation has continued to focus on 
atomic nuclei consisting only of neutrons. A recently 
reported observation of the tetraneutrons [25] and 
some theoretical results, however, revives old 
questions: do dineutrons, trineutrons and 
multineutrons nuclei exist? Can a nucleus be made 
up of neutrons only? Does neutron matter exist? The 
existence of a bound dineutron, multineutrons nuclei, 
neutron drops and neutron matter is of great 
importance, as it would challenge our understanding 
of nuclear few-body systems and the evolution of the 
universe. The answers to these questions would most 
certainly require a revision of modern realistic 
models of the nucleon-nucleon force and 
three-nucleon interaction and more over introduce a 
four-nucleon interaction. 

A free neutron decays into a proton, an electron, 
and an antineutrino, which is associated with an 
electron. The time of this decay is about 1000 
seconds. In other words, a free neutron may exist for 
only about 16 minutes. What about the existence of 
the system of two bound neutrons known as a 
dineutron? Searching resonances and bound states in 
a system of two neutrons is a well defined problem 
and numerically well under control. The two neutron 
resonances are associated with the poles of the S
-matrix, which are embedded in the fourth-quadrant 
of the complex k plane. They are solutions of the 
time-dependent Schrödinger equation without the 
incoming wave and the outgoing wave increasing 
exponentially at infinity. In Ref. [7] it was mentioned 
that nonrealistic Volkov potentials [8] do have bound 
dineutrons. However, these potentials are not 
realistic; they produce bound 2n, with the same 
binding energies as their deuterons; they have no 
tensor or LS terms; and they cannot reproduce 

modern phase shift analyses in any partial wave [7]. 
Theoretical calculations show no existence of the 
resonance or bound states in the system of two 
neutrons for all the existing realistic and 
phenomenological models of the nucleon-nucleon 
interaction. Experimental searches of the dineutron 
have been also performed using different nuclear 
reactions but no evidence for the existence of the 2n 
has been found. Thus, today we are confident that 
dineutrons do not exist but could very nearly exist: a 
slight increase in the attraction between the two 
particles would result in a bound structure, the 
dineutron being formed. However, in neutron-rich 
matter like a neutron star where the density 3-times 
as much as the normal nuclear density would 
nucleon-nucleon interaction modified so that brings 
two neutrons to be bound. This question needs to be 
addressed. Research into the possibility that nuclei 
have more than two neutrons shows that, very often, 
adding a further neutron increases the stability of the 
structure. The question then arises as to whether a 
neutron system made up of more than two neutrons 
could exist. 

A three-neutron resonance has not yet been 
firmly established. The weight of early experimental 
evidence reviewed in Ref. [9] is strongly against the 
existence of a bound state of the three-neutron 
system, and only controversial evidence of a 
three-neutron resonance was cited. The situation up 
to 1987 has been reviewed in the compilation [10]. 
Reference [11] reported the possible existence of the 
trineutron through the reaction 3H(n, p)3n . Later, the 
same reaction was studied in Ref. [12] and no 
evidence for the existence of the trineutron was 
found. Searches for a bound state of the three neutron 
were conducted in reactions: 3H(π–, γ)3n, 3H(π–, π+)3n 
and ion collision reactions such as 7Li(11B, 15O)3 n 
and 2H(12C, 13N)3 n. As of yet, none of these reactions 
have provided evidence for a bound trineutron. The 
most intensive search for the prediction of a bound 
trineutron has been performed using a pionic double 
charge exchange reaction 3He(π–, π+)3n. An 
investigation [13] of the process 3He(π–, π+)3n  
found no evidence of the existence of the 3n or 
resonance state of three neutrons. Earlier study [14] 
pointed to resonance in the three neutrons. However, 
the resonance behavior can be explained by the final 
state interaction of three neutrons in continuum 
spectrum as was demonstrated in Refs. [15, 16]. The 
double charge exchange process on 3He was also 
investigated in Ref. [17], which while criticizing 
previous work [14] pointed again to a three-neutron 
resonance around 12 MeV excitation. For a 
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trineutron the bound state has been studied 
extensively in the last four decades resulting in a 
numerically precise solution of the Faddeev 
equations in momentum and coordinate space, and 
using the hyperspherical functions method. 
Independent of the theoretical framework, such as 
the Faddeev formalism [18, 19], the method of the 
hyperspherical functions or variational calculations, 
most theoretical works do not predict a bound 3n state 
in the three-neutron system. However, it has been 
stressed in Ref. [20] that subtle changes in the 
nucleon-nucleon potential, which would not affect 
results from phase shift analyses, may lead to bound 
neutronic nuclei. To summarize, although the double 
charge exchange reaction of negative pions on 3He 
nucleus has been examined at various incident 
energies of pion, from the analysis of the invariant 
mass spectra for three neutrons, no evidence for the 
bound trineutron has been found. However, a 
calculation [21] predicts a resonance state with the 
width of 13 MeV in the three-neutron system. 
Although such a resonance would easily fit early 
interpretation of data on pionic double charge 
exchange on 3He [14] (this observation was 
supported by measurements reported in Ref. [17] in 
1986), more recent investigations [13, 22, 23] of this 
process do not give any experimental evidence for it. 

Several more recent experiments have 
strengthened the evidence against the bound 
trineutron and have failed to discover a resonance 
structure that cannot be otherwise explained. The 
study [24] shows that realistic nucleon-nucleon 
interaction models exclude any possible 
experimental signature of three-neutron resonances. 
Thus, today there is no unambiguous answer for the 
existence of the three-neutron nucleus. Apart from 
these aspects the question of whether multineutron 
systems exist is of principal interest by itself. 

