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TWO PHASE SPHERICAL STEFAN INVERSE PROBLEM SOLUTION
WITH LINEAR COMBINATION OF RADIAL HEAT POLYNOMIALS 

AND INTEGRAL ERROR FUNCTIONS IN ELECTRICAL CONTACT PROCESS

Abstract. In this research the inverse Stefan problem in spherical model where heat flux has to be 
determined is considered. This work is continuing of our research in electrical engineering that when heat 
flux passes through one material to the another material at the point where they contact heat distribution 
process takes the place. At free boundary ( )tα contact spot starts to boiling and at ( )tβ stars to melting 
and there appear two phase: liquid phase and solid phase. Our aim to calculate temperature in liquid and 
solid phase, then find heat flux entering into contact spot. The exact solution of problem represented in 
linear combination of series for radial heat polynomials and integral error functions. The recurrent formulas 
for determine unknown coefficients are represented. The effectiveness of method is checked by test 
problem and approximate problem in which exact solution and approximate solution of heat flux is 
compared. The coefficients of heat at liquid and solid phases and heat flux are found. The heat flux equation 
is checked by testing problem by using Mathcad program.
Key words: Stefan problem, radial heat polynomials, Faa-di Bruno, collocation method.

Introduction

Heat flux entering in electrical contact materials 
from electrical arc distributes radially and axially. 
Spherical model is most convenient, introduced by 
Holm R. [1], in the problem of heat distribution in 
electrical materials. In this problem generalized heat 
equation can be used. The generalized heat equation 
of the form 
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1 v
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t r x x
θ θ∂ ∂ ∂ =  ∂ ∂ ∂ 

have the fundamental solution with delta-function 
containing initial condition by using Laplace 
transform can be represented as
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We can consider the heat potentials related to this 
solution in form [2]
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and by using integration by parts method we have the 
following explicit formula of heat polynomials
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For applications it is convenient to multiply both 

sides of this equation by ( 1 )
( 1)

nβ
β

Γ + +
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and we get the 

following solution
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which satisfy the generalized heat equation. 
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In this research we consider 2v = which allow to 
transform to generalized heat equation to spherical 
heat equation [3]. The similar problems are 
considered in [4]-[7].

Mathematical model

Let us consider the liquid phase described in 
domain ( ) ( ), 0t r t tα β< < > and solid phase in 

( ) , 0t r tβ < < ∞ > with spherical heat equations

2 2
2

1 , 1, 2i i
ia r i

t r r r
θ θ∂ ∂∂  = = ∂ ∂ ∂ 

            (1)

and each phase has initial condition as follows

1 ( ( ),0) 0, (0) ( ) 0,t tθ α α β= = =               (2)

2 ( ,0) ( ), (0) .mr f r fθ θ= =                  (3)

Heat flux entering ( )P t into spherical domain 
from electrical arc with radius 0r in process pf heat 
transfer within electrical contact materials can be 
determined from condition

0

1
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Temperatures in liquid and solid phase at free 
boundary ( )tα is equal to melting temperature

( ( ), ) , 1, 2.i mt t iθ β θ= =                    (5)

Motion of the free boundary can be calculated at 
Stefan’s condition 
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and temperature of solid zone at infinity turns to zero

2 0.
r

θ
=∞
=                              (7)

Problem solution

The solution of problem (1)-(7) we represent as 
linear combination of series for radial heat equation 
and integral error functions
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The equations (8) and (9) satisfy heat equation (1) 
and undetermined coefficients , ,n n nA B C and nD have 
to be founded to determine temperatures in phases. 
The function at initial condition for 2 ( , )r tθ is 
represented in expansion by Maclaurin series 
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At first, we must find temperatures in liquid and 
solid zones, then by using property of integral error 
function to condition (3) we get
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By comparing the power of r in both sides (10)
we obtain the following form
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and from conditions (5) we have
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and from Stefan’s condition we obtain
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where t τ= and
2
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Firstly, we take l -th derivative both sides  of (13)
when 0τ = using Leibniz rule for first and second 
term of (13)
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Using Faa-di Bruno for (15) and (16) we get 
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From system of equations (11) and (13) we 
determine the coefficients ,n nC D . Multiplying both 
sides of (13) by ( )β τ we have
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Taking l -th derivative both sides of this 
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From recurrent equations (23) and (24) we can 
determined the coefficients nA and nB as free 
boundary is known.
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From condition at heat flux entering we have the following equation

( ) ( )
2 1 2

2 1 2 1 2 21 1
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∑
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            (26)

Multiplying both sides by 2 ( )α τ we obtain the next equation
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where  
2
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n
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Analogously, taking l -th derivative of both sides of equation (27) we have
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From recurrent equation (28) we can determine 
the coefficients of heat flux in process of electrical 
contact materials.

Exact solution of test problem

In this section we consider test problem to check 
effectiveness of method of radial heat polynomials 
and integral error functions for inverse problem of 
spherical Stefan problem (1)-(7). The free boundaries 
are given in the form 0( )t tα α= and 0( )t tβ β= ,
then from the initial condition (3) and boundary 
condition (6) we have 
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∑ ∑
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(31)

and from Stefan’s condition at free boundary ( )tβ we
obtain
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For 0n = from system of equations (28)-(29) we
have
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and from system of equations (30)-(31) we obtain 

0 0 20 0
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For 1n ≥ we have the following results



11S.N. Kharin et al.

International Journal of Mathematics and Physics 11, №2, 4 (2020)                                     Int. j. math. phys. (Online)
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∑
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                               (37)

Using this result and put in (29) we can find coefficient nC directly.  And for other coefficients we get 
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and 
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(39) Heat flux can be determined form condition (3)
which takes the form
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          (40)

Then from expression (40) we obtain the coefficients of heat flux passes through liquid and solid phases
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(41)

and even indexed coefficients of heat flux p2n = 0.  By 
using Mathcad 15 and taking 

1 2 0 0 1 2 1a a L γ α β λ λ= = = = = = = = and melting 
temperature mθ we get exact values of first three 
coefficients of temperature in two phase

1 1 1 1 0 0 0A B C D C D= = = = = = and 4
2 2 1.574 10 ,A C −= = − ×  

3
2 2 9.442 10B D −= = × are calculated from system of 

equations (33)-(39).  Then first three coefficients of 
heat flux is p0 = p1 = 0 and p2 = 0.057 which can be 
found from (41).

Approximate solution of test problem

In this section we consider collocation method that 
useful to engineers for testing and we try to show that by 
using three points t = 0, t = 0.5 and t = 1 we can obtain no

error estimates. Let a1 = a2= L = γ= 1 and θm = 0, then for 
calculation Mathcad 15 is used and we get the next 
approximate coefficients for temperature in liquid and 
solid zones A0 = –0.25, B0 = 0.125, A1 = B1 = C1 = D1 = 
C0 = D0 = 0 and A2 = C2 = – 1.574 x 10–4, B2 = D2 = 9.442
x 10–3. Then approximate values of first three heat flux is 
similar to exact values. The Fig.1 shows the graphs of 
approximate heat flux (approx_P(t)) and exact heat flux 
(exact_P(t)).

By calculating relative error with Mathcad 15 we 
get Fig.2 in which we can see that that at each point 
t = 0, t = 0.5, t = 1 we have zero error estimate 
function (Err(t))

Then we can summarize that method radial heat 
polynomials and integral error functions is the most 
effective in the heat transfer problem appearing in 
electrical contact process.

Figure 1 – Graphs of approximate and 
exact heat flux functions

Figure 2 – Graph of relative error function 
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Conclusion

The new method radial heat polynomials is 
introduced and is used for testing heat process in two 
phases when heat flux passes through these two 
zones. The coefficients of temperatures  1 ( , )r tθ and 

2 ( , )r tθ are determined from recurrent formulas (19), 
(20) and (25), then by using these coefficients and 
comparing degree of time from condition (3) heat 
flux is described. To testing effectiveness of radial 
heat polynomials and integral error function test 
problem is considered in which free boundaries are 
represented in self-similar form 0( )t tα α= and 

0( )t tβ β= which are convenient for testing and 
with approximation method (collocation method) 
checked the error estimates between exact solution 
and approximate solution of this inverse problem.

Acknowledgement

The research work is supported by the grant 
project AP05133919 (2018-2020) from the Ministry 
of Science and Education of the Republic of 
Kazakhstan.

References

1 R. Holm, Electrical Contacts, Fourth Edition, 
Springer Verlag (198): 482.

2 V.I. Kudrya, A.E. Pudy, S.N. Kharin. 
Fundamental solution and heat potentials of heat 
equation for a rod with a variable cross-section. 

Equations with discontinuous coefficients and their 
applications, Nauka (1985): 76-81.

3 S.N.Kharin, M.M.Sarsengeldin, H.Nouri. 
Analytical solution of two phase spherical Stefan 
problem by heat polynomials and integral error 
functions. AIP Conference Proceedings 1759, 
020031, (2016), doi: 
http://dx.doi.org/10.1063/1.4959645

4 Alexey A. Kavokin, Targyn A. Nauryz, 
Nazerke T. Bizhigitova, “Exact solution of two phase 
spherical Stefan problem with free boundaries”, AIP
Conference Proceedings 1759, 020117 (2016),
https://doi.org/10.1063/1.495931

5 M. M. Sarsengeldin, A. S. Erdogan, T.A. 
Nauryz, H. Nouri, “An approach for solving an 
inverse spherical Stefan problem arising in modeling 
of electrical contact phenomena”, Mathematical 
Methods in the Applied Sciences vol. 41, No. 2
(2017): https://doi.org/10.1007/978-3-319-67053-
937.

6 M. Sarsengeldin, S. N. Kharin, “Method of 
the Integral Error Functions for the solution of one-
and two-phase Stefan problems and its application”, 
Filomat 31:4 (2017): 1017-1029. DOI 
10.2298/FIL1704017S. Available at: 
http://www.pmf.ni.ac.rs/filomat.

7 Merey M. Sarsengeldin, Targyn A. Nauryz, 
Nazerke T. Bizhigitova, Alibek M. Orinbasar.
Solution of an inverse two phase spherical Stefan test 
problem. Accepted for publication. Proceedings in 
Mathematics and Statistics, Springer book series,
volume: Functional Analysis in Interdisciplinary 
Applications (2017).



© 2020 al-Farabi Kazakh National University                                                                               Int. j. math. phys. (Online)

International Journal of Mathematics and Physics 11, №2, 14 (2020)

IRSTI 27.03.66 https://doi.org/10.26577/ijmph.2020.v11.i2.02

M.G. Peretyat’kin*, A.A. Kalshabekov

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
*e-mail: peretyatkin@math.kz

FINITE DOMAIN STRUCTURES IN THE FRAMEWORK 
OF THE CONCEPT OF A MODEL-THEORETIC PROPERTY

Abstract. In this work, we follow the algebraic approach using definability by formulas presentable in both 
existential and universal forms. The class of algebraic Cartesian interpretations of theories is studied 
presenting a foundation of the finitary first-order combinatorics. Common properties of first-order 
definability in finite models are studied. Some relations are obtained between automorphism groups of 
finite models and isomorphisms of Cartesian extensions of their theories. A formal definition of the notion
of a model-theoretic property is analyzed based on a separate consideration of cases of theories with finite 
and infinite models. A description of model-theoretic properties defined via finite domains is found. It is 
established that the class of all finite models with first-order definable elements as well as the corresponding 
class of theories of such models forms the only model-theoretic property and, therefore, is of little interest 
as a database with an interface based on the first-order logic language.
Key words: first-order logic, Cartesian extension of a theory, Tarski-Lindenbaum algebra, model-theoretic 
property, computable isomorphism. 

Introduction

We use the radical approach in model theory 
counting that model-theoretic properties are classes 
of complete theories, cf. [1]. By specification [2], a 
class 𝔭𝔭𝔭𝔭 of complete theories is a real model-theoretic 
property (corresponding to the common practice of 
investigations in model theory), if 𝔭𝔭𝔭𝔭 is closed under 
algebraic isomorphisms of theories as well as under 
Cartesian extensions and inverse passages in the 
operation of a Cartesian extension of a theory. A 
preliminary motivation to the possibility of a formal 
definition for the concept of a model-theoretic 
property is considered in [3], while the work [2] 
describes a final version of this definition. Some 
applications of the definition of a model-theoretic 
property are contained in [4].

In this work, structure of real model-theoretic 
properties is studied based on a separate 
consideration of the cases of complete theories with 
finite and infinite models. Based on this, we give an 
application concerning finite models.

Preliminaries

We consider theories in first-order predicate logic
with equality and use general concepts of model 
theory, algorithm theory, constructive models, and 
Boolean algebras found in [5], [6], and [7]. Special 
concepts used in the works are defined in [3]. 

Generally, incomplete theories are considered. In the 
work, the signatures are considered only, which 
admit Godel's numberings of the formulas. Such a 
signature is called enumerable. 

By 𝐿𝐿𝐿𝐿(𝑇𝑇𝑇𝑇), we denote the Tarski-Lindenbaum 
algebra of formulas of theory 𝑇𝑇𝑇𝑇 without free 
variables, while ℒ(𝑇𝑇𝑇𝑇) denotes the Tarski-
Lindenbaum algebra 𝐿𝐿𝐿𝐿(𝑇𝑇𝑇𝑇) considered together with a 
Gödel numbering 𝛾𝛾𝛾𝛾; thereby, the concept of a 
computable isomorphism is applicable to such 
objects. A finite signature is called rich, if it contains 
at least one 𝑛𝑛𝑛𝑛-ary predicate or function symbol for 
𝑛𝑛𝑛𝑛 𝑛 2, or two unary function symbols. By ℂ, we 
denote the class of all complete theories of 
enumerable signatures. The record 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 means 
isomorphism of theories 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆, while 𝑇𝑇𝑇𝑇 𝑇𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆
stands for algebraic isomorphism of the theories, cf. 
[3].

We follow the algebraic type of definability using 
∃⋂∀-formulas affecting more delicate properties of 
theories in comparison with the normal approach 
based on the definability via arbitrary first-order 
formulas. As an ∃⋂∀-formula 𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥) of signature 𝜎𝜎𝜎𝜎,
we mean a pair of formulas �𝜑𝜑𝜑𝜑𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥𝑥), 𝜑𝜑𝜑𝜑𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑥)� together 
with the domain sentence 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥)� =
(∀𝑥𝑥𝑥𝑥𝑥)[𝜑𝜑𝜑𝜑𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥𝑥) ↔ 𝜑𝜑𝜑𝜑𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑥)], where 𝜑𝜑𝜑𝜑𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥𝑥) is an ∃-
formula, while 𝜑𝜑𝜑𝜑𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑥) is a ∀-formula of signature 𝜎𝜎𝜎𝜎.
A formula 𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥) of theory 𝑇𝑇𝑇𝑇 is said to be ∃⋂∀-
presentable in 𝑇𝑇𝑇𝑇 if 𝑇𝑇𝑇𝑇 𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥)�. If 𝜓𝜓𝜓𝜓(𝑥𝑥𝑥𝑥𝑥) is a 
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quantifier-free formula, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜓𝜓𝜓𝜓(𝑥̅𝑥𝑥𝑥)� is supposed 
to be a generally true formula. If 𝜘𝜘𝜘𝜘 is a finite set 
(or a sequence) of ∃⋂∀-formulas 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖(𝑥̅𝑥𝑥𝑥𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 < 𝑘𝑘𝑘𝑘,
we denote by 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜘𝜘𝜘𝜘) the conjunction 
⋀𝑖𝑖𝑖𝑖<𝑘𝑘𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖(𝑥̅𝑥𝑥𝑥𝑖𝑖𝑖𝑖)�.

We formulate a technical statement.
Lemma 0.1. [8, Lemma 2.4.2] Let 𝔐𝔐𝔐𝔐 be a finite 

model of an enumerable signature 𝜎𝜎𝜎𝜎. Then, any for-
mula 𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥1, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) of signature 𝜎𝜎𝜎𝜎 is equivalent in the-
ory 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐) to an ∃⋂∀-formula of signature 𝜎𝜎𝜎𝜎.

Proof. By condition, theory 𝑇𝑇𝑇𝑇 has a unique up to 
an isomorphism model 𝔐𝔐𝔐𝔐; moreover, 𝔐𝔐𝔐𝔐 is finite. 
Therefore, any isomorphic embedding of models of 
theory 𝑇𝑇𝑇𝑇 is elementary. By Robinson's Criterion, [9], 
we obtain that theory 𝑇𝑇𝑇𝑇 is model complete. Hence, we 
have the ∃-reducibility as well as ∀-reducibility of 
any formula in theory 𝑇𝑇𝑇𝑇. □

Cartesian-type interpretations

We use a standard concept of an interpretation of 
a theory 𝑇𝑇𝑇𝑇0 in the region 𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥) of a theory 𝑇𝑇𝑇𝑇1, [10,
Section 4.7]. An interpretation is called effective if it 
is defined by a computable function. Classes of 
isostone and model-bijective interpretations are 
introduced in [11]. In this section, we introduce a 
technical class of interpretations presenting finitary 
methods in first-order logic.

Given a signature 𝜎𝜎𝜎𝜎 and a finite sequence of 
formulas of this signature of either of the following 
forms:

(a) ϰ = 〈𝜑𝜑𝜑𝜑1
𝑚𝑚𝑚𝑚1 ⁄ 𝜀𝜀𝜀𝜀1, 𝜑𝜑𝜑𝜑2

𝑚𝑚𝑚𝑚2 ⁄ 𝜀𝜀𝜀𝜀2, … , 𝜑𝜑𝜑𝜑𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 ⁄ 𝜀𝜀𝜀𝜀𝑠𝑠𝑠𝑠 〉, (1.1)

(b) ϰ = �𝜑𝜑𝜑𝜑1
𝑚𝑚𝑚𝑚1, 𝜑𝜑𝜑𝜑2

𝑚𝑚𝑚𝑚2, … , 𝜑𝜑𝜑𝜑𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠�,

where 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘(𝑥̅𝑥𝑥𝑥𝑘𝑘𝑘𝑘) is a formula with 𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘 free variables, 
𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘, 𝑧𝑧𝑧𝑧𝑘̅𝑘𝑘𝑘) is a formula with 2𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘 free variables such 
that 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘) = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑘̅𝑘𝑘𝑘) = 𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘; moreover, (1.1)(b) 
is a simplified notation instead of the common entry 
(1.1)(a) in the case when 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘, 𝑧𝑧𝑧𝑧𝑘̅𝑘𝑘𝑘) coincides with 
𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘 = 𝑧𝑧𝑧𝑧𝑘̅𝑘𝑘𝑘 for all 𝑘𝑘𝑘𝑘 ⩽ 𝑠𝑠𝑠𝑠.

Starting from a model 𝔐𝔐𝔐𝔐 of signature 𝜎𝜎𝜎𝜎 together 
with a tuple 𝜘𝜘𝜘𝜘 of any of the forms (1.1)(a,b), we are 
going to construct a new model 𝔐𝔐𝔐𝔐1 of signature

𝜎𝜎𝜎𝜎1 = 𝜎𝜎𝜎𝜎 ∪ {𝑈𝑈𝑈𝑈1, 𝑈𝑈𝑈𝑈11, 𝑈𝑈𝑈𝑈21, … , 𝑈𝑈𝑈𝑈𝑠𝑠𝑠𝑠1} ∪

�𝐾𝐾𝐾𝐾1
𝑚𝑚𝑚𝑚1+1, 𝐾𝐾𝐾𝐾2

𝑚𝑚𝑚𝑚2+1, … , 𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠+1�      (1.2)

as follows. As the universe, we take |𝔐𝔐𝔐𝔐1| = |𝔐𝔐𝔐𝔐| ∪
𝐷𝐷𝐷𝐷1 ∪ 𝐷𝐷𝐷𝐷2 ∪ …∪ 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠, where all specified parts are 

pairwise disjoint sets. On the set |𝔐𝔐𝔐𝔐|, all symbols of 
signature 𝜎𝜎𝜎𝜎 are defined exactly as they were defined 
in 𝔐𝔐𝔐𝔐; in the remainder, they are defined trivially; 
predicate 𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥) distinguishes |𝔐𝔐𝔐𝔐|; predicate 𝑈𝑈𝑈𝑈𝑘𝑘𝑘𝑘(𝑥𝑥𝑥𝑥)
distinguishes 𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘; the other predicates are defined by 
specific rules depending on the case. In the case 
(1.1)(b), each predicate 𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(𝑥̅𝑥𝑥𝑥𝑘𝑘𝑘𝑘, 𝑢𝑢𝑢𝑢) in (1.2) should be 
defined so that it would represent a one-to-one 
correspondence between the set of tuples {𝑎𝑎𝑎𝑎 � | 𝔐𝔐𝔐𝔐 ⊨
𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘(𝑎𝑎𝑎𝑎�)} and the set 𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘 = 𝑈𝑈𝑈𝑈𝑘𝑘𝑘𝑘(𝔐𝔐𝔐𝔐1). Turn to the most 
common case (1.1)(a). Denote by 𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐸𝐸𝐸𝐸(𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘, 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘) a
sentence stating that 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘 is an equivalence relation on 
the set of tuples distinguished by the formula 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘(𝑥̅𝑥𝑥𝑥𝑘𝑘𝑘𝑘)
in 𝔐𝔐𝔐𝔐. In this case, (𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘 + 1)-ary predicate 𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(𝑥̅𝑥𝑥𝑥𝑘𝑘𝑘𝑘, 𝑢𝑢𝑢𝑢)
should be defined so that it would represent a one-to-
one correspondence between the quotient set 
{𝑎𝑎𝑎𝑎 � | 𝔐𝔐𝔐𝔐 ⊨ 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘(𝑎𝑎𝑎𝑎�)} ⁄ 𝜀𝜀𝜀𝜀′𝑘𝑘𝑘𝑘 and the set 𝑈𝑈𝑈𝑈𝑘𝑘𝑘𝑘(𝔐𝔐𝔐𝔐1), where

𝜀𝜀𝜀𝜀′𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘, 𝑧𝑧𝑧𝑧𝑘̅𝑘𝑘𝑘) = 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘, 𝑧𝑧𝑧𝑧𝑘̅𝑘𝑘𝑘) ∨ ┐𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐸𝐸𝐸𝐸(𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘, 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘). (1.3)

The model 𝔐𝔐𝔐𝔐1 obtained from 𝔐𝔐𝔐𝔐 and 𝜘𝜘𝜘𝜘 as
explained above is denoted by 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉.

The aim of replacement of 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘 by 𝜀𝜀𝜀𝜀′𝑘𝑘𝑘𝑘 using 
𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐸𝐸𝐸𝐸(𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘, 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘) is to provide the total definiteness of 
the operation (𝔐𝔐𝔐𝔐, 𝜘𝜘𝜘𝜘) ↦ 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 independently of 
whether the formulas 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘, 𝑘𝑘𝑘𝑘 = 1,2, … , 𝑠𝑠𝑠𝑠, represent 
equivalence relations in corresponding domains or 
not. In the case (1.1)(a), 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 is said to be a 
Cartesian-quotient extension of 𝔐𝔐𝔐𝔐, while in the case 
(1.1)(b), the model 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 is said to be a Cartesian 
extension of 𝔐𝔐𝔐𝔐 by a sequence of formulas 𝜘𝜘𝜘𝜘.

Mention some kind of determinism for the 
operation under consideration.

Lemma 1.1. Given a signature 𝜎𝜎𝜎𝜎 and a tuple 𝜘𝜘𝜘𝜘 of 
the form (1.1)(a). For a fixed choice of signature 
(1.2), Cartesian-quotient extension 𝔐𝔐𝔐𝔐1 = 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 of 
the model 𝔐𝔐𝔐𝔐 is defined uniquely, up to an 
isomorphism over 𝔐𝔐𝔐𝔐. Moreover, we have |𝔐𝔐𝔐𝔐1| =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑈𝑈𝑈𝑈(𝔐𝔐𝔐𝔐1)�. Thus, any automorphism 𝜆𝜆𝜆𝜆:𝔐𝔐𝔐𝔐 → 𝔐𝔐𝔐𝔐
can be extended, by a unique way, up to an 
automorphism 𝜆𝜆𝜆𝜆∗:𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 → 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉.

Proof. This statement is an immediate 
consequence of the construction. □

Expand the operation of an extension (initially 
defined for models) on theories. Given a theory 𝑇𝑇𝑇𝑇 and 
a tuple 𝜘𝜘𝜘𝜘 of the form (1.1). Using a fixed signature 
(1.2) for extensions of models, we define a new 
theory 𝑇𝑇𝑇𝑇′ = 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉 as follows: 𝑇𝑇𝑇𝑇′ = 𝑇𝑇𝑇𝑇ℎ(𝐾𝐾𝐾𝐾), 𝐾𝐾𝐾𝐾 =
{𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 | 𝔐𝔐𝔐𝔐 ∈ 𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝑇𝑇𝑇𝑇)}. In the case (1.1)(a) it is 
called a Cartesian-quotient extension of 𝑇𝑇𝑇𝑇, while in 
the case (1.1)(b) it is called a Cartesian extension of 
𝑇𝑇𝑇𝑇 by a sequence 𝜘𝜘𝜘𝜘.
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We study simple properties of Cartesian-type 
extensions.

Lemma 1.2. For any model 𝔐𝔐𝔐𝔐 of theory 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉,
there is a model 𝔑𝔑𝔑𝔑 of theory 𝑇𝑇𝑇𝑇 such that 
𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝔐𝔐𝔐𝔐 ≅ 𝔑𝔑𝔑𝔑〈𝜘𝜘𝜘𝜘〉 takes place.

Proof. Immediately, from definition of the 
operation 𝑇𝑇𝑇𝑇 ↦ 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉. □

In theory 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉, the region 𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥) represents a 
model of theory 𝑇𝑇𝑇𝑇. Particularly, the transformation 
𝑇𝑇𝑇𝑇 ↦ 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉 defines a natural interpretation 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇,𝜘𝜘𝜘𝜘 of 𝑇𝑇𝑇𝑇 in 
𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉. It is called a plain Cartesian-quotient 
interpretation. Similar definition applies to the other 
case of the tuple 𝜘𝜘𝜘𝜘; thereby, the concept of a plain 
Cartesian interpretation is also defined. Considering 
theories up to an algebraic isomorphism, we may use 
shorter terms Cartesian-quotient or, respectively, 
Cartesian interpretation, for details, cf. [12].