This year, a candidate resonant tetraneutron state 
with the energy of 0.83   0.65(stat)  1.25(syst) 
MeV above the threshold of four-neutron decay has 
been found in the missing-mass spectrum obtained in 
the double-charge-exchange reaction 4He(8He, 8Be) 
at 186 MeV/u [25]. The experiment was performed at 
the RI Beam Factory at RIKEN. Previously, in 
experiments, the system of four bound neutrons 4n 
was searched through using heavy-ion transfer 
reactions such as 7Li(11B, 14O)4 n [26], 7Li(7Li, 10C)4 n 
[27], and the pion double charge exchange reaction 
4He(π–, π+)4n. Early measurements of the 4He(π–, 
π+)4n reaction carried out in search of evidence for 4n 
are summarized in the compilation [28]. No bound 4n 
was detected in these early works. Later the 

momentum spectrum from the pion double charge 
exchange reaction was measured in Ref. [29] in a 
search for 4n. Note, however, that the theoretical 
study of Ref. [30] reported that the final-state 
interaction in the four-neutron system in continuum 
spectrum is so strong that the tetraneutron could not 
be observed in the kinematic region explored in Ref. 
[29]. Pion spectra and total cross sections for pion 
double charge exchange were also measured in Refs. 
[31 – 33] for different incident pion energies. No 
evidence for 4n was obtained. Several attempts have 
been made to find a bound tetraneutron system by 
using a uranium fission reaction [34, 35, 36] and the 
experimental observation of 4n was claimed in the 
interaction of 100 MeV α–particle with uranium 
nucleus in Ref. [36]. 

Several theoretical studies of pion double charge 
exchange on 4He have been reported. In Ref. [37] cross 
sections were calculated in a model in which two single 
charge exchange scatterings occur. The reaction was 
studied in the framework of a four-body hyperspherical 
basis method in Ref. [38] but existing experimental 
data were interpreted without bound or resonance state 
of four neutrons. No bound tetraneutron was found in 
Ref. [39] within the angular potential functions method, 
in Ref. [40] using the stochastic variational method and 
in Refs. [41] and [42] within the hyperspherical 
functions method. In contrast, calculations within the 
hyperspherical functions method led the authors in Ref. 
[43] to the conclusion that the tetraneutron may exist as 
a resonance only for the NN  potential that binds the 
dineutron. 

In the new millennium, an experimental search 
and theoretical study of tetraneutron transitioned to a 
new phase. In 2002 an international team led by 
physicists from the Particle Physics Laboratory of 
Caen, have presented in Ref. [44] experimental 
results suggesting the existence of a bound 
tetraneutron. These results have been obtained by 
using the exotic beams of the French national large 
heavy-ion accelerator in Caen and by studying the 
breakup reaction of 14Be into 10Be and bound 
tetraneutron. The heavy-ion transfer reactions, and 
the pion double charge exchange reaction require 
considerable reconfiguration of the target nuclei and 
should be strongly suppressed. In contrast, the 
nucleus 14Be consists of a strongly bound core 10Be 
and four weakly bound neutrons that could form a 
tetraneutron-like configuration, which might be 
shaken off in the 14Be breakup. In experiment [44] 
events were observed that exhibit the tetraneutron 
cluster liberated in the breakup of 14Be. The lifetime 
suggested by this measurement would indicate that 
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the tetraneutron is a stable particle. In 2016, the 
resonant tetraneutron state was found in the reaction 
4He(8He, 8Be) [25]. If confirmed, these discoveries, 
which would call into question current theoretical 
models, will have major repercussions in the field of 
nuclear physics. 

The existence of the bound tetraneutron system 
was also discussed in theoretical studies [45 – 49]. In 
Ref. [46] it was proposed that, if tetraneutron existed, 
it could be formed by a bound state of two dineutron 
molecules. The possibility for a tetraneutron to exist 
as a low-energy resonance state was studied in Ref. 
[49]. In [45] the hyperspherical functions method and 
realistic nucleon-nucleon interactions have been used 
to argue against the existence of a tetraneutron. It was 
pointed out that due to the small probability for a pair 
of neutrons to be in the singlet even state, the 
two-body nuclear force cannot by itself bind four 
neutrons, even if it could bind a dineutron. An 
unrealistic modification of the nucleon-nucleon force 
or introduction of unrealistic four-nucleon forces 
would be needed to bind a tetraneutron. As for 
experimental searches of the other light bound 
multineutron systems, the calculations presented in 
Ref. [45] suggest that they might be unsuccessful. It 
is also important to mention that Ref. [7] shows that 
it does not seem possible to change any modern two- 
and three-nucleon interaction to bind a tetraneutron 
without destroying many other successful predictions 
of these interactions. This means that, should recent 
experimental claims [44, 25] of a bound tetraneutron 
be confirmed, our understanding of nuclear forces 
will have to be significantly changed. 

Theoretical investigations of multineutrons have 
been carried out for a system of six, eight and ten 
bound neutrons using the hyperspherical functions 
method with different nucleon-nucleon interactions 
[45]. Results of calculations show no bound states for 
these neutron systems. Theorists are also studying 
neutron drops [50, 51]. Neutron drops are collections 
of neutrons held together by both an external nuclear 
well and the interaction between neutrons. The 
properties of these drops can be used as "data" for 
fitting simpler effective interaction models that are 
employed in the study of large neutron-rich nuclei, 
the crusts of neutron stars, and neutron matter. 

 
3 Few-body kaonic clusters 
 
Kaonic nuclei carry important information 

concerning the K  nucleon interaction in the 
nuclear medium. This information is very important 
in understanding kaon properties at finite density and 

in determining constraints on kaon condensation in 
high-density matter. The latter will allow one to 
adjust the methods developed in condensed matter 
physics for exciton and excitonic polariton 
condensates (see, for example, [52, 53]) to study the 
kaon condensation. The best way to understand the 
many body kaonic nuclear system is to study the 
simplest three- and four-body clusters: ,KNN  and 

.KNNN The light kaonic clusters ,KNN  and 
KNNN  represent three- and four-body systems and 
theoretically can be treated within the framework of 
few-body physics approaches. In the recent past 
much efforts have been focused on the calculations 
of quasibound state energies and widths for three- 
and four-body kaonic clusters. A variety of methods 
have been used in configuration and momentum 
spaces, to obtain eigenvalues for energy and width of 
quasibound states using diverse sets of ,KN  and NN 
interactions. These include but are not limited by 
variational method approaches [54 – 65], the method 
of Faddeev equations in momentum and 
configuration spaces [67 – 79], 
Faddeev-Yakubovsky equations [77] and the method 
of hyperspherical harmonics in configuration and 
momentum spaces [80, 81, 79]. 