Lemma 1.3. Given a theory 𝑇𝑇𝑇𝑇 of an enumerable 
signature 𝜎𝜎𝜎𝜎 and a sequence of formulas 𝜘𝜘𝜘𝜘. The plain 
Cartesian-quotient interpretation 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇,𝜘𝜘𝜘𝜘:𝑇𝑇𝑇𝑇 ↣ 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉 is 
effective, model-bijective, and isostone. In particular, 
the interpretation 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇,𝜘𝜘𝜘𝜘 determines a computable 
isomorphism 𝜇𝜇𝜇𝜇𝑇𝑇𝑇𝑇,𝜘𝜘𝜘𝜘: ℒ(𝑇𝑇𝑇𝑇) ⟶ ℒ(𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉) between the 
Tarski-Lindenbaum algebras.

Proof. Immediately. □
Normally, we consider passages 𝑇𝑇𝑇𝑇 ↦ 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉with a

sequence (1.1) satisfying the following technical 
condition:

𝑓𝑓𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘(𝑥̅𝑥𝑥𝑥𝑘𝑘𝑘𝑘) 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘 , 𝑧𝑧𝑧𝑧𝑘̅𝑘𝑘𝑘) 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
∃⋂∀-𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑓𝑓𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑘𝑘 ⩽ 𝑠𝑠𝑠𝑠. (1.4)

Denote by 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷(𝜎𝜎𝜎𝜎) and 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝜎𝜎𝜎𝜎) the sets of tuples 
of formulas of signature 𝜎𝜎𝜎𝜎 of the forms, respectively, 
(1.1)(a) and (1.1)(b), while 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷 and 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 are unions of 
these sets for all possible enumerable signatures 𝜎𝜎𝜎𝜎.
We denote by 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ the set of all tuples (1.1)(b) 
satisfying (1.4), while 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷∃⋂∀𝜀𝜀𝜀𝜀 is the set of all tuples 
(1.1)(a) satisfying (1.4). When using an entry 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉,
we always suppose that theory 𝑇𝑇𝑇𝑇 is applicable to the 
tuple 𝜘𝜘𝜘𝜘; moreover, it is supposed that 𝑇𝑇𝑇𝑇 ⊢
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜘𝜘𝜘𝜘) whenever 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ or 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷∃⋂∀𝜀𝜀𝜀𝜀 .

By applying an extra term algebraic, we 
explicitly indicate that the algebraic approach is 
accepted. For instance, a passage 𝑇𝑇𝑇𝑇 ↦ 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉 is said to 
be an algebraic Cartesian-quotient extension
whenever 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷∃⋂∀𝜀𝜀𝜀𝜀 , an interpretation 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇,𝜘𝜘𝜘𝜘 is said to 
be a plain algebraic Cartesian interpretation if 
𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀, etc.

We consider combinatorial properties of 
Cartesian-type extensions.

Lemma 1.4. Given a theory 𝑇𝑇𝑇𝑇 of an enumerable 
signature 𝜎𝜎𝜎𝜎 together with a sequence of formulas 𝜘𝜘𝜘𝜘.
The following statements are satisfied, where all 
indicated passages are supposed to be effective with 
respect to Gödel's numbers of tuples of formulas;
moreover, the choice of tuples is limited by the 
condition of applicability to corresponding theories:

(a) Suppose that 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷. For any 𝜘𝜘𝜘𝜘′ in 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷, there 
is a tuple 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷 such that an isomorphism

𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘^𝜘𝜘𝜘𝜘′〉 ≈ (𝑇𝑇𝑇𝑇⟨𝜘𝜘𝜘𝜘⟩)〈𝜘𝜘𝜘𝜘′′〉               (1.5)

takes place; and vice versa, for any 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷, there 
is a tuple 𝜘𝜘𝜘𝜘′ in 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷 such that an isomorphism (1.5)
takes place.

(b) Suppose that 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. For any 𝜘𝜘𝜘𝜘′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, there 
is a tuple 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 such that an isomorphism (1.5)
takes place; and vice versa, for any 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, there 
is a tuple 𝜘𝜘𝜘𝜘′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 such that an isomorphism (1.5)
takes place.

(c) Suppose that 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀. For any 𝜘𝜘𝜘𝜘′ in 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀, there is a tuple 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ such that an 
isomorphism

𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘^𝜘𝜘𝜘𝜘′〉 ≈𝑎𝑎𝑎𝑎 (𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉)〈𝜘𝜘𝜘𝜘′′〉              (1.6)

takes place; and vice versa, for any 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀,
there is a tuple 𝜘𝜘𝜘𝜘′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ such that an isomorphism 
(1.6) takes place.

Proof. Validity of these statements can be 
checked by applying a routine construction based on 
expressive possibilities of first-order logic. □

Introduce notations for two following relations 
on the class of arbitrary theories including both 
complete and incomplete ones:

(a)  𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 ⇔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
(∃𝜘𝜘𝜘𝜘′𝜘𝜘𝜘𝜘′′ ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀)[𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘′〉 ≈𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆〈𝜘𝜘𝜘𝜘′′〉],       (1.7)

(b)   𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎
○ 𝑆𝑆𝑆𝑆 ⇔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛

�∃ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇:ℒ(𝑇𝑇𝑇𝑇) ⟶ ℒ(𝑆𝑆𝑆𝑆)�

(∀ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇𝑇𝑇′ ⊇ 𝑇𝑇𝑇𝑇)
(∀ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆′ ⊇ 𝑆𝑆𝑆𝑆)

[𝑆𝑆𝑆𝑆′ = 𝜇𝜇𝜇𝜇(𝑇𝑇𝑇𝑇′) ⇒ (∃𝜘𝜘𝜘𝜘′𝜘𝜘𝜘𝜘′′ ∈
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀)(𝑇𝑇𝑇𝑇′〈𝜘𝜘𝜘𝜘′〉 ≈𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆′〈𝜘𝜘𝜘𝜘′′〉)].

Lemma 1.5. The relation (1.7)(a) on the class of 
theories of enumerable signatures is reflexive, 
symmetric, and transitive (that is, this is an 
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equivalence relation). Besides, (1.7)(b) is also an 
equivalence relation on the class of all theories. 
Moreover, we have 𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 ⇒ 𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎

○ 𝑆𝑆𝑆𝑆 for all 
theories 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆, and 𝑇𝑇𝑇𝑇1 ≊𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇2 ⇔ 𝑇𝑇𝑇𝑇1 ≊𝑎𝑎𝑎𝑎

○ 𝑇𝑇𝑇𝑇2 for all 
complete theories 𝑇𝑇𝑇𝑇1 and 𝑇𝑇𝑇𝑇2.

Proof. Obviously, ≊𝑎𝑎𝑎𝑎 is reflexive and symmetric. 
Now, suppose that 𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻 and 𝐻𝐻𝐻𝐻 ≊𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 is satisfied. 
By definition, there are tuples 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀, 𝑖𝑖𝑖𝑖 =
1,2,3,4, such that 𝑇𝑇𝑇𝑇〈𝜉𝜉𝜉𝜉1〉 ≈𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻〈𝜉𝜉𝜉𝜉2〉 and 
𝐻𝐻𝐻𝐻〈𝜉𝜉𝜉𝜉3〉 ≈𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆〈𝜉𝜉𝜉𝜉4〉. By applying Lemma 1.4(c), we can 
find tuples 𝜉𝜉𝜉𝜉′2 and 𝜉𝜉𝜉𝜉′3 in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ such that the 
following algebraic isomorphisms take place: 
𝑇𝑇𝑇𝑇〈𝜉𝜉𝜉𝜉1^𝜉𝜉𝜉𝜉′3〉 ≈𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻〈𝜉𝜉𝜉𝜉2^𝜉𝜉𝜉𝜉3〉 ≈𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻〈𝜉𝜉𝜉𝜉3^𝜉𝜉𝜉𝜉2〉 ≈𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆〈𝜉𝜉𝜉𝜉4^𝜉𝜉𝜉𝜉′2〉
. Thus, we obtain 𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 ensuring the transitivity 
property. The fact that relation (1.7)(b) is reflexive, 
symmetric, and transitive on the class of all theories 
is checked immediately. As for the pointed out links 
between the relations ≊𝑎𝑎𝑎𝑎 and ≊𝑎𝑎𝑎𝑎

○ , they are derived 
based on definitions (1.7)(a) and (1.7)(b) together 
with properties of the computable isomorphisms 𝜇𝜇𝜇𝜇 in
Lemma 1.3. □                                 

There are model-type versions ≊ and ≊○ of the 
relations without index 𝑎𝑎𝑎𝑎, thus, discarding the 
algebraic mode of definability. For this, we have to 
use common class 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 instead of specialized one 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ in the rules (1.7)(a) and (1.7)(b).

Formal specification for a model-theoretic 
property

We use a general specification to the concept of 
a real model-theoretic property, [2]. By accepting the 
pragmatic approach, cf. Definition 4 and Definition 
6 in [2], we have for all complete theories 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆:

𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑆𝑆 ℎ𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷-𝑝𝑝𝑝𝑝ℎ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⟺ 𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆. (2.1)

                
As for the common rule (1.7)(b), it represents the 

relation of coincidence of real model-theoretic 
properties for arbitrary first-order theories (including 
incomplete ones).

Virtual isomorphisms for finite models

We prove the following fact of a technical 
character.

Lemma 3.1. [8, Theorem 2.4.4] Let 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑 be 
finite models of enumerable signatures such that an
isomorphism 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) ≅ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔑𝔑𝔑𝔑) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.
Then, we have 𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐) ≊ 𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑), i.e., the following 
relation is satisfied: (∃𝜘𝜘𝜘𝜘𝜘𝜘𝜘𝜘′ ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)[𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐)〈𝜘𝜘𝜘𝜘〉 ≈
𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑)〈𝜘𝜘𝜘𝜘′〉].

Proof. Consider two finite models 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑
whose automorphism groups are isomorphic. Let 𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐) and 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑). We assume that the universe 
sets of the models |𝔐𝔐𝔐𝔐| = {𝑎𝑎𝑎𝑎1, … ,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚}, |𝔑𝔑𝔑𝔑| =
{𝑝𝑝𝑝𝑝1, … , 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛} as well as their signatures 𝜏𝜏𝜏𝜏 and 𝜎𝜎𝜎𝜎 are 
disjoint. Fix an isomorphism 𝐸𝐸𝐸𝐸:𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) → 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔑𝔑𝔑𝔑)
and construct a new model 𝔓𝔓𝔓𝔓 of signature 𝜏𝜏𝜏𝜏 ∪ 𝜎𝜎𝜎𝜎 ∪
{𝑈𝑈𝑈𝑈1,𝑉𝑉𝑉𝑉1,𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛} as follows. We put

|𝔓𝔓𝔓𝔓| = |𝔐𝔐𝔐𝔐| ∪ |𝔑𝔑𝔑𝔑|,

𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥) ⇔ 𝑥𝑥𝑥𝑥 ∈ |𝔐𝔐𝔐𝔐|,   𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥) ⇔ 𝑥𝑥𝑥𝑥 ∈ |𝔑𝔑𝔑𝔑|,

𝜏𝜏𝜏𝜏-𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 |𝔐𝔐𝔐𝔐| 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝ℎ𝐿𝐿𝐿𝐿 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 𝔐𝔐𝔐𝔐,
𝑝𝑝𝑝𝑝ℎ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠,

𝜎𝜎𝜎𝜎-𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 |𝔑𝔑𝔑𝔑| 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝ℎ𝐿𝐿𝐿𝐿 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 𝔑𝔑𝔑𝔑,
𝑝𝑝𝑝𝑝ℎ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,

𝑅𝑅𝑅𝑅 = {〈𝜇𝜇𝜇𝜇(𝑎𝑎𝑎𝑎1), … , 𝜇𝜇𝜇𝜇(𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚), 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑝𝑝1), … , 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛)〉 | 𝜇𝜇𝜇𝜇 ∈
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐)}.

Due to connections via predicate 𝑅𝑅𝑅𝑅, any 
automorphism of the model 𝔓𝔓𝔓𝔓 acts in coordination on 
both models 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑. In particular, we have 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) ≅ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔓𝔓𝔓𝔓) ≅ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔑𝔑𝔑𝔑). Moreover, any 
automorphism 𝜆𝜆𝜆𝜆 of 𝔓𝔓𝔓𝔓 is an identical mapping on the 
whole model 𝔓𝔓𝔓𝔓 whenever it is identical on |𝔐𝔐𝔐𝔐|. By 
Beth's Definability Theorem, [5], all elements in 𝔓𝔓𝔓𝔓
are first-order definable over its domain 𝑈𝑈𝑈𝑈(𝔓𝔓𝔓𝔓).
Therefore, the natural interpretation of 𝑇𝑇𝑇𝑇 in 𝑇𝑇𝑇𝑇ℎ(𝔓𝔓𝔓𝔓) is 
exact. By Lemma 3.2 in [12], the theory 𝑇𝑇𝑇𝑇ℎ(𝔓𝔓𝔓𝔓) is 
isomorphic to the theory 𝑇𝑇𝑇𝑇⟨𝜘𝜘𝜘𝜘′⟩ for a sequence 𝜘𝜘𝜘𝜘′ ∈
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷. Moreover, Lemma 3.3 in [12] is applicable. 
Thus, we have 𝜘𝜘𝜘𝜘′ ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. A similar reasoning shows 
that theory 𝑇𝑇𝑇𝑇ℎ(𝔓𝔓𝔓𝔓) is isomorphic to theory 𝑆𝑆𝑆𝑆⟨𝜘𝜘𝜘𝜘′′⟩ for 
a sequence 𝜘𝜘𝜘𝜘′′ ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. □

Model-theoretic properties versus 
finite/infinite models

In this paragraph, we establish how finite models 
are related with the concept of a real model-theoretic 
property introduced in [2].