On the experimental side, several experiments 
have been performed to search for the kaonic clusters 
using various nuclear reactions starting from the first 
measurement reported by the FINUDA collaboration 
for the K–pp cluster [82] and including the most 
recent reports of J-PARC E15 and J-PARC E27 
collaborations [83, 84] and HADES collaboration 
[85]. Recent HADES collaboration partial wave 
analysis of the reaction pp → pK+Λ at 3.5 GeV to 
search for the K–pp bound state shows that at a 
confidence level 95% such a cluster cannot 
contribute more than 2–12% to the total cross section 
with a pK   final state [85]. However, there are 
important reports of K–pp experimental searches 
done by the DISTO and J-PARC E27 collaborations. 
They reported some signal at 100 MeV below the K– 
and two protons threshold, which may be related to 
the kaonic cluster K–pp. J-PARC E27 collaboration 
has observed a K–pp -like structure in the d(π+, K+) 
reaction at 1.69 GeV/c, while Ref. [86] reports an 
indication of a deeply bound K–pp state in the pp → 
pΛK+ reaction at 2.85 GeV. The authors of Refs. 
[87], [88] (experiment E471) announced the 
experimental discovery of the bound state Kppn , 
named S0(3115), with quantum numbers 3

2( ) 1( )PI J  . 
The results have been checked in a new experiment 
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with larger statistics, and have been withdrawn. The 
ambiguous situation with the search of kaonic 
clusters has led the KEK-PS collaboration, 
experiment E549 [89], [90] to carry out a new 
experimental search with improved resolution and 
higher statistics compared with the E471 
experimental setup. In the search for the neutral 
tribaryon with strangeness S = –1 and isospin 1 by 
missing-mass analysis of the inclusive 4He(K–

stopped, 

p) reaction with the quite high statistics for protons, 
no statistically significant signal of the narrow 
structure was observed. Therefore, the situation is 
still controversial and the existence, for example, 
of the K–pp quasibound state has not been 
established yet. Thus, the theoretical and 
experimental study of composite systems of K – 
mesons and nucleons is still a challenging issue in 
nuclear physics.

  
 

Table 1 – Summary of the theoretical studies for the K–pp cluster. 
 

Method В(K–pp ) MeV Width, Г MeV KN  References 

Variational 48 61 AY [54], [55], [59] 

Methods 20 3  40-70 Chiral model [62], [63] 

 40-80 40-85 Sep. [64] 
 20-35 20-65 Chiral model [65] 
 124 12 AY [66] 

Methods of 47-70 90-100 Sep. En. Indep. [67], [68], [78] 
Faddeev 32 50-65 Sep. En. Dep. [78] 
equations 45-95 45-80 Sep. En. Indep. [69], [70], [72] 

 9-16 34-40 Sep. En. Dep. [72] 
 30-40 50-80  [73]-[76] 
 52  Sep. En. Indep. [77] 
 46.3-47.3  AY [79] 
 20.6-21.6  HW [79] 

Methods of HH 16 41 Chiral model [80] 
 15-17 36-43 Chiral model [81] 
 40-48 75-96 AY [81] 
 46.3-46.5 74.5-84.3 AY [79] 
 20.5-206 48.1-49.5 HW [79] 

 
 
Let us focus on results of the calculations of the 

binding energy and width for the three-body KNN  
and four-body KNNN  kaonic clusters. To describe 
these system were used an energy-independent and 
energy-dependent local as well as a separable ,KN  
effective interactions. The local energy-independent 
effective ,KN  interaction was constructed in Ref. 
[54, 59] based on a phenomenological approach so as 
to reproduce the existing experimental data for the 
KN scattering length, the mass and width of the 
(1405) hyperon and the 1 s  level shift caused by the 
strong ,KN  interaction in the kaonic hydrogen 
atom. We refer to this potential as the 
Akaishi–Yamazaki (AY) potential. The 

energy-dependent local effective ,KN  interaction 
given in Ref. [91] was derived based on the chiral 
unitary approach for the s  wave scattering 
amplitude with strangeness S = –1, and reproduces 
the total cross sections for the elastic and inelastic 
K–p scattering, threshold branching ratios, and the 
  mass spectrum associated with the  (1405). 
Hereafter we refer to this potential as the HW 
potential. For the calculations of the binding energy 
and the width with the variational method, the 
method of hyperspherical harmonics (HH) and the 
Faddeev equations in configuration space as input for 
the ,KN  interaction were used the 
energy-dependent effective HW and the 
phenomenological AY potentials, and different NN  
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interaction. When the kaonic clusters treated within 
the Faddeev or Faddeev-Yakubovsky equations 
separable potentials are used as the input for the NN 
and ,KN  interactions. 

Calculations for a binding energy and width of 
the kaonic three-body system are presented in Table 
1 are performed using different potentials for the 
NN  interaction, as well as the energy-independent 
and the energy-dependent effective potentials for the 
description of the kaon–nucleon interaction. Such an 
approach allowed us to examine how the K–pp 
cluster’s structure depends on different choices of the 

,KN  interactions for the same NN  potential, as 
well as to investigate its dependence on different 
choices of the NN  interaction for the same ,KN  
interaction, and to understand the sensitivity of the 
system to the input interactions. Therefore, the use of 
different NN potentials and ,KN  interactions allows 
one to perform a validity test for the lightest kaonic 
clusters against various NN and ,KN  interactions. 

One can address the theoretical discrepancies in 
the binding energy and the width for the K–pp system 
presented in Table 1 related to the different NN  and 

,KN  interactions or a method of calculations. 
However, analysis of theoretical studies indicates 
that mostly the discrepancies of the results of 
calculations for the binding energy and the width are 
related to the treatment of effective ,KN  
interaction. The binding energy found in Ref. [79] 
using the differential Faddeev equations and HH 
methods are in good agreement with the one obtained 
with the variational method. This is a good sign that 
the binding energy does not depend significantly on 
the method of calculation. Different variational 
approaches are of comparable quality in their high 
degree of consistency and all results are consistent. 
Differences are mostly due to a different ,KN  input 
and possibly slightly due to the NN  
input.Variational calculations as well as calculations 
using the differential Faddeev equations and HH 
methods confirm that the effective ,KN  interaction 
derived from chiral SU(3) dynamics yields a 
shallowly bound K–pp cluster, while the 
phenomenological energy independent AY potential 
predicts much deeper binding energy for all 
considered NN  interactions. Most importantly, the 
results support the conclusion that the key role in 
binding the K–pp system is played by the KN  
interaction and the KN  potential obtained based on 
chiral SU(3) dynamics leads to binding energies of 
relatively low values.  

The calculations with the Faddeev equations for 
the three-body system with coupled KNN  and 

N  channels performed in Refs. [67], [68] with 
separable two-body potentials yield larger bindings 
than obtained in a similar approach in Ref. [69]. 
Later, two of the authors of [69] repeated their 
calculation in [70, 72] using two models with the 
energy-independent and energy-dependent potentials 
for the s – wave ,KN  interaction, and their 
calculations yield smaller values for the binding 
energy 44-58 MeV and width 34-40 MeV [72]. The 
Faddeev calculations [78] for the KNN  quasibound 
state with the two phenomenological and the 
energy-dependent chirally motivated models of the 
KN  interaction lead to the following results for the 
K–pp cluster: 32 MeV with the chirally motivated 
models and 47 - 54 MeV with the phenomenological 
KN  potentials. Therefore, one can conclude that the 
Faddeev calculations for the energy-independent 
models for the KN  interaction predict a deeper 
binding energy than that of the energy-dependent 
description of the KN  interaction.  

Recently, Faddeev-Yakubovsky calculations [77] 
were made for the four-particle K–pp kaonic cluster, 
where the quasibound states were treated as bound 
states by employing real s – wave two-body separable 
potential models for the K  nucleon interactions as 
well as for the NN  interaction. Fully four-body 
nonrelativistic realistic calculations of ,KNNN  
quasibound states within the method of HH in 
configuration space, using realistic NN potentials and 
subthreshold energy dependent chiral KN  
interactions, were presented in Ref. [80]. Given that 
below we present the results of our calculations for the 
KNNN  quasibound states in the framework of the 
method of HH in momentum representation using 
AV18 [93] and M [96] NN  potentials and AY and 
HW ,KN  interactions as inputs. To find the binding 
energies with the above-mentioned set of potentials, 
we solve a system of coupled integral equations for 
the hyperradial functions [79]. In the calculations we 
limit our consideration with the value 10  for the 
global momentum getting a reasonable convergence 
for the binding energy. In Table 2 we present our 
results for the ,KNNN  cluster that we compare with 
those obtained via different methods. The results of 
our calculations for the energy and the width show 
dependence on the NN potentials and on the ,KN  
interactions. However, this dependence is 
dramatically different: for the same KN  interaction 
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and different NN potentials the ground state energy 
and the width change by about 3 15% , while for the 
same NN potential and different KN  interaction the 
energy changes by a factor of more than 3 and the 
width changes by more than twice. The comparison of 
our results for the K–ppn and K–pnn clusters obtained 
for theAV18 NN interaction and the HW KN  
interaction with calculations [80] within the 
variational HH method for the AV14 NN interaction 
and shallow chiral KN  interaction shows a 
reasonable agreement. The predictions [58] for the 
binding energy and the width for the kaonic clusters 
studied based on a framework of antisymmetrized 
molecular dynamics and employing adopted AY [54] 
potential as a bare KN  interaction are presented in 
the last column of Table 2. As is seen from Table 2 
there is a reasonable agreement for the widths for the 
K–ppn and K–pnn clusters among the present study and 
study [80] in case of HW potential. However, the 
widths of the K–ppn and K–ppp systems are largely 
different among our study and an earlier study [58] in 

the case of the AY potential. Interestingly enough, our 
calculations for the AY interaction indicate that for the 
system ,KNNN the cluster K–ppp is more deeply 
bound than the K–ppn, which contradicts the results 
[58]. In a shell-model picture, one of three protons in 
the K–ppp should be raised up to 0 p  orbit due to the 
Pauli principle, while all nucleons in K–ppn occupy 
the 0 s orbit. So, the nave expectation is that the K–ppn 
is energetically lower than the K–ppp. From the other 
side the larger number of the strongly attractive K–p 

pairs in the ( 3 ,1)
2



 state than in the ( 1 ,0)
2



 state may 

cause a lowering of the T = 1 state, even below the T = 
0, although the third proton in the T = 1 state should be 
flipped up to the orbital (0p 3/2 ). The final picture 
depends on the strength of the KN  interaction. The 
attractive AY interaction is much stronger than the 
effective HW interaction. The strength of the KN  
interaction plays an important role that may lead to the 
nuclear compression.

 
 
Table 2 – The binding energy B  and width   for the KNNN  system calculated in the framework of the method of HH 
in the momentum representation for different interactions with results from Refs. [58], [77] and [80]. The parity   
includes the eigen parity of antikaon 
 

 J   T   AV18 M [77] [80] [58] 
    AY HW AY HW  

K ppn  
1
2



 0 B , MeV 92.1 28.6 97.9 29.3 28.9 69 110.3 

    , MeV 83.4 30.3 84.1 32.9 30.8  21.2 

K pnn  
1
2



 1 B , MeV 64.6 17.2 66.7 18.5 18.7   

    , MeV 74.2 27.1 80.4 31.0 31.4   

K ppp  
3
2



 1 B , MeV 101.9 25.8 107.6  28.1  96.7 

    , MeV 87.9 28.1 89.8  31.2  12.5 
 
 
4 Conclusions 
 
Today there is no unambiguous answer for the 

existence of the trineutron as a bound or resonance 
state. There are three claims of the experimental 
observation of 4n: one in a fission reaction [36], and 
the recent two in the breakup reaction of 14Be into 
10Be and 4n [44], and in the double-charge-exchange 
reaction 4He(8He, 8Be) [25]. However, in theoretical 
studies, no evidence for 4n was obtained within the 

existing modern two- and three-nucleon interaction. 
If the experimental discoveries [44] and [25] would 
be confirmed, this would call into question current 
theoretical models of nuclear forces. 

The results of calculations within the different 
theoretical methods show that the binding energy and 
the width of the K–pp system depend entirely on the 
ansatz for the KN interaction and substantially 
change when the AY and HW potentials are used. 
The predicted values for the binding energy and the 
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width are in considerable disagreement.Model 
calculations with the KN  interaction derived based 
on the chiral unitary approach predict a shallow 
binding state with large width for the  K–pp cluster. 
For example, for the K–pp cluster, the predicted 
values for the binding energy and the width are 9–95 
MeV and 20–110 MeV, respectively. The sensitivity 
of the binding energy and the width to the details of 
the NN potentials as long as the K–pp kaonic system 
is strongly or weakly bound dependence on different 
types ofinteraction is weak. 