From the rule (2.1) we obtain that the set of all 
real model-theoretic properties has the form of a 
complete Boolean algebra of subsets 𝒫𝒫𝒫𝒫(ℂ ⁄≊𝑎𝑎𝑎𝑎).
Moreover, separate classes [𝑇𝑇𝑇𝑇]≊𝑎𝑎𝑎𝑎, 𝑇𝑇𝑇𝑇 ∈ ℂ, are atoms
of this Boolean algebra. They are said to be atomic 
model-theoretic properties.

The following presentation takes place.
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Lemma 4.1. An arbitrary class 𝔭𝔭𝔭𝔭 of complete 
theories is a real model-theoretic property if and only 
if 𝔭𝔭𝔭𝔭 is the union of a family of atomic model-theoretic 
properties.

Proof. Immediately. □
Lemma 4.2. Let 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑 be abritrary models of 

enumerable signatures such that (∃𝜘𝜘𝜘𝜘𝜘𝜘𝜘𝜘′ ∈
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷)[𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐)〈𝜘𝜘𝜘𝜘〉 ≈ 𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑)〈𝜘𝜘𝜘𝜘′〉]. The following 
assertions are satisfied :

(a) 𝔐𝔐𝔐𝔐 is finite if and only if  𝔑𝔑𝔑𝔑 is finite,
(b) 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) ≅ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔑𝔑𝔑𝔑).
Proof. These statements are provided by 

construction of a Cartesian-quotient extension of a 
model, cf. Lemma 1.1 together with Lemma 1.2. □

Let us present the set ℂ of all complete theories 
of enumerable signatures in the form ℂ = ℂ ∞ ∪ ℂ 0,
where

ℂ∞ = {𝑇𝑇𝑇𝑇 ∈ ℂ | 𝑇𝑇𝑇𝑇 ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷},

ℂ0 = {𝑇𝑇𝑇𝑇 ∈ ℂ | 𝑇𝑇𝑇𝑇 ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷}.

By definition, we have 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ ⊆ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ⊆ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷.
Therefore, by Lemma 4.2, each of the sets ℂ∞ and ℂ0
is closed under the equivalence relation ≊𝑎𝑎𝑎𝑎. Thus, 
any real model-theoretic property 𝔭𝔭𝔭𝔭 ⊆ ℂ ⁄≊𝑎𝑎𝑎𝑎 can be 
decomposed into two parts as follows:

𝔭𝔭𝔭𝔭 = 𝔭𝔭𝔭𝔭′ ∪ 𝔭𝔭𝔭𝔭′′, 𝑤𝑤𝑤𝑤ℎ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝔭𝔭𝔭𝔭′′ ⊆ ℂ∞ ≊𝑎𝑎𝑎𝑎
�

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝔭𝔭𝔭𝔭′ ⊆ ℂ0 ⁄≊𝑎𝑎𝑎𝑎.          (4.1)

Moreover, decomposition (4.1) is defined 
uniquely for any given property 𝔭𝔭𝔭𝔭.

A model-theoretic property 𝔭𝔭𝔭𝔭 is said to be purely 
infinite if the part 𝔭𝔭𝔭𝔭′ in decomposition (4.1) is empty. 
The property 𝔭𝔭𝔭𝔭 is said to be purely finite if the part 𝔭𝔭𝔭𝔭′′
in (4.1) is empty. Obviously, there are properties 𝔭𝔭𝔭𝔭
for which both parts 𝔭𝔭𝔭𝔭′ and 𝔭𝔭𝔭𝔭′′ in (4.1) are nonempty. 
Purely infinite model-theoretic properties are 
normally considered in traditional model theory. As 
for the purely finite model-theoretic properties, no 
regular view on this concept had been available 
before the definition of a model-theoretic property in 
the work [2] was appeared.

Lemma 4.3. Let 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑 be finite models of 
enumerable signatures such that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) ≅
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔑𝔑𝔑𝔑). Then, we have (∃𝜘𝜘𝜘𝜘𝜘𝜘𝜘𝜘′ ∈
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀)[𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐)〈𝜘𝜘𝜘𝜘〉 ≈𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑)〈𝜘𝜘𝜘𝜘′〉].

Proof. By applying Lemma 3.1 together with 
Lemma 0.1. □

Theorem 4.4. Let 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑 be finite models. The 
theories 𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐) and 𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑) have identical real 

model-theoretic properties if and only if their 
automorphism groups 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔑𝔑𝔑𝔑) are 
isomorphic.

Proof. Part ⇒ is provided by relations (2.1) and 
(1.7)(a) together with an inclusion 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ ⊆ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷 and 
Lemma 4.2. The back implication ⇐ is proved from 
Lemma 4.3 together with relations (1.7)(a) and (2.1).

The following statement characterizes atomic 
purely finite model-theoretic properties.

Theorem 4.5. An arbitrary class 𝔭𝔭𝔭𝔭 of complete 
theories is an atomic purely finite model-theoretic 
property if and only if the following is satisfied for a 
finite group 𝐺𝐺𝐺𝐺:

𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺 =𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 {𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐) | 𝔐𝔐𝔐𝔐 ∈
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  & 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) ≅ 𝐺𝐺𝐺𝐺},

where 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the class of all finite models of 
enumerable signatures.

Proof. By applying Theorem 4.4. □

Conclusion

We used a general specification of the concept of 
a model-theoretic property introduced in [2]. Based 
on separate analysis of cases for finite and infinite 
models, we characterize the structure of real model-
theoretic properties.

Statements of Theorem 4.4 and Theorem 4.5 fully 
characterize the case of model-theoretic properties 
for complete theories with finite models. It is a simple 
fact that elements in a finite model with the trivial 
automorphism group are uniquely defined. Thus, 
such models as well as their theories can be 
considered as a basis for constructing abstract 
databases in applied logic. By Theorem 4.5, all 
models of this class form the only model-theoretic 
property; i.e., they are not distinguishable from the 
point of view of model theory. Thereby, it is possible 
to conclude that the class of all finite models with 
unique elements as well as the corresponding class of 
complete theories is not of interest as a database with 
an interface based on the first-order logic language.
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COMPUTER SIMULATION 
OF VACANCY CLUSTERS CONCENTRATION 

IN TITANIUM IRRADIATED WITH IONS

Abstract. The process of irradiation of metals with ions is an effective method for changing various 
properties of materials, in particular titanium, as well as obtaining new materials. This work is devoted to 
modeling radiation processes in titanium irradiated with ions. Algorithms of cascade-probabilistic functions 
(CPF) computation depending on the number of interactions and the particle penetration deep number for 
various incident particles of the Mendeleev's periodic table in titanium are presented. Approximate value
expressions for cross-sections are chosen, patterns of cooperation cross-sections demeanor, CP-functions 
depending on observation profound, number of interactions, target atomic number, primary particle initial 
energy are noted. Algorithms for calculating the radiation imperfections concentration in ion radiation have 
been developed and computations in titanium in ion radiation have been carried out. With the calculating 
CPF and the depth distribution of vacancy clusters, it is necessary to find the region of the result in which 
these characteristics of the process of formation of radiation defects in solids are exists. Regularities 
obtained when finding this area are formulated. The calculation results in the form of graphs and tables are 
presented.
Keywords: Modeling, algorithm, computation, ion, regularities, approximate value, CPF, cooperation
cross-section, concentration, vacancy accumulations.

Introduction

For metals, ion irradiation is an effective method 
to alter properties such as metal durability, staining
sustainability, weariness, deterioration, etc. At 
present, radiation physics makes a considerable
investment to the development of nanophysics and its 
related application field - nanoelectronics.

In contradistinction to protons, α-particles, 
and electrons, (with energy > 1 MeV), Ion 
particles are able to form cascading regions 
(vacancy accumulations and accumulations of 
inter-node atoms). In contradistinction to protons, 
electrons, and α-particles process of interplay of 
ions with substance and their passing through 
substance is heavier task as during creature of 
physical and mathematical models [1-3]. This can 
be explained by the specific behavior of ions, for 
which the calculation of CPF, PVA spectra, the
concentration of vacancy clusters, and the 
selection of approximations produce many 

features that are eliminated in some way.
Furthermore, with the aid of a definite diversity of 
flyable particles in a particular material it is 
possible to constitute a predefined structure and 
chemical compounds enough stable in a wide 
temperature range [4]. Then the physical and 
chemical properties of these materials will 
change. Therefore, when studying the process of 
ion irradiation of materials, it is necessary to 
consider and solve a block of physical and 
mathematical problems. Many papers have been 
devoted to the study of the interaction of particles 
with matter and the formation of vacancy clusters 
under ion irradiation [5]. The primary part of 
working in this directing is executed within the 
cascade probability way framework [6].

Main results

The probability of transition in n steps for ions is 
written as follows [1]:
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where n – number of cooperation, h', h – Ion 
generation and registration deep, kEa ,,, 00σ –
approximate value factors related to cooperation
mileage and specific energy loss factor, λ0=1/σ0.

Cooperation of cross-sections was calculated 
according to the Reserford formula [1], deep of 
observations were based on spreadsheets of 
parameters of spatial allocation of ion-implanted 
admixture [7]. For ions forming primary- embossed 
atoms, the dependency of the approximate value

function on energy, which in turn depends on the 
profound of penetration, is represented as follows [1]:

( ) ( ) 







−

−
= 11

0
0 khEa

h σσ ,            (2)

Approximating curve dependencies of  σ on h are 
given in figure 1 and in table 1. Agreement of 
approximate value and reference curves is very good.
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Figure 1 – Approximate value of modified section of CPF
for aluminium in titanium E0 = 1000 (1), 900 (2), 800 (3), 

700 (4), 500 (5), 300 (6), 200 (7), and 100 (8) keV. 
Points - Design Section Deep Dependency Data, 

Solid Line – Approximate value

Analysis of the computations shows that the 
approximate value curves of the modified 
cooperation cross-sections are well described by
formula (2), which makes it possible to calculate the 
CP-functions for aluminum in titanium with high
precision. The theoretical correlation ratio ranges 
from 0, 99 to 0.999.

СPF computations were performed according to 
formula (1). All computations were made with 
double accuracy throughout the observation 
profound interval. The outcomes of the computations 
show that СPF, depending on h and on n, have the 

following demeanor: increase, reach the maximum, 
then decrease. The figures show the relationship of 
the aluminum CPF in titanium to the number of 
cooperation (Figures 2, 3) and penetration profound. 
(Figures 4.5).

At CPF computation on computer depending on 
interplays number the following regularities arise:

1. Withal increase in atomic heft of the flyable 
particle the outcome finding area is displaced to the 
area of small deeps concerning h/λ and narrowed.

2. Withal a huge atomic heft of the flyable 
particle the CP-function maximum value is showed 
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to the square of small deeps concerning h/λ already 
with little deeps, and with huge profounds the 
outcome is in particularistic area (less than 1%, 
silver, gold). The narrowest region of the outcome is 

acquired with a big atomic heft of the flyable particle 
and a tiny target at the end of the run and achieves 
hundreds of percent [8, 9]. The computation 
outcomes are given in Table 2.

Table 1 – Approximate value parameters for aluminum in titanium

E0 σ0*108 a E0 k η

1000 0.26338 0.2825 0.67741 385.67808 0.99932 

900 0.29435 0.22033 0.6491 402.34914 0.98702 

800 0.43114 0.18618 919318,00 987.37947 0.99942
700 0.40218 0.19447 0.67386 512.83839 0.99391
500 0.43023 0.19061 0.65982 677.91892 0.98702

300 0.66686 0.2023 0.83022 1384.2892 0.99944 

200 0.56167 0.15111 0.62701 1562.21507 0.9994
100 0.81173 0.10855 0.61751 3138.50145 0.99937
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Figure 2 – CPF 's dependency on the interplays number for aluminum in titanium
at h = 1,5,9,13,17 (* 10-4) cm; E0 = 1000 keV (1-4)
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Figure 3 – Rаtiо of CPF for titanium  cаrbоn at 
deep at E0 = 300 kеV, n= 215; 347; 498; 673 (1-4) 
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at E0 = 1000 keV fоr n = 677; 4704; 13054; 37124 (1-4) 

Table 2 – Left and Right Region Offset Percent Dependency. Outcome from the number of interplays for aluminum in titanium
at E0 = 1000 keV

h∗ 104 , cm B1,% B2,% Nn B3,%
1 26,23 24 23 50,23
3 22,4 2 40 24,4
5 26,2 -8,7 55 17,5
7 32 -20 65 12
9 39 -30.5 78 8.5
11 47,5 -41,2 95 6,3
13 57,6 -53,2 110 4,4
15 70,3 -67,8 135 2,5
17 89,58 -88,96 165 0,62

Similar patterns were revealed in CPF 
computations depending on penetration deep with 
the difference that the area of finding the outcome 

is shifted to the area of greater deeps [9]. The 
outcomes of the computations are shown in 
Table 3.