Finally, the situation is still controversial and the 
existence of theandquasibound states have not been 
established yet. Many calculations show that, for 
theand four-particle kaonic clusters, the binding 
energy is larger or comparable to the width. As a 
consequence, perhaps, we are facing a situation in 
which it is hard to identify the resonances that would 
make the experimental observation challenging. 
Thus, the theoretical and experimental study of 
composite systems of mesons and nucleons is still a 
challenging issue in nuclear physics.
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This paper presents the theory and the experimental results of probe diagnostics for high-pressure nuclear 
induced plasma in the presence of negative ions and mathematical description based on the hydrodynamic 
approximation and methodological recommendations are given to define that concentrations of charged particles 
in the plasma on the basis of numerical calculations. 3He + UF6 plasma is generated by the nuclear reaction 
products 3He + n + p → p + T + 0.76 MeV. 
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1 Introduction 

The probe method is easy to implement and 
commonly used as an effective local experimental tool 
among plasma diagnostics methods. Nevertheless, the 
correct theoretical description of the electric currents 
formation in the region disturbed by electric probe is 
very complicated. As it's well known, the 
current-voltage characteristics (CVC) are used to 
define the concentration of charged particles and 
electrons temperature. The degree of ionization in 
nuclear induced plasma is supposed to be small Ne≤N0, 
where N0 – the concentration of neutral atoms) and the 
frequency of electron collisions with electrons and 
ions in plasma is assumed to be negligible small 
compared with the electrons collisions with neutrals. 
The electron free flight length as well as the ions 
length is assumed to be much more less then the 
charged particles characteristic length. These physical 
conditions imply that the plasma is collisional and 
might be described in the hydrodynamical 
approximation. The major part of the experimental 
results implemented in nuclear test-reactor WWR-K is 
presented in paper [1]. 

The theory of electrostatic probes in the 
not-self-maintained plasma for the probes of 
different geometry and for the weakly ionized plasma 
of high-pressure flow were developed by Ulyanov 
[2], [3]. In this paper the disturbed zone was 
subdivided into the two zones: the region of charged 
layer, the region of diffusion layer. 

In the paper [4] the asymptotic theory of 
spherical electrostatic probe is presented for the case 
of chemically active, weakly ionized high-pressure 
plasma in the presence of small concentrations of 
negative ions. It is also assumed that Debye radius is 
small compared with the probe size, and electron 
energetic length of relaxation is much more smaller 
then the length of microscopic scale, and function of 
electrons energy distribution is defined by local 
magnitudes of electron density and temperature. 

2 The theory of electrostatic probe in nuclear 
induced plasma with negative ions 

2.1Basic equations 
We take the case of stationary plasma and the 

probe potential is different from the plasma potential. 
We shall take the distance from the probe till any 
point of disturbed by the probe region as a basic 
coordinate. The non dimensionless basic equations 
describing the formation of electron and ion currents 
might be presented in the following way: 

( ) =1 ed dn dn an n bn n
d d d

 
  


    
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n+, n–, ne  – concentration of electrons, positive and 
negative ions, D+, D–, De, b+, b–, be – coefficients of 
diffusion and mobility of electrons, negative and 
positive ions, β  – affinity coefficient [4] defining 
the formation of negative ions, rp – probe radius, S  – 
ionization rate, Ф  – neutron flux density, σf – fission 
cross section of the helium-3, E0 – the kinetic energy 
of the fission fragments, Ω – the energy value of the 
formation of an electron an ion pair, 

3Hen – the 

helium-3 concentration. 
Boundary conditions on the probe and on the 

limits of disturbed region are defined as follows: 
 

(1) = (1) = (1) = 0, ( ) =e
p pn n n r    ,     (5) 

 
1 1 1 1( ) =1, ( ) =1 , ( ) = , ( ) = 0,en n n           (6) 

 
where ξ1 – the length of disturbed region. 

2.2Charged layer 
Following the results of work [2], we divide the 

disturbed region into two layers: the charged layer 
01     and the layer of ambipolar diffusion 

0 1    . 
In the charged layer the equations which form the 

probe currents of positive and negative particles 
presented as follows: 
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From equations (7-10) the lengths of charged 

layer for the plane, cylindrical and spherical probes 
will be presented like these: 

for plane probe: 
1 1

22 2
0 0= [1 ( )]p p pr r r  

 
  ,       (11) 

 
for cylindrical probe: 

1 1
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  ,     (12) 

 
for spherical probe: 
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For the negative probe potential the electric 
currents on the plane, cylindrical and spherical 
probes are presented as follows: 

for plane probe: 
0=pI eSAr ,              (14) 

 
for cylindrical probe: 

0= p
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for spherical probe: 
3
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p p
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where A – plane probe area, L  – length of 
cylindrical probe, and the lengths of charged layer for 
different geometry might be presented as follows: 

If the full voltage drop is in the charged layer 
then following to [3] we have the simple way of 
charged particle concentration definition. This 
method is based on the use of linear part of electronic 
branch of CVC near the zero. Parameter δ varies 
from 0 ≤ δ ≤ 1. This an equality describes limited 
cases when plasma consists of only negative and 
positive ions or electrons and positive ions. 
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In the case when voltage drop is taken place in 
the charged layer the concentration of positive ions 
and parameter δ is defined from ion and electron 
branches of CVC by the following expressions 
(spherical probe) [5]: 
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where J+

пр, φпр – probe current and negative probe 
potential, J–

пр, φпр – probe current and positive probe 
potential. 

2.3Ambipolar diffusion layer 
Basic equations in diffusion layer: 
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Everywhere faraway from the probe the 
following relations are valid: 
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where aD , aD , e

aD   – ambipolar diffusion 
coefficients: 
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In diffusion layer for negative probe potentials 

electric currents for plane, cylindrical and spherical 
geometry are as follows: 

for plane probe:
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for cylindrical probe:  
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for spherical probe: 
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The value 0n  of boundary concentration for the 

negative and positive probe is defined by the 
following: 
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If the main potential drop is taken place in 

diffusion zone then we have the following: 
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3 The electrostatic probe experimental data 
obtained in plasma 3He + UF6 diagnostics in the 
active zone of nuclear reactor WWR-K 

 
WWR-K reactor is research test-reactor working 

on thermal neutrons. Moderator as well as reflector 
of neutron flux as well as the cooler is artesian water 
desalinated by ion-exchange absorber AB-17, KU-2. 
Active zone consists from assembly of uranium fuel 
elements which are placed in hexagonal space 
symmetry. The high of the test-reactor is about 
60cm . The cooling system of the reactor is made by 
two independent cooling cycles. The cooler of the 
first cycle is transferring the heat of fuel elements 
with the speed 5 m/s–1, and the volume rate 1600 
m3/h. The cooling temperature is maintained on the 
constant level and does not exceed 400 oC. 

The vertical projection of the active zone is 
presented on the figure 1a. The active zone is set in 
the vessel with artesian water and surrounded by 
biological protection shield made from the cast iron 
and heavy concrete. The water layer over the active 
zone is about 4 meters. The top of the apparatus is 
closed by rotating iron cover with a bung, through 
which the core services, loading and unloading 
through the vertical experimental channel samples 
and testing products are carried out. 

The central testing channel of active zone is 
located in the beryllium moderator which is set in the 
centre of active zone replacing four or seven fuel 
elements (which corresponds to the diameter testing 
channels 96 mm and 140 mm). The reactor 
experiments are specific and the operation with 
experimental sets are connected with the ionising 
radiation.

 

 
Figure 1 – WWR-K reactor scheme, diagnostic channel and diagnostic cell  

(1 – testing ampule, 2 – active zone, 3 – diagnostic channel, 4 – signal wires)) 
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fragments interactions with the wall might be 
evaluated from the following expression: 

 

=
4

ii
ei

eNJ 
 ,              (41) 

 
where iN , i , ei вЂ“ concentration, average 
velocity, secondary emission coefficient of the 
fission fragments, ions or excited atoms. 

The secondary electrons emission also might be 
caused by photons and the density of the electric 
current emission caused by the electromagnetic 
radiation is defined by expression: 

 
*

=
4

ieNJ 
 



,               (42) 

 
where *N  – excited atoms concentrations emitting 
radiation,  вЂ“ life-time of the excited atom, (

7 8= 10 10 s   ),   – photon absorption 
coefficient ( 210  ),    – photoelectrons 
quantum output ( 410 

  ). Evaluations show that 
the emission electric current is less than – <10–8 
Acm–2. 

The isolating properties of ceramic tubes in the 
centre of active zone are not so sufficiently changed 
and value of electric current leakage might be 
neglected compared with the electric current on the 
probe. The evaluation shows that density of emission 
current <10–8 Acm–2 while the density of measured 
electric current of the probe is not less then <10–6 
Acm–2. To avoid the cathode spray effect on the CVC 
the probes are made from refractory metals like 
wolfram, stainless steel. Not operating part of the 
probe is protected by isolator which has the 
following composition: 47%Si , 2 3 22%Al O  , 

2 3 5.7%Fe O  , 2%CaO  , 3%MgO , 
2 3%K O  , 2 1.5%N O  , 3 0.41%SO  , 
2 0.02%H O  . 
3.1Probe diagnostics of the plasma of gaseous 

mixture 3
2 2: :He N O  

For different geometry of the probe 
measurements in variety of density of the testing gas 
and neutron flux 1 – Ф = 1.5 1012 cm–2s–1, 2 – Ф = 3.0 
· 10Ф12 cm–2s–1 are presented on the figure 3,4,5. The 
results of the experiments in plasma 3

2 2: :He N O  
are presented in the Table 1, where the formulas 
(17-18) have been used. 

 

 
Figure 3 – CVC of cylindrical probe in plasma 

3
2 2

12 2 1 2 1

: : (760 :1: 4 )1 =

1.5 10 cm ,2 = 3.0 10 12cm

He N O Torr
s s    



   
 

 

 
Figure 4 – CVC of cylindrical probe in plasma 

3
2 2

13 2 1 2 1

: : (760 :1: 4 )1 =

1.5 10 cm ,2 = 3.0 10 13cm

He N O Torr
s s    



   
 

 

 
Figure 5 – electronic CVC branches 

3
2 2

12 2 1 2 1

: : (760 :1: 4 )1 =

1.5 10 cm ,2 = 3.0 10 12cm

He N O Torr
s s    



   
.  

1 – cylindrical probe, 2 – spherical probe, 3 – plane probe 
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The values of the electron and ion 
concentrations obtained from the experimental 
CVC measurements are presented in the Table 1. 

The presented results are in satisfactory 
agreement between each other and compared with 
the theoretical calculations.

Table 1 – The charged particles concentrations obtained from experimental measurements in plasma of gaseous mixture 
3

2 2He N O   

Reactorpower Gas temperature, 
K  

Probe 
Probe current 

710 A
1010n 3cm

[11] 

1010n 3cm

[11] 
  610

1Ohm 1cm

1010en 3cm

[11] 
I 0.7 1.7 1.8 36.6 1.4

340 II 0.4 1.8 1.8 35.1 1.4
I 1.8 2.9 2.8 66.1 2.4

350 II 0.8 2.7 3.0 64.2 2.5
I 4.6 5.2 3.9 87.1 4.0

375 II 2.5 5.5 4.2 90.4 4.3
I 7.0 6.2 4.5 105.0 5.0

400 II 3.8 6.4 4.8 107.9 5.3

CVC of the semispherical (R = 0.1 cm) and plane 
probe (R = 0.1 cm), were measured in the helium plasma 
of special purity which was equal to 0.0001%. Pumping, 
heating and an ampule filling was accomplished on the 
high level vacuum experimental set. 3He plasma of the 
pressure 430Torr was studied under the different power 
levels 200, 500, 800, 100 kW., which corresponded to the 
neutral flux values Ф = (6, 15, 24, 30) * 1011 cm–2s–1. The 
temperature was measured by thermocouple device and 
was equal to 340, 350, 373, 400 K which corresponded to 
each previously mentioned power level of reactor. 

The typical probe CVC measured in plasma 
created in the active zone of reactor are presented in 
the Figure (6-8). 

As it might be seen from this pictures in the 
region not so large potentials of the probe (0 0.1)B  
it is possible to distinguish linear part of CVC. 

The values of conductivity obtained from the 
linear part of CVC probe of different geometrical 
configuration are presented in the Table 2. As it 
follows from the Table 2 the maximum experimental 
error is about 20%.