Table 3 – The percent movement of the left, right edges of the outcome area depends on the penetration deep for titanium aluminum 
at E0 = 1000 keV

h*104 , cm h/λ, cm C1,% C2,% Nh C3,%
1 677 19 31 24 50
3 2373 1 25 60 26
5 4704 -10 26 100 16
7 8031 -18,2 29,8 150 11,6
9 13054 -25,1 32,2 250 7,1
11 21325 -28,9 33 470 4,1
13 37124 -26,9 28,25 470 1,35
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Computation of radiation imperfection
concentration in case of ion radiation is performed by 
formula [10]:

∫=
max2

2200 ),,(),(
E

E
k

c

dEhEEWhEC ,       (3) 

E2 – energy of the primary beaten-out atom, E2max
– Maximum kinetic energy the atom will
receive, Eс – threshold energy, W(E0,E2,h) – 
spectrum of primary - embossed atoms. 

Finding the region of the outcome of the 
concentration of vacancy accumulations in ion 
radiation revealed the following patterns:

1. As the atomic number of the flyable particle
increases, the range of the outcome region is 
significantly shifted to the region of greater depths 
and magnifications, the   concentration value at the 
maximum dot and the concentration values 
themselves are extremely enlarged. 

2. With a huge atomic heft of the flyable particle,
the counting time is greatly increased.

3. Depending on the deep of permeation, the
elementary and final values of the number of 
cooperation is increasing, the interval of the outcome 
square (n0 n1) also increases and сhanges to the 
greater profound area. 

The computations outcomes are given in Figures 
6.7 and Table 4.
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Figure 5 – Dependency of vacancy accumulations concentration on deep 
of titanium radiation with carbon ions

at Е0=800 keV, Ес=50 keV (1), 100 keV (2), 200 keV (3)
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Figure 6 – Dependency of vacancy accumulation concentration
on deep of ion radiation for silver in titanium  
at Е0= 1000, Ес= 50 (1), 100 (2), 200 (3) keV 
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Table 4 - Limits of the radiation imperfections concentration determination area for silver in titanium at Ес=100 keV, Е0= 1000 keV

h*10 4, cm Ск, cm-1 Е0, keV n0 n1 τ

0,01 1462,93 1000 0 25 2″
0,58 1495,87 900 196 444 3″
1,27 1552,12 800 546 925 4″
1,74 1575,49 700 809 1253 5″
2,31 1601,31 600 1152 1669 7″
2,87 1604,77 500 1512 2095 9″
3,42 1563,53 400 1900 2539 14″
3,69 1511,67 350 2083 2765 16″
3,96 1424,11 300 2284 2990 17″
4,07 1374,71 280 2367 3090 20″
4,17 1312,41 260 2444 3174 29″
4,28 1237,09 240 2530 3274 31″
4,38 1141,89 220 2609 3363 31″
4,49 1023,67 200 2697 3466 33″
4,59 871,74 180 2778 3563 23″
4,70 675,75 160 2868 3656 23″
4,80 414,37 140 2951 3747 24″
4,90 56,05 120 3035 3847 25″
5,01 0 100 3129 3948 26″

Conclusion

Thus, the work represents mathematical models 
of cascade-probabilistic functions with considering 
energy losses for ions, an approximate value
expression for the cooperation cross-sections 
calculated from the Reserford formula. Based on the 
models obtained, vacancy accumulation 
concentration models were obtained. Approximate 
value expression was chosen and approximate value
coefficients were found for different flyable particles 
in titanium. Computations of CPF are performed 
depending on cooperation number and particle 
penetration depth for flyable ions in titanium. The 
demeanor patterns in the outcome area are shown. 
The vacancy accumulations concentration has been 
calculated. Patterns of finding the region at the 
vacancy accumulations concentration outcome for 
various flyable particles and target titanium have 
been revealed. 
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CONTROL OF VIBRATIONS 
OF ELASTICALLY FIXED OBJECTS USING 

ANALYSIS OF EIGENFREQUENCIES

Abstract. In this paper, a mathematical model of a controlled system is investigated, created on the basis 
of a fourth-order differential equation widely used in various fields of science and technology. The problem 
of managing the behavior of structural elements has been solved. The mechanism of transition from one 
system to another is considered using the analysis of natural frequencies. The rod can be fixed in different 
ways (termination, hinge locking, elastic termination, floating termination, free end) [1]. If the ends of the 
rod are fixed so that resonant vibration frequencies are generated, then the question arises: is it possible to 
change the fastening of the rod so as to indicate a safe range for controlling the natural frequencies. The 
question posed by us gives rise to many others, more specific. For example, is it possible to determine how 
the ends of the bar are fixed by the natural vibration frequencies of the bar? Are they springs, sealed or 
loose? Such applications are very important especially when the first natural frequency generates a 
resonance situation. It is necessary to control the natural frequencies so that the system does not receive the 
first natural frequency for safe operation. The main result is formulated as a theorem. The stress-strain state 
(SSS) control has been developed for rods with elastic fastening on the left and hinged on the right. The 
uniqueness theorem for boundary conditions is proved using the analysis of natural frequencies.
Key words: elastically fixed objects, natural frequencies, spectral problem. 

Introduction

During the construction of technical structures, 
along with strength management, the issues of stress-
strain state (SSS) management of its individual key 
elements are also important [7], [2], [8], [9]. These 
controls significantly affect the technical condition of 
the entire structure. In this paper, we have developed 
a SSS control for bars with elastic fixing on the left 
and hinged on the right. These systems are used in 
bridge and aircraft structures as parts of 
superstructure beams and floor slabs. Since the 
control of SSS is influenced by the natural 
frequencies of vibrations of the rods, in this work the 
methods of perturbation of the spectral theory of 
differential operators [3], [4-5] are used.

The need to calculate natural frequencies and 
the corresponding vibration modes often arises 
when analyzing the dynamic behavior of a 
structure under the influence of variable loads. The 
most common situation is when, when designing, 
it is required to make sure that there is a low 
probability of occurrence of such a mechanical 
phenomenon as resonance under operating 
conditions. As you know, the essence of resonance 

is in a significant (tens of times or more) 
amplification of the amplitudes of forced 
oscillations at certain frequencies of external 
influences – the so-called resonance frequencies. 
In most cases, the occurrence of resonance is 
extremely undesirable in terms of ensuring product 
reliability. A multiple increase in vibration 
amplitudes at resonance and the resulting high 
stress levels are one of the main reasons for the 
failure of products operated under vibration loads. 
To protect against resonance influences, you can 
use various mechanical devices that fundamentally 
change the spectral characteristics of the structure 
and absorb vibration energy (for example, 
vibration isolators). However, there is another 
effective way to counter resonances. It is known 
that resonances are observed at frequencies close 
to the frequencies of natural vibrations of the 
structure. If, when designing a product, it is 
possible to estimate the spectrum of natural 
frequencies of a structure, then it is possible with a 
significant degree of probability to predict the risk 
of resonances in a known frequency range of 
external influences. In order to avoid or to 
significantly reduce the likelihood of resonances, it 
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is necessary that most of the lower natural 
frequencies of the structure do not lie in the 
frequency range of external influences.

Statement of the problem

We put the inverse to this spectral problem: the 
problem of the natural frequencies of the bending 
vibrations of the bar to find the unknown boundary 
conditions: ( ) 01 =yU , ( ) 02 =yU . Denote the 
matrix composed of the coefficients ija of the forms 

( )yU1 and ( )yU 2 through A and its second-order 
minors – through ijM :

24232221

14131211

aaaa
aaaa

A = ,

ji

ji
ij aa

aa
M

22

11= .

Finding forms ( )yU1 , ( )yU 2 is equivalent to 
finding the matrix A up to linear equivalence . The 
rod can be fixed in different ways (termination, hinge 
locking, elastic termination, floating termination, free 
end) [1].

There are various known cases of fixing the end 
of the rod. [13,14]

Rigid pinching

0010
0001

=A ;

Free support

0100
0001

=A ;

Free end, 

0110
1001

=A ;

Floating termination,

1000
0010

=A ;

Five different types of elastic fastening:

0010
1001c

A = ,
010
0001

2c−
,

0100
1001c

,
010
1000

2c−
,

010
100

2

1

c
c

−

If the ends of the rod are fixed in such a way that 
resonant vibration frequencies are generated, then the 
question arises: is it possible to change the fastening 
of the rod so as to indicate a safe range for controlling 
natural frequencies. 

Before presenting the main results, we recall that 
the equation of bending vibrations of a homogeneous 
rod of length l at 0>,<<0 tlx with constant 
bending stiffness has the form

0,=),(w),(wρ 4

4

2

2

x
txEJ

t
txA

∂
∂

+
∂

∂

where  w(x, t) – deflection of the current point of the 
bar axis;  ρ – material density; A – cross-sectional 
area; EJ – bending stiffness of the bar.  

We denote 
EJ

Aρ
=

2ω
λ As known [14], the 

frequency of bending vibrations of the beam does not 
depend on the initial shape of the beam, but depends 
only on the method of fixing its ends. In the new 
notation, the problem of bending vibrations of a bar 
with elastic fixation on the left and hinge on the right 
by replacement )(sin)(=),(w txytx ω reduces to 
the following spectral problem:

),(=)( xyxy IV λ ,<<0 lx         (1.1)

( ) ,)(
001 ==

′′′=
xx

xyxyc
,0)( =

=lx
xy

,0)(
0
=′′

=x
xy .0)( =′′

=lx
xy (1.2)

Here 1c spring coefficient of elasticity.
The operator corresponding to problem (1.1) –

(1.2) is denoted by )(=)( xyxKy λ . Operator 
eigenvalues K can be numbered in non-decreasing 
order

...321 ≤≤≤ λλλ
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Smallest eigenvalue 1λ is positive, which we will 
show below. Moreover, the choice of the coefficient 
of elasticity of the spring significantly affects the 
behavior of natural frequencies. The system of 
eigenfunctions { }∞=1)( nn xy operator K forms an 
orthonormal basis of the space ( )lL ,02 .

Problem 1.1: Consider the spectral problem of the 
operator B corresponding to the following problem:

),(=)( xuxu IV µ ,<<0 lx          (1.3)

( ) ,)()()(
0

1001 ∫+′′′=
==

l

xx
dxxyxuxuxuc α

,0)( =
=lx

xu ,0)(
0
=′′

=x
xu .0)( =′′

=lx
xu (1.4)

Here ( )xy1 – the first eigenfunction of the 
operator K . The boundary parameter α can take 
complex values.

Select parameter α so that the eigenvalues of the 
operator B was out of range ( )22 ,λλ− .

Operator B can be considered a perturbation of 
the operator K , since only the scope has changed 
( )KD operator K . Such applications are very 

important especially when the first natural frequency 
generates a resonance situation. Another can 
formulate this problem as follows: It is necessary to 
control natural frequencies so that the system does 
not receive the first natural frequency for safe 
operation. Let us state the main result as a theorem.

Theorem 1.1. If you choose α so that the 
inequality

( )01
1

12 y
c

′′′<−
αλλ                (1.5)

then the eigenvalues { }∞=1nnµ operator B determined 

by the formula nn λµ = at 2≥n and 1µ is the only 

real root of the equation 
( )

1

1
1

0
λµ

α
−
′′′

=
y

c .

To prove the theorem, we need the following 
lemma.

Lemma 1.1. Identity is valid

( ) ( ) ( )

( ) ( ) ( )

1 1
0

1
1

1 0 0 0

l

u x y x dx

u u y
c

µ λ− =

 
′′′ ′′′= − + 

 

∫
.

Proof of Lemma 1.1. The right side of the identity 
can be written in the following form

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
0

1 1 1
0 0

1 1
0 0

.

l

l l

l l
IV IV

u x y x dx

u x y x dx u x y x dx

u x y x dx u x y x dx

µ λ

µ λ

− =

= − =

= −

∫

∫ ∫

∫ ∫

Direct calculation shows that the first term is 
equal to

( ) ( )

( ) ( ) ( ) ( ) ( )

1
0

1 1
1 0

1 0 0 0 .

l
IV

l
IV

u x y x dx

u u y u x y x dx
c

=

 
′′′ ′′′= − + + 

 

∫

∫

Taking into account the last relation, we obtain 
the proof of Lemma 1.1.

Lemma 1.1 is proved
2. Proof of the theorem 1.1
To prove the theorem, the perturbed boundary 

condition, taking into account Lemma 1.1, can be 
written in the following form

( ) ( )( )
( )

( ) ( ) ( )( )

1

1
1

1 1

0 0

0
0 0

c u u

y
c u u

c
α
µ λ

′′′− =

′′′
′′′= −

−

. (1.6)

By assumption 1λ is not an eigenvalue of the 
problem (1.3)- (1.4). Therefore ( ) ( )001 uuc ′′′≠ .

Whence it follows that 
( )

1

1
1

0
λµ

α
−
′′′

=
y

c .