Table 2 – The conductivity values obtained from the experiment 3
2 2He N O 

Power mW Probe Cell’s number [1] Cell’s number [2] Cell’s number [3] Cell’s number [7]


610 1 1Ohm cm  

610 1 1Ohm cm  
610 1 1Ohm cm  

610 1 1Ohm cm 

1 0.5 0.4 0.6 0.5
0.5 2 0.6 0.5 0.7 0.6

3 0.7 0.7 0.8 0.7
1 1.4 1.2 1.5 1.4

1.0 2 1.4 1.2 1.7 1.4
3 1.9 1.6 1.9 1.8

3.2 Uranium hexafluoride plasma probe 
diagnostics (UF6) 

The experimental study of high pressure UF6 plasma 
created by a volume source of fission fragments is a part 
of large scientific programs connected with the nuclear 
energy transformation in other different application 

forms. The UF6 probe diagnostics in the active zone of 
WWR-K are presented on the Figures (6-9). Uranium 
hexafluoride UF6 also might be used as a fuel in nuclear 
reactor [7]. 

In spite of definite number of obstacles which are 
coming dealing with materials like the fuel of nuclear 

200

500

800

1000



80

Probe diagnostics of plasma generated by a volume source...                   Phys. Sci. Technol., Vol. 3 (No. 1), 2016: 73-81

reactors a
aggression
application

Figure 6 
differ
(1

Figur
dependence

experime

 
Table 3 – U

 
eN 5.

F 7.7

As it f
negative i

concentrat
with the ac

as well as 
n the future
ns are very a

– CVC of UF
rent levels of t

21.1012 /n cm s

e 8 – The char
es on the neut
ent; 1 вЂ“ UF

Uranium hexaf

69*10  

137 *10  

follows from 
ions in the g

tion is equa
ccuracy of 0.

due to it i
e prospects 
attractive. 

 
 

6UF  plasma me
the nuclear W

2 ,2 11013s 

rged particle c
tron flux level

6
F  ; 2 вЂ“ N

fluoride UF6 c

6
UF  2.6

2F 7.7*

the Table 3,
given mixtu

al to the co
.0001%. The

is high che
of UF6 use

easured under
WWR-K power

2/ 2n cm s s )

concentrations
l (– calculation

eN ; 3 вЂ“ UF

component co

11*10  

1610  

, the major p
ure is 

6
UF  .

ncentration 
e concentratio

emical 
e and con

pre

 

r the 
r  

Fi

s 
ns; 0 – 

5
F  ) 

 

oncentrations, 

6
UF  2.6*1

5UF 3.9*10
 
 

part of 
. This 

6
UF   

ons of 

the

rec
con
cal

The calcu
ncentrations 
esented in th

igure 7 – CVC
different lev

(s

Figur

cm–3 

110  U
140  U

e ions UF

combination 
ncentration i
lculations sh

ulations of
in the urani

he Table 3 [7]

 
 

C of 6UF  pla
vels of the nuc
small positive 

 
 
 

re 9 – CVC of
(typical C

 

5
UF 

62.1*10

4UF 44.0*10  

6
UF   define

rates with
is relatively 

how that the 

f the char
ium hexafluo
]. 

asma measure
clear WWR-K
potentials) 

f 6UF  plasm
CVC) 

 F 

ed by ion

h 
6

UF  . T
small. As th
ratio of elec

rges particl
oride UF6 ar

d under the 
K power  

a  

44.2*10  

nization an

The electro
he theoretica
ctrons densit

le 
re 

nd 

on 
al 
ty 



81

Kunakov S. et al.	                                                                                       Phys. Sci. Technol., Vol. 3 (No. 1), 2016: 73-81

to the density of negative ions is equal to 10–4. Also it 
follows from theoretical calculations that the electron 
concentration is defined by ionization rate and 
affinity rate to molecules UF6. 

Conclusion 

1. The precise experimental CVC measurements
of the plane and spherical probe in helium plasma are 
carried ut within the pressure of the gas 430 Torr and 
the nuclear reactor power level under 100, 200, 500,  

800, 1000 kW. Electron concentrations are defined by 
used the linear CVC dependence of the positive 
probe [5].  

2. The uranium hexafluoride CVC
measurements are also carried out. It was found 
that at the nuclear power levels 100-200 kW 
negative and positive parts of the UF6 CVC are 
symmetric ones. From the CVC symmetry it 
might be concluded that the electrons influence on 
the plasma conductivity is very small e eb n b n  
but eb b  , then en n 
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The reaction γ + {pp}s → p + p, where diproton {pp}s is a proton pair in 1S0 state, is a spin-isospin partner of the 
fundamental reaction of deuteron photodisintegration. The inverse reaction, the hard bremsstrahlung p + p → γ + 
{pp}s, has been observed with the ANKE spectometer at COSY-Jülich. In addition to differential cross section 
measured earlier, in this work it's analyzing power has been measured at forward angles at several energies in the 
region of Δ(1232) isobar exictation.  
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1 Introduction 
 
The formation of a so-called "diproton", i.e. a 

proton pair {pp}, in 1S0 state, is being researched at 
ANKE collaboration in various processes: pd → 
{pp}s n, pp → {pp}s π0, pp → {pp}s γ [1-5]. Such 
reactions are of interest for several reasons. Firstly, 
they are the elementary inelastic processes in 
few-nucleon systems which could give valuable 
information on dynamics of nucleon-nucleon 
interaction. Secondly, restriction to only one partial 
wave (S-wave) in the final state considerably 
simplifies the reactions theoretical consideration in 
comparison to other reactions of this kind, for 
example deuteron photodisintegration γd → pn. The 
diproton photodisintegration γ{pp}s → pp is 
kinematicly very similar to γd → pn, however 
dynamically they significantly differ from each 
other. The matter is that the quantum numbers of a 
diproton state (I = 1, S = 0, L = 0) differ from the 
corresponding quantum numbers of a deuteron (I = 0, 
S = 1, L = 0.2). As a result multipole contributions 
will also be significantly different. Therefore the data 
received for these two reactions mutually supplement 
each other, indicating that we should study such 
processes more carefully. 

In absence of a free bound diproton, γ{pp}s → pp 
is traditionally investigated for diproton which bound 
within a nucleus. At ANKE an alternative approach 
was applied for the first time – the study of the 
inverse reaction pp → γ{pp}s [4], free from 
background created by the deuteron photoabsorption. 
Particulary, the goal of this work is to find analyzing 
power of this reaction. 

 
2 Measurements and analysis 
 
The experiment was carried out in Germany using 

ANKE facility of the synchroton storage ring 
COSY-Jülich (Fig. 0) [6]. A hydrogen cluster-jet 
target was positioned in the proton beam and 
secondary particles were detected with wire chambers 
and scintillation hodoscope. The proton beam was 
transversely polarized with it's polarization direction 
varying from up to down. The trajectories and 
three-momenta of the particles were reconstructed.  

The first step in the identification of our reaction 
was the selection of two coincident protons among 
all the detected pairs of positively charged particles. 
The scintillation hodoscope allowed measurement of 
the difference between the times of flight from the 
target to detector for two recorded particles. If we 
assume the masses of the particles, we can also 
calculate this time of difference, using the measured 
momenta and trajectories. If our assumption was 
correct then these two values would coincide. With 
time resolution better than 2 ns, the comparison of 
this value with that calculated from the measured 
particle momenta and trajectories led to a very good 
identification of proton pairs. At low excitation 
energy Epp < 3 MeV the diproton is predominantely 
in the 1S0 state. The resolution of the ANKE setup 
σ(Epp) < 0.6 MeV allowed reliable selection of Epp < 
3 MeV diprotons. 

As the next step, histograms for missing mass 
squared were created at Tp = 0.500, 0.550, 0.700 GeV 
(Fig. 1). There is a clear visible γ peak that could be 
separated from the pion peak associated with the pp 
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→ ppπ0 reaction. The peak shapes were obtained by a 
detailed Monte Carlo simulation at each energy, 
which took into account all the known features of the 
setup. The free parameters of interest used to fit the 
missing-mass spectra were the number of events in 
the γ peak and the number of events in the pion peak. 

In order to compensate for the lack of knowledge of 
the beam spatial distribution, additional parameters 
were inserted into the fits: a shift of the pion peak 
position and correction factors for the γ and pion 
peak widths. The results of the fit can be seen in Fig. 
1 as well.

 
Figure 1 – Experimental setup 

 
 

 
Figure 2 – Distribution of the missing mass squared in the { }sp p pp X    

 
 
To estimate the angular dependence of the 

analyzing power, the events were divided into two 
θpp intervals 5–13o, 13–30o and separate fits were 
made for each of these ranges. Firstly, we had to find 
polarization assymetry given by equation (1).  

 
/ /

= ,
/ /

N L N L
N L N L

    

   




           (1) 

 
where N↑ and N↓ are the numbers of events with beam 
proton spin up and down, and L↑ and L↓ are the 
corresponding luminosities. It is needed to calculate 
the analyzing power using equation (2).  

= ,
cosy

pp

A
P


              

 (2) 

 
where P is the transverse polarisation of the beam 
and cos pp   the average over the diproton 

azimuthal angular distribution. Different approaches 
were applied to obtain the analyzing power. The 
numbers of events can be determined either by fitting 
separately N↑ and N↓, or directly N↑ – N↓ and N↑ = N↓ 
histograms. Concerning cosϕpp there are two 
possibilities, either to divide by the average value of 
cosϕpp distribution or to correct by cosϕpp 
event-by-event. Hence, four approaches were 
applied, each repeated for fine and gross histogram 
binning. These 8 values with errors were averaged. 
The dispersion of the values was considered as a 
systematic error. Polarization P was estimated using 
the known values of Ay for elastic рр and pp → dπ+ 
reactions, registered in parallel with our reaction. 
 

3 Results and outlook 
 
In Fig. 2 and Table 0 the preliminary results are 

shown for analyzing power of the { }spp pp  
reaction at Tp = 0.500, 0.550, 0.700 GeV. 
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Figure 3 – Analyzing power for reaction { }sp p pp   , preliminary results. 
 
 

Table 1 – Numerical values of analyzing power with systematical and statistical errors, preliminary results. 
 

 500 550 700 
5 13   1.02 1.80 0.02   0.14 1.03 0.67   0.51 1.23 0.014   

13 30   0.72 1.45 0.03   0.77 0.99 0.01   0.62 0.92 0.002   
 
 
Since multipole contributions М1 and 

non-spin-flip part of Е1 are forbidden, it might be 
sufficient to retain only Е2, М2 and spin-flip part of 
Е1. The qualitative estimate of the results [7] 
suggests that there may be significant contribution of 
the М2 multipole contrary to the predictions of [8]. 
The numerical evaluation of Е1, Е2, М2 multipole 
contributions to the data is in progress.  

 
Acknowledgements 
 
The authors wish to think other members of the 

ANKE collaboration for their help and assistance in 
the running of the experiment and in the data 
analysis.

  
 

References 
 
[1] S. Dymov et al.Deuteron breakup pd→{pp}sn 

with forward emission of a fast 1S0 diproton// Phys. Rev. 
C. – 2010. –Vol. 81. –P. 044001.  

[2] V. Kurbatov et al.Energy dependence of forward 
1S0 diproton production in the pp→ppπ0 reaction// Phys. 
Lett. B. – 2008. – Vol. 661. –P. 22.  

[3] D. Tsirkov et al.Differential cross section and 
analysing power of the pp→{pp}sπ0 reaction at 353 
MeV// Phys. Lett. B. – 2012. – Vol. 712. – P. 370.  

[4] V. Komarov et al.Observation of Inverse 
Diproton Photodisintegration at Intermediate Energies// 
Phys. Rev. Lett. – 2008. – Vol. 101. – P. 102501.  

[5] D. Tsirkov et al.Energy dependence of hard 
bremsstrahlung production in proton–proton collisions in 
the Δ(1232) region// J. Phys. G: Nucl. Part. Phys. – 2010. 
–Vol. 37. –P. 105005.  

[6] S. Barsov et al.ANKE, a new facility for medium 
energy hadron physics at COSY-Jülich// Nucl. Instrum. 
Methods. Phys. Res. – 2001. –Vol. 462. –P. 364.  

[7] P. Wilhelm et al. Signatures from polarization 
observables for photon absorption on a 1S0 proton pair // 
Nucl. Phys. A. – 1996. –Vol 597. – P. 613.  

[8] P. Wilhelm et al. Photon absorption on a 
proton-proton pair in He3// Phys. Lett. C. – 1995. – 
Vol.51. – P. 2841.  

 