Let be ( )01
1

11 y
c

′′′+=
αλη и ( ) 121

"

0 λλα
−>′′′y

с
.

Then 21 λη > .
Let us calculate the characteristic determinant [6] 

of the operator B .
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Let us calculate the characteristic determinant [6] 
of the operator K determined by the formula

( ) ( ) ( )
( ) ( ) ( ) ( )( )

4 4

4 4 4 41
34

2cos cosh

sin cosh cos sinh

l l

c l l l l

λ λ λ

λ λ λ λ
λ

∆ = −

− −
.

At 01 =c The characteristic determinant was 
cleared in detail in [6].

For different values graphic way possible to 
ensure that the smallest eigenvalue 1λ is positive..
From relations (1.6) it follows that the perturbed 
boundary condition takes the form

( ) ( ) ( )( ) 0001 =′′′−uucf µ ,

where  ( ) ( )
( )11

1 0
1

λµ
α

µ
−
′′′

−=
c

y
f .

Taking into account the last relations, we 
calculate the explicit form of the characteristic 
determinant of the operator B

( ) ( ) ( )λµµ 0∆=∆ f .

where 0∆ characteristic determinant of the operator 
K .

The last representation implies the proof of the 
theorem.

Conclusion

The study of inverse problems in the spectral 
theory of differential operators dates back to the 
fundamental works of the twenties and forties of the 
twentieth century. The impetus for the development 
of this direction was the work of V.A. 
Amburtzumyan and G. Borg. A significant 
contribution to the formation of this direction was 
made by A.N. Tikhonov, M.I. Gelfand, N. Levinson, 
M.G. Crane, B.M. Levitan, V.A. Marchenko, M.G. 
Gasimov, V.A. Sadovnichy, V.A. Yurko, Gladwell 
G.M.L. other. In the works of these authors, the 
coefficients of the boundary conditions (and not all) 
were identified from the spectra only incidentally 
with the coefficients of the differential equations 
themselves. In this case, not one, but two or more 
spectra, or a spectrum and additionally other spectral 
data, were used for identification.

In this paper, a mathematical model of a 
controlled system is investigated, created on the basis 
of a fourth-order differential equation widely used in 
various fields of science and technology. The 
problem of managing the behavior of structural 
elements has been solved. The mechanism of 
transition from one system to another is considered 
using the analysis of natural frequencies.

Also, in this work, the SSS control is developed 
for rods with elastic fastening on the left and hinged 
on the right. These systems are used in bridge and 
aircraft structures as parts of superstructure beams 
and floor slabs. Since the control of SSS is influenced 
by the natural frequencies of vibrations of the rods, in 
this work we use the methods of perturbation of the 
spectral theory of differential operators.
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LATTICE- BOLTZMANN METHOD
FOR SIMULATING TWO-COMPONENT FLUID FLOWS

Abstract. In this work, a model of binary fluids with different densities and viscosities based on the solution 
of the Navier-Stokes equations, the continuity and the Cahn-Hilliard equation is developed. The process of 
influence of surface tension and interface thickness on the phase fields of fluids is investigated. The 
numerical results of the study are obtained on the basis of a phase field model using the lattice Boltzmann 
method (LBM). The LME uses two sets of distribution functions for incompressible flow: one for tracking 
the pressure and velocity fields and the other for the phase field. The use of the pressure distribution function 
can significantly reduce the effect of numerical errors in calculating the interfacial force. A several 2D tests 
are carried out to demonstrate the validation, which included droplet problem and the Raleigh- Taylor 
instability. It is shown that the proposed method allows tracking the interface with high accuracy and 
stability.
Key words: phase field, binary fluid, surface tension, chemical potential, lattice Boltzmann method.

Introduction

Numerical modeling of multiphase fluid flows 
plays an important role in solving many applied 
scientific and engineering problems, including, for 
example, oil and gas production, chemical processing 
of raw materials, and steam-water mixture flows in 
boilers and condensers. In recent years, more and 
more attention has been paid to such problems due to 
their importance for the development of digital 
microfluid and the development of the laboratory of 
liquid crystals, gels, suspensions, and also some other 
technologies. Thus, the study of multiphase fluid 
flows is an urgent task today.

Interface tracking is widely used in two-phase 
flow models, which can be divided into two 
categories: sharp interface methods such as volume-
of-fluid methods, level-sets and front-tracking 
methods, diffuse interface methods. The diffuse 
interface approach [1] has some advantages over the 
others in terms of maintaining mass conservation and 
in the ability of resolving interface curvature with 
higher accuracy. The main idea of diffuse interface 
models is to replace sharp interfaces with transition 
regions of a thin but nonzero layer of thickness, 
where density, viscosity and other physical quantities 
smoothly change from the values of one fluid to the 
values of another.

Among diffuse interface methods, the phase field 
method [4-5] has become a widely used method in 

traditional computational fluid dynamics (CFD) and 
lattice Boltzmann equations (LBM) methods for 
numerical investigation of complex interphase 
dynamics. In the phase field method, the 
thermodynamic behavior of liquids is expressed 
using the free energy functional of the continuous 
order parameter [2], which acts as a phase field to 
distinguish between two-phase fluids. The phase 
separation equation is formulated for the order 
parameter that defines the Cahn-Hilliard equation
[13].

The concept of a diffuse interface was first 
proposed by [7], but it has gained popularity only 
in recent years as a tool for the numerical 
simulation of two-phase flows. There are many 
works on the study of multiphase models using 
various numerical methods [9-12]. The motion of 
a two-dimensional droplet using a stepwise 
wettability gradient (WG) was studied in [3].
Also, the diffuse boundary method for simulating
the phase separation of complex viscoelastic 
fluids was investigated in [6] and a model of a 
binary fluid with free energy for the three-
dimensional Bretherton problem (flow between 
parallel plates) performed in [8]. All of these 
works have a different modeling approach for 
boundary tracking and phase separation of liquids 
with different densities and viscosities. The main 
difference between these works is the choice of 
methods for numerical implementation.
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In this paper, we introduce multiphase flow 
model for incompressible binary fluids, when 
interface between the different phases is tracked by 
LBE. To simulate phase interface, we derive free-
energy based phase field method. To distinguish 
transition between different phases we set order of 
parameter 𝜙𝜙𝜙𝜙. Also we obtain the numerical 
implementation of influence surface tension force (𝜎𝜎𝜎𝜎)
and interface thickness (𝑊𝑊𝑊𝑊) on the phase field.

Statement of the problem

To check the numerical algorithm, the results 
obtained within the framework of solving this 
problem were compared with the results obtained 
experimentally, which showed good agreement.

A mixture of two immiscible incompressible 
fluid in a rectangular region Ω with densities 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴,𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵
and dynamic viscosity 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴,𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵 is considered (Figure 
1). For the computational domain, a two-dimensional 

rectangle with the corresponding dimensional para-
meters was taken: 𝑥𝑥𝑥𝑥 ∈ [0,1], 𝑦𝑦𝑦𝑦 ∈ [0,1]. In the center 
of the area 𝑥𝑥𝑥𝑥 ∈ [0.2, 0.8] ,𝑦𝑦𝑦𝑦 ∈ [0.4, 0.6] is situated a
liquid drop with density 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴 and viscosity 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴.

To distinguish the two different fluids, the order 
of parameter (phase field function) is introduced

𝜙𝜙𝜙𝜙 = �
𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴,   𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 А
𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵 ,   𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 В

For a system of binary fluids, the Landau free 
energy function 𝐹𝐹𝐹𝐹 can be defined on the basis of 𝜙𝜙𝜙𝜙
as:

𝐹𝐹𝐹𝐹(𝜙𝜙𝜙𝜙,∇𝜙𝜙𝜙𝜙) = ∫𝑉𝑉𝑉𝑉[Ψ(𝜙𝜙𝜙𝜙) +
𝑘𝑘𝑘𝑘
2

|∇𝜙𝜙𝜙𝜙|2]𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑

where Ψ(𝜙𝜙𝜙𝜙) –the bulk free energy density, for an 
isothermal system the following form can be used
Ψ(𝜙𝜙𝜙𝜙) = 𝛽𝛽𝛽𝛽(𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴)2(𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵)2, 𝑘𝑘𝑘𝑘 – is the 
coefficient of surface tension, 𝛽𝛽𝛽𝛽 – is the coefficient 
depending on the interface thickness and the surface 
tension force.

Figure 1 – Computational domain of bubble immersed in liquid

The basic equations for the phase field consist 
of the continuity equation, the momentum 

equation for the mixture and the covective Cahn-
Hillart equation:

𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

+
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

= 0

𝜌𝜌𝜌𝜌(
𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

) = −
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

− 𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

+ 𝜂𝜂𝜂𝜂 �
𝜕𝜕𝜕𝜕2𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

+
𝜕𝜕𝜕𝜕2𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

�

𝜌𝜌𝜌𝜌(
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

) = −
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

− 𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

+ 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜂𝜂𝜂𝜂 �
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

+
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

�

H

L

𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵
𝜙𝜙𝜙𝜙А

Ω
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𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕(𝜙𝜙𝜙𝜙𝑓𝑓𝑓𝑓)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

+
𝜕𝜕𝜕𝜕(𝜙𝜙𝜙𝜙𝜕𝜕𝜕𝜕)
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

= 𝑀𝑀𝑀𝑀(
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

+
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

)

where u,v – are the velocity components, 𝑝𝑝𝑝𝑝 – is the 
pressure, 𝜌𝜌𝜌𝜌 = 𝜙𝜙𝜙𝜙−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵

𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵
𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴 + 𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙

𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵
𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵  – is the density,

here 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴,𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵 – are the density of fluids, 𝜂𝜂𝜂𝜂 =
𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵(𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵)

(𝜙𝜙𝜙𝜙−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵)𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵+(𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙)𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴
, here 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴 = 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴𝜗𝜗𝜗𝜗𝐴𝐴𝐴𝐴, 𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵 = 𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵𝜗𝜗𝜗𝜗𝐵𝐵𝐵𝐵 –

are the dynamic viscosity, 𝜗𝜗𝜗𝜗𝐴𝐴𝐴𝐴,𝜗𝜗𝜗𝜗𝐵𝐵𝐵𝐵 – are the kinematic 
viscosity, 𝜙𝜙𝜙𝜙 −  is the phase field function ,𝜌𝜌𝜌𝜌 – is
the acceleration of gravity, 𝑀𝑀𝑀𝑀 – is the mobility 
coefficient, 𝜕𝜕𝜕𝜕- is the chemical potential, 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥 = −𝜙𝜙𝜙𝜙 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
,

𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦 = −𝜙𝜙𝜙𝜙 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

are the surface tension force, 𝐹𝐹𝐹𝐹𝑏𝑏𝑏𝑏 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 is 
the acceleration force.

The variation of the free- energy function F with 
respect to the function 𝜙𝜙𝜙𝜙 is solving chemical potential 
μ as :

𝜕𝜕𝜕𝜕 =
𝛿𝛿𝛿𝛿𝐹𝐹𝐹𝐹
𝛿𝛿𝛿𝛿𝜙𝜙𝜙𝜙

=
𝑓𝑓𝑓𝑓Ψ
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

− 𝑘𝑘𝑘𝑘∇2𝜙𝜙𝜙𝜙 =

= 4𝛽𝛽𝛽𝛽(𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴)(𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵)(𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴+𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵
2

) − 𝑘𝑘𝑘𝑘∇2𝜙𝜙𝜙𝜙 ,

where 𝑊𝑊𝑊𝑊 = 1
|𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵|�

8𝑘𝑘𝑘𝑘
𝛽𝛽𝛽𝛽

- is the interface thickness, 

𝜎𝜎𝜎𝜎 = |𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵|3

6 �2𝑘𝑘𝑘𝑘𝛽𝛽𝛽𝛽 – is the surface tension force.
The system of equations has the following initial

and boundary conditions:

𝑓𝑓𝑓𝑓 = 0, 𝜕𝜕𝜕𝜕 = 0,𝜙𝜙𝜙𝜙 =

= � 𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴,   𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 ∉ Ω
𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵, 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 ∈ Ω  𝑎𝑎𝑎𝑎𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 = 0, 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝐿𝐿𝐿𝐿, 0 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝐻𝐻𝐻𝐻

𝑓𝑓𝑓𝑓 = 0, 𝜕𝜕𝜕𝜕 = 0,
𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

=
= 0  𝑎𝑎𝑎𝑎𝜕𝜕𝜕𝜕 𝑥𝑥𝑥𝑥 = 0 и 𝑥𝑥𝑥𝑥 = 𝐿𝐿𝐿𝐿 , 0 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝐻𝐻𝐻𝐻

𝑓𝑓𝑓𝑓 = 0, 𝜕𝜕𝜕𝜕 = 0,
𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

= 0 𝑎𝑎𝑎𝑎𝜕𝜕𝜕𝜕 𝑦𝑦𝑦𝑦 = 0 

и 𝑦𝑦𝑦𝑦 = 𝐻𝐻𝐻𝐻, 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝐿𝐿𝐿𝐿

Numerical method

We use the lattice Boltzmann equation (LBE) to
describe the motion of binary fluids. For this case, the
collision term LBM in a two-dimensional square
lattice with nine velocities (D2Q9) was used. The
lattice Boltzmann equation in the Batnagar-Gross-
Krook (BGK) [15] approximation is as follows:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖Δ𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =

= −�
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)
𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓

� + (1 −
Δ𝜕𝜕𝜕𝜕
2𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓

)𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)Δ𝜕𝜕𝜕𝜕

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖Δ𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) − 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =

= −�
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) − 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)
𝜏𝜏𝜏𝜏𝜙𝜙𝜙𝜙

� +

+Γ[𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖Δ𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕) − 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)]

where 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ,𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 – are the velocity and phase field
distribution function respectively, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖- is a discrete
lattice velocity, 𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓 , 𝜏𝜏𝜏𝜏𝜙𝜙𝜙𝜙- are the relaxation time for the
velocity and phase field respectively, 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖- is a force
term, Γ = 2𝜏𝜏𝜏𝜏𝜙𝜙𝜙𝜙 − 1 constant controlling the mobility,

t∆ - is a time step, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 – are the equilibrium
distribution function for the velocity and phase field
respectively.

The equilibrium distribution functions are
introduced as following:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

=

⎩
⎪
⎨

⎪
⎧ −(1 −𝑤𝑤𝑤𝑤0)

𝑝𝑝𝑝𝑝
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
− 𝑤𝑤𝑤𝑤0

𝑓𝑓𝑓𝑓 ∙ 𝑓𝑓𝑓𝑓
2𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

 , 𝑓𝑓𝑓𝑓 = 0

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝 + 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 �
𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

+
(𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑓𝑓)2

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠4
−
𝑓𝑓𝑓𝑓2

2𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
� , 𝑓𝑓𝑓𝑓 ≠ 0

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧𝜙𝜙𝜙𝜙 −

(1 − 𝑤𝑤𝑤𝑤0)Γ𝜕𝜕𝜕𝜕
(1 − Γ)𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

 , 𝑓𝑓𝑓𝑓 = 0

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖
Γ𝜕𝜕𝜕𝜕 + (𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓)𝜙𝜙𝜙𝜙

(1 − Γ)𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
 , 𝑓𝑓𝑓𝑓 ≠ 0

where 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 = 1
3

- is a lattice sound speed, 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜌𝜌𝜌𝜌 +

𝛽𝛽𝛽𝛽(−1
2
𝜙𝜙𝜙𝜙2 + 3

4
𝜙𝜙𝜙𝜙4) - is a pressure of a mixture.

For the D2Q9 model, discrete velocities are 
calculated as:

𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 = (0,1,1,0,−1,−1,−1,0,1)𝑐𝑐𝑐𝑐

𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 = (0,0,1,1,1,0,−1,−1,−1)𝑐𝑐𝑐𝑐
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The values of the weighting parameters are 
defined as:

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

4
9

               𝑓𝑓𝑓𝑓 = 0

1
9

       𝑓𝑓𝑓𝑓 = 1,2,3,4

1
36

         𝑓𝑓𝑓𝑓 = 5,6,7,8

In this paper, the scheme proposed by Guo et al.
[14] is used to approximate the external force in the
LBM:

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = �1 −
1

2𝜏𝜏𝜏𝜏
�𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 �3

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

+ 9
𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠4

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖� 𝐹𝐹𝐹𝐹

where, 𝐹𝐹𝐹𝐹 = (𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦 + 𝐹𝐹𝐹𝐹𝑏𝑏𝑏𝑏)
The evolution equation is divided into two steps,

collision and propagation:

1. 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖∗(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) − Δ𝑡𝑡𝑡𝑡
𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓
�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) −

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)� + (1 − Δ𝑡𝑡𝑡𝑡

2𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓
)𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)Δ𝜕𝜕𝜕𝜕

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖Δ𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖∗(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)
2. 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖∗(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) − 𝑡𝑡𝑡𝑡

𝜏𝜏𝜏𝜏𝜙𝜙𝜙𝜙
(𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) −

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕))

3. 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖Δ𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) = 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖∗(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)

After the second step, we update the macroscopic 
parameters (density, phase field, velocity) using the 
following formulas:

𝜌𝜌𝜌𝜌 = ∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜌𝜌𝜌𝜌𝑓𝑓𝑓𝑓𝛼𝛼𝛼𝛼 = ∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝛼𝛼𝛼𝛼 + 𝐹𝐹𝐹𝐹∆𝑡𝑡𝑡𝑡
2

,𝑖𝑖𝑖𝑖 𝜙𝜙𝜙𝜙 = ∑ 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

The following boundary conditions were used to
close the system of equations.

Zero velocity condition for all walls:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) = 𝑓𝑓𝑓𝑓−𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕),
𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ∙ 𝑛𝑛𝑛𝑛 > 0,

Neumann condition for phase filed on all walls:

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) = 𝜌𝜌𝜌𝜌−𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕),
 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ∙ 𝑛𝑛𝑛𝑛 > 0,

Numerical results and discussions

First we performance, the numerical calculations
of problem where, a stationary droplet immersed in
another fluid. This task is used to assess the capability
of the proposed model in handling the surface force.
Initially, a round drop with a radius of 20 (in lattice
units) is placed in the center of a square
computational domain with a size of 100x100.

Table 1 – Modeling parameters

Parameters Physical parameters LBM parameters
Characteristic length 𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.01

Number of points by 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 𝑁𝑁𝑁𝑁𝑥𝑥𝑥𝑥 ×  𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦 = 128 × 256

Kinematic viscosity 𝜗𝜗𝜗𝜗 =
𝜂𝜂𝜂𝜂
𝜌𝜌𝜌𝜌 𝜗𝜗𝜗𝜗 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2(𝜏𝜏𝜏𝜏 −

1
2)
∆х2

Δ𝜕𝜕𝜕𝜕

Characteristic time 𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝐴𝐴𝐴𝐴𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2(𝜏𝜏𝜏𝜏 −

1
2)
∆х2

𝜗𝜗𝜗𝜗

Maximum velocity 𝑈𝑈𝑈𝑈𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0,31305 𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙 = 𝑈𝑈𝑈𝑈𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢

, 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 = Δ𝑥𝑥𝑥𝑥
Δ𝑡𝑡𝑡𝑡

Mixture density 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 800,  𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 600 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴 =
𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
,𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵 =

𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Dynamic viscosities of fluids 𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐵𝐵𝐵𝐵 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.02, 𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.01 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴 = 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜂𝜂𝜂𝜂𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵 = 𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜂𝜂𝜂𝜂𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Model parameters are set as: 𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓 = 𝜏𝜏𝜏𝜏𝜙𝜙𝜙𝜙 = 1,𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴 =
1,𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵 = −1,𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴 = 1,𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵 = 0.7. The basic
dimensionless parameters for the droplet problem are
shown in table 1.

The time step was taken ∆𝜕𝜕𝜕𝜕 = 0.0001 seconds.
In numerical simulation, when interface width𝑊𝑊𝑊𝑊 and

the surface tension σ are given, the coefficients 𝑘𝑘𝑘𝑘 and
𝛽𝛽𝛽𝛽 can be determined as follows:

𝑘𝑘𝑘𝑘 = 3𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎
8

,𝛽𝛽𝛽𝛽 = 3𝜎𝜎𝜎𝜎
4𝜎𝜎𝜎𝜎
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The numerical solution showed that with 
decrease the coefficient  𝜎𝜎𝜎𝜎 of surface tension, leads to 

decrease a chemical tension of the phases, as shown 
in Figure 2.

t= 0 t= 1.3

Figure 2 – The dynamics of the change in the shape of a drop in a fluid at different time
for 𝜎𝜎𝜎𝜎 = 0,01,𝑊𝑊𝑊𝑊 = 1. The time normalized by characteristic time 𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

t= 0 t= 1.3

Figure 3 – The dynamics of the change in the shape of a drop in a fluid
at different time for  𝜎𝜎𝜎𝜎 = 0,001,𝑊𝑊𝑊𝑊 = 1. The time normalized by characteristic time 𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Figure 3 shows when surface tension 𝜎𝜎𝜎𝜎 is 
decrease , the force of surface attraction decreases 
and the shape of the drop does not change. In 
addition, with an increase interface thickness 
coefficient 𝑊𝑊𝑊𝑊, the surface tension 𝛽𝛽𝛽𝛽 decreases, which 
contributes to a more rapid formation of a ball-like
shape, as shown in Figure 4.

To further demonstrate the ability of this model 
to solve more complex flows, we simulated the 
Rayleigh-Taylor instability, which occurs when there 
is a small disturbance at the interface between a 
heavy (fluid A) and a light fluid (fluid B).

The basic dimensionless parameters for the 
Rayleigh-Taylor instability problem are shown in 
table 1. The initial interface between the two fluids is 
shown in Figure 5 (t=0). Reflection boundary 
conditions are applied to the lower and upper 
boundaries, and periodic boundary conditions are 
applied to the side boundaries. In our simulations, the 
physical parameters are fixed as:

𝑈𝑈𝑈𝑈𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.04, 𝑊𝑊𝑊𝑊 = 4, 𝜎𝜎𝜎𝜎 = 0.1,

 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒 = 𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝑈𝑈𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜂𝜂𝜂𝜂 𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

, 𝐴𝐴𝐴𝐴𝜕𝜕𝜕𝜕 = 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= 0.1
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t= 0 t= 1.3

Figure 4 – The dynamics of the change in the shape 
of a drop in a fluid at different time for   𝜎𝜎𝜎𝜎 = 0,01,𝑊𝑊𝑊𝑊 = 4

t=0 t=0.4 t=0.5

t=0.7 t=0.8 t=0.9

Figure 5 – Dynamics of concentration separation in the fluid phase at different times
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In the early stages, the growth of the fluid
interface remains symmetrical up and down. Later, 
the heavy liquid settles down, and the light fluid rises, 
forming bubbles. Starting from t = 0.4 (Fig. 5), the 
heavy fluid begins to curl up into two oncoming 
vortices. These discontinuities disappear over time, 
as at t = 0.7 , the Rayleigh-Taylor instability appears. 
At t = 0.9 , it can be seen that the heavy fluid has 
completely settled, and the light fluid has gone up. 
Thus, the problem of the Rayleigh-Taylor instability 
describes well the process of settling of a heavy fluid.

The problem was also solved for the case when
𝐴𝐴𝐴𝐴𝜕𝜕𝜕𝜕 = 0.1428, 𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓 = 0.8, 𝜎𝜎𝜎𝜎 = 0, 01, 𝑊𝑊𝑊𝑊 = 2. Below in 
Figures 6- 8 the simulation result is shown, which 
illustrates the dynamics of concentration separation 
of a mixture of heavy and light liquids at different 

times: Figure 6 - for times t = 0; 0.2; 0; 32; 0.36 (from 
left to right, respectively); Figure 7 - t = 0.4; 0.5; 0.56; 
0.6 (left to right, respectively); Figure 8 - t = 0.64; 
0.72; 0.74; 0.8 (left to right, respectively). It can be 
seen from the figures that for the case when a more 
viscous liquid is considered (the separation boundary 
of the mixture components is thinner), a slower 
process of establishing equilibrium is observed - over 
time, first the formation of vortices occurs, then a 
rupture of the interface of the liquid boundaries is 
observed, the formation of separate structures of a 
fluid of higher density occurs inside a fluid of lower 
density, the formation of bubbles, the boundary of 
which breaks over time, equilibrium is established 
due to the chemical velocity of attraction of the 
phases.

Figure 6 – Dynamics of concentration separation 
in the fluid phase at different times
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Figure 7 – Dynamics of concentration separation in the fluid phase at different times

Figure 8 – Dynamics of concentration separation in the fluid phase at different times
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Thus, a mathematical model has been developed 
for the separation of components of binary fluids with 
different density and viscosity. A 2D numerical 
algorithm based on the D2Q9 model of the lattice 
Boltzmann method to simulate a multiphase flow of 
an incompressible fluid in a bounded rectangular 
cavity is developed. For incompressible flow, two 
sets of distribution functions are used: one for 
tracking the pressure and velocity fields, and the 
other for the phase field. The use of the pressure 
distribution function makes it possible to 
significantly reduce the effect of numerical errors in 
calculating the interfacial force. Numerical modeling 
was carried out for the two-dimensional Rayleigh -
Taylor instability and for the fluid droplet problem. 
The main conclusion of this problem can be 
considered the following: if the thickness interface 
between two immiscible fluids is large, then spherical 
drops appear faster than in the case when the 
boundary is thin. In addition, by implementation of 
the developed mathematical model, the process of 
mass transfer of two fluids of different density and 
viscosity in a given area is clearly shown. 
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STUDY NEUTRON EMISSION IN PLASMA FOCUS DEVICE  

BY SILVER ACTIVATION METHOD  
 
 

Abstract. Dense Plasma Focus machine may be suitable for fusion first wall studies and its related material 
researches. As is well-known plasma focus devices are sources of high energy ions, electrons, x-rays and 
neutrons and intense bursts of fast plasma streams. In this paper, experimental measurements of neutron 
emission and hard x-ray emission from the plasma focus device are presented. The measurement of neutron 
and hard x-ray emission is studied using silver activation counter detector with two different dimensions 
Pb shielding and two scintillator photomultiplier detector systems. The research paper reported that the 
experimentally detected neutron emission in the radial direction where focus occurs also evaluated neutron 
fluency at different distances. The results show that neutron emission with different intensities and pulse 
width. Silver detector registered neutrons in the range 106-107 n/shot in the radial direction. The maximum 
neutron yield is 1.7×107 neutrons per shot. 
Key words: neutron yield, plasma focus, X-ray, shielding, silver foil, photo multiplier tube. 

 
 
Introduction 
 
The dense plasma focus or simply the plasma 

focus is a device that can induce nuclear reactions 
using electromagnetic force generated between 
electrodes. The phenomenon of "plasma focus" was 
discovered independently in the middle of the 
twentieth century by N.V. Filippov (USSR) [1] and 
J. Mather (J. Mather, USA) [2] in the studies 
conducted under the program of controlled 
thermonuclear fusion. Plasma focus attracted the 
attention of researchers when the working chamber 
was filled isotope of hydrogen–deuterium, the 
intensity of accelerated (fast) ionic and electronic 
particles inside the chamber generates a powerful 
short pulse of fast neutrons and X-rays.   

It is well known that neutron is an uncharged 
particle and does not interact directly with the 
electrons of matter and hence it is difficult to detect 
it directly. Therefore to detect neutrons it is necessary 
to use indirect methods such as recoil technique or 
nuclear reactions. The foil activation technique is 
also used for detecting neutron [3]. In this technique 
the neutron is allowed to be absorbed by the nucleus 
to from a compound nucleus. The measure of 
particles emitted from the compound nucleus such as 
beta or gamma radiation. The method of foil 

activation by neutrons is one of the best methods to 
measure neutron flux [5,6].  

The Neutron activation method and silver 
activation detectors are widely used in measurements 
of neutron yield and neutron flux parameters in 
plasma focus. In practice, it is the only method that 
allows measurements of neutron field parameters in 
a wide energy range (from thermal to 20 MeV) [9]. 
The activation method is widely used as a diagnostic 
technique for neutron yield registered in pulsed 
thermonuclear sources. In early plasma focus (PF) 
research papers [4-7], activation of Silver foil has 
been used and the so-called silver activated Geiger 
counter is the most known and accuracy detector. In 
PF devices, depending on the filling gas, neutrons 
from D−D reactions are produced with typical 
energies of 2.45MeV. Silver activation detectors are 
usually converted fast neutrons to thermal neutrons. 
Nonetheless, activation by fast neutrons could be 
used as the Indium or Beryllium counters when 
neutron intensity is high enough, typically higher 
than 108 n per source pulse [8].   

The use of plasma focus in thermonuclear 
reactors was considered in [4,6]. The present-day 
level of understanding of these processes opens new 
perspectives for creation of a fusion reactor based on 
the new data. Therefore, it is necessary to study the  
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possibility of creating an alternative type of 
thermonuclear reactor at the plasma focus 
installations and to conduct experiments on existing 
installations. Experimentally measurements of the 
neutron yield and use it modern technology an 
essential and important part of our research. In this 
paper, the problem is posed experimentally to 
measure neutron yield by activation method. 

 
Method of investigation  
 
The experiment was carried out plasma focus PF-

4 which cylindrical coaxial electrodes: anode and 
cathode (length of anode and cathode 33 mm and 38 
mm respectively). The insulator used is a 31 mm long 
ceramic. The energy storage system of the PF-4 
includes a capacitor bank of capacitance 20 F with 
a working voltage of 10–20 kV and 2.6–280 nH [7, 
9]. High voltage is switched using a controllable 
discharger (air-filled). The results in this work were 
obtained by charging the capacitor bank at 14-18 kV. 
To study the characteristics of neutron emission we 
used activation detectors which were previously 
calibrated with an Am–Be source and a 
photomultiplier tube (PMT) with a plastic 
scintillator.  

A typical neutron activation detector consists of 
a block of a hydrogen-containing fast neutron 
moderator, inside which a silver foil is placed. The 
silver foil is wrapped around the Geiger counter, 
which registers β- activity induced by slow neutrons. 
This type of sensor has a relatively large “dead time” 
(~100 µs). Let the detector be irradiated with fast (2.5 
MeV) neutrons from a constant source of intensity I 
(neutron/s), located at the point from which the 
detector is visible at a solid angle Ω. After the 

irradiation process, the activity of the wrapped 
foil A(t2) will be equal to [7,10]: 
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where  is the coefficient of proportionality 
characterizing the efficiency of registration of  
particles by the Geiger counter, T is the radioactivity 
relaxation time,  is the activation cross-section, d is 
the activated plate thickness(d 1),  is the 
detector efficiency, t1 is the radiation time of the foil, 
t2 is the time interval between the end of irradiation 
and start of counting, t  is the measurement time, I 
is the intensity of the neutron source,   is a solid 
angle at which the detector is visible from the point 
where the pulsed neutron source is formed, N is the 
number of pulses, Y is the neutron yield. 

 
Results and Discussion 
 
To measure the neutron flux in the radial 

direction silver activation detectors were located at 
distances at 16 cm and 26 cm. The centers of the 
detectors were placed at the same height and were 
shielded by the lead sheet of thickness 1.2 mm and 
2.5 mm to avoid activation by hard x-rays. We 
evaluated the angular differential neutron yields at 
the distances of 16 cm and 26 cm from the electrode 
where compression of plasma occurs. The 
comparison of the neutron yields is shown in Fig. 1.
 

 

 
                                                     a                                                                                              b 

 
Figure 1 – Neutron yield and neutron fluence in the radial direction 

 at the distance of 16 cm and 26 cm: a – without shielding, b – with shielding 
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The maximum neutron yield Y in the present case 

roughly matches the scaling law Y~I4 (I in kA) 
proposed by early researchers [7]. To evaluate the 
dependence of the neutron emission on the filling gas 
pressure, the neutron signals (PMT) and neutron 
counts (by SAC) were recorded by varying the filling 
gas pressure from 2 to 10 Torr. The neutron emission 
reduces dramatically with variation in pressure in the 

experimental device. This might be explained by the 
fact that with an increase in pressure, the role of the 
beam mechanism in the neutron production decreases.  

Two scintillator-photomultiplier systems have 
been used for hard X-ray and neutron measurement. 
The temporal evolution in neutron and X-ray pulse 
with respect to the dI/dt dip was obtained using PMT 
(Fig. 2).

  
 

a b 
 

Figure 2 – Typical neutron signal obtained by PMT:  
a – weak neutron and strong hard X-ray signals without lead sheet;  

b – strong neutron and weak hard X-ray signal capture with lead sheet 
 

 
The PMT was placed at distances 1.5 and 1.9 

meters away from the tip of the central electrode in 
its radial direction. It is noted that both PMT signals 
give two distinct pulses as shown in Fig.2. The first 
pulse in both PMT signals appears at the same time, 
while the second pulses appear with a time difference 
of around 100 ns. From this observation, one can 
conclude that the first pulse is due to hard X-ray 
emission, as it appears at the same time in both 
signals. The generation of this hard X-ray is due to 
the bombardment of the anode surface by an 
energetic electron beam [11-12]. The second pulse is 
thought to be a result of emission of an energetic 
particle as it took time to reach the PMT. Since the 
particles penetrated the plasma focus chamber wall, 
it must be due to neutron emission. To make the 
results more precise, both detectors had shielding (Pb 
filters) of thickness 1.2 mm and 2.5 mm in front of 
the PMT and their signals were monitored. The 
shielding considerably reduced the first pulse leaving 
the second pulse almost the same. The shielding of 
thickness 1.2 mm can significantly attenuate hard X-
rays, but the attenuation is insignificant for the 
neutron (Fig.2c). In some of the PMT signals, it is 
observed that the neutron pulse is very intense in 
amplitude with a small pulse of hard X-ray, while in 
some cases, the opposite result is obtained, i.e. a 

small neutron pulse with an intense hard X-ray pulse 
(Fig.2a and 2b). 

 
Conclusion 
 
The neutron emission has been studied using a 

PF-4 device operating in the deuterium medium by 
using PMT and a silver foil detector. The results 
show two pulses of neutron emission with different 
intensities and pulse width. Depending on the relative 
proportion of ion and electron currents or time of 
their existence the PF device will emit more intense 
hard X-ray or more intense neutron pulse. The 
neutron emission is found to be strongly dependent 
on the operating pressure and it was the highest at 
around 7,5-8 Torr. The corresponding pinching time 
is observed near the maximum of discharge current 
and thus transfers the maximum energy into the 
plasma. Therefore, the neutron emission is the 
highest at this pressure. The maximum neutron yield 
of 1,7 ×107 neutrons per shot has been achieved for 
the silver detector. These experiments detected 
neutrons in the range 106-107 n/shot in the radial 
direction. The measurement of neutron fluency 
(2·106-1.7·107 n/cm2) at different distances from the 
pinch in the radial direction shows that the DD 
neutrons are mainly emitted in the axial direction. In 
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our case, the registered particles were 6.4×106 – 
1,4×107 neutrons per shot and velocity 2,625-8,75 
cm/μs. The obtained results can use experimental 
study basic problems for all fusion facilities. 

 
References  
 
1  J. Mather. “Investigation of the high-energy 

acceleration mode in the coaxial gun”, Physics of 
Fluids 7, (1964). 

2  N. Filippov, T. Filippova, V. Vinogradov. 
“Dense high-temperature plasma in a non-cylindrical 
z – pinch compression”, Plasma, (1962). 

3  N.V. Filippov, T.I. Filippova, I.V. Khuto-
retskaia, V.V. Milton, V.P. Vinogradov. “Megajoule 
Scale Plasma Focus as Efficient X-ray Source”, 
Physics Letters A, 211 (1996). 

4  J.M. Koh, R.S. Rawat, A. Patran, T. Zhang,  
D. Wong, S.V. Springham, T.L. Tan, S. Lee and P. 
Lee “Optimization of the high pressure operation 
regime for enhanced neutron yield in a plasma focus 
device” Plasma Sources Science and Technology, 
(2003) 

5  R.K. Cherdizov et al. “Experimental research 
of neutron yield and spectrum from deuterium gas-
puff z-pinch on the GIT-12 generator at current above 
2 MA”, Phys.: Conf. Ser. 830 (2017).  

6  N. Talukdar, N.K. Neog, and T.K. Borthakura. 
“Study on neutron emission from 2.2 kJ plasma focus 
device”, Physics of Plasmas, (2014).  

7  O.N. Krokhin, V.Ya. Nikulin, M. Scholz,  
I.V. Volobuev. “The Measurements of Neutron 
Emission on Plasma Focus Installations with Energy 
Ranging from 4 to 1000 kJ”, Proc. of 20th Symp. on 
Plasma Physics and Technology, (2002). 

8  Ariel Tarifeno-saldiva, Roberto E. Mayer, 
Cristian Pavez and Leopoldo Soto. “Methodology for 
the use of proportional counters in pulsed fast neutron 
yield measurements” (2011). 

9  А.М. Zhukeshov, B.М. Ibrаеv, Sh.G. Gini-
yatova, B.М. Useinov, V.Ya. Nikulin, A.T. Gabdul-
lina, A.U. Amrenova “Parameters calculation and 
design of vacuum camera for «Plasma Focus» 
facility”, International Journal of Mathematics and 
Physics, 1 (2016). 

10   O.N. Krokhin, V.Ya. Nikulin, I.V. Volo-
buev. “Compact activation detectors for measuring of 
absolute neutron yield generated by powerful pulsed 
plasma installations”, Czech. J. Phys., 54  
(2004).  

11  I. Murata, I. Tsuda, R. Nakamura, S. Naka-
yama, M. Matsumoto H. Miyamaru. “Neutron and 
gamma-ray source-term characterization of Am-Be 
sources in osaka university”, Progress in Nuclear 
Science and Technology, 4 (2014). 

12   A. Zhukeshov, A. Amrenova, A. Gabdul-
lina, Z. Moldabekov “Calculation and Analysis of 
Electrophysical Processes in a High-Power Plasma 
Accelerator with an Intrinsic Magnetic Field”, 
Technical physics, 62 N.3(2019). 

 



45

Contents

Editorial.................................................................................................................................................................................................3

S.N. Kharin, T.A. Nauryz, B. Miedzinski 
Two Phase Spherical Stefan Inverse Problem Solution with Linear Combination of Radial Heat Polynomials and Integral  
Error Functions in Electrical Contact Process......................................................................................................................................4

M.G. Peretyat’kin, A.A. Kalshabekov 
Finite domain structures in the framework of the concept of a model-theoretic property...................................................................14

F.F. Komarov, T.A. Shmygaleva, А.A. Kuatbayeva, A.A Srazhdinova
Computer Simulation Of Vacancy Clusters Concentration In Titanium Irradiated With Ions.  ..........................................................20

Z.Yu. Fazullin, Zh. Madibaiuly L. Yermekkyzy  
Control of Vibrations of Elastically Fixed Objects Using Analysis of Eigenfrequencies. ..................................................................27

D.B. Zhakebayev, B.А. Satenova, D.S. Agadayeva 
Lattice-Boltzmann Method for Simulating Two-Component Fluid Flows...........................................................................................32

Zh.M. Moldabekov, A.M. Zhukeshov, V.Ya. Nikulin, I.V. Volobuev
Study Eutron Emission in Plasma Focus Device by Silver Activation Method...................................................................................41


