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EDITORIAL
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articles and it will help to widen the geography of future dissemination. We will also 
be glad to publish papers of scientists from all the continents.

The Journal will publish experimental and theoretical investigations on 
Mathematics, Physical Technology and Physics. Among the subject emphasized 
are modern problems of Applied Mathematics, Algebra, Mathematical Analysis, 
Differential Equations, Mechanics, Informatics, Mathematical Modeling, Astronomy, 
Space Research, Theoretical Physics, Plasma Physics, Chemical Physics, Radio 
Physics, Thermophysics, Nuclear Physics, Nanotechnology, and etc.

The Journal is issued on the base of al-Farabi Kazakh National University. 
Leading scientists from different countries of the world agreed to join the Editorial 
Board of the Journal.

The Journal is published twice a year by al-Farabi Kazakh National University. We 
hope to receive papers from many laboratories which are interested in applications of 
the scientific principles of mathematics and physics and are carrying out researches 
on such subjects as production of new materials or technological problems. 
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Abstract. Design of electrical monitoring of dams and barriersis an actual task in geophysics. A primary 
purpose is an exposure of change of structure, erosion, cracks and losses of weir on the early stages. Then 
it is important to remove and repair a weir and prevent destructions of dike overall. For mathematical 
modeling of electrical monitoring of dams and barriers, the authors consider the method of ERT. The 
paper shows a mathematical model of the electrical survey of dams and barriers based on the method of 
integral equations and the Fourier transform. Numerical calculations for this model are performed. The 
simulation results for studying the influence of the location of the water-dam boundary with respect to the 
sounding array are presented. For the purposes of mathematical modeling, two extreme cases were 
considered: a) a fluid is assumed to be infinitely conductive, b) a fluid is not conductive, i.e. distilled. The 
effect of a change in the position of the supply electrode at a fixed water level was also studied. The 
simulation results are presented in the form of apparent resistivity curves, as it is customary in geophysical 
practice. Distribution of density of secondary charges is also shown for the cases of infinitely conducting 
and distilledwater. 
Key words: method of integral equations, Fourier transform, apparent resistivity, electrical monitoring of 
dams and barriers, electrical tomography, resistivity method. 

 
 
Introduction 
 
Mathematical modeling is currently an 

indispensable tool for geophysical research. In 
particular, modeling of electrical monitoring of dams 
and barriers is one of the important tasks in 
geophysics. Modeling the influence of changes in the 
dam structure, the detection of leakage zones, the 
appearance of erosion, changes in water levels at the 
upper and lower pools, dam breaks and much more 
associated direct and inverse problems interest many 
scientists [1] – [10]. In order to prevent the damage of 
the dam and the destruction its structure, it is 
necessary to identify problems of leakage and erosion 
in the early stages by timely monitoring. In this case, 
it is desirable that the measurements were carried out 
on the same profiles and the same grounded 
electrodes along seasonal and annual monitoring. 
One of the powerful methods for monitoring dams 
and barriers is the Electrical Resistivity Tomography 
(ERT) method. In many cases of dam monitoring, 
electrical tomography is performed along the dam 

crest and different longitudinal levels of the dam 
body [1] – [5]. This is due to the influence of the 
shape of the dam and its complex structure on the 
anomalies of apparent resistivities and the lack of 
reliable interpretation methods for profiles located 
across the body of the dam. However, with 
longitudinal soundings of the foot of the dam, where 
there may be leaks, and even flushing the dam, 
electrical tomography becomes problematic. A 
change in the water level at the upstream also affects 
the results of tomography. To solve such problems, 
modeling the electrical tomography of a dam across 
its body comes to the fore. In this paper, the authors 
simulate the electrical sounding of a dam across its 
body, using the quasi-three-dimensional model [11] 
based on the integral equation method [12] – [18] and 
the Fourier transform [11]. Studies were carried out 
for the following two cases: a) when the water is 
infinitely conductive and distilled for different water 
levels; b) the influence of the position of the supply 
electrode is studied at a constant water level. For both 
cases, curves of apparent resistivity are computed. 
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Figure 1 – The dam model 

Mathematical model. Integral Equation and 
Fourier Transform 

The dam has the shape of a single shaft, to the 
left of which is water (Figure 1). It has been shown 
in the monograph [11] that for the case of 
homogeneous media with non-flat surface, the 
most adequate and computationally low-cost 
method is the Integral Equation Method (IEM). It 
has been also shown in [11] that for the case of 2D 
media with step-wise constant resistivity 
distribution, the corresponding integral equation 
can be reduced to series of 1D integral equations in 
the spectral space. After solving the problem for 
spectral data, the spatial distribution of the electric 
field is calculated using the inverse Fourier 
transform. The described approach significantly 
reduces computational costs for the 3D electric 
field of a point source in two-dimensional media 
[11].The novelty of our approach consists of 
application of the IEM and subsequent Fourier 

transform method to the media with non-flat 
surface, causethis case is not considered before. 

Let us apply the above-mentioned methods to the 
considered problem. The field is excited by the direct 
current flowing down from the electrode 
����, 0,0�	.	The dam is elongated along the y axis, 
the direction of the normal depends only on the x and 
z coordinates of the point ���, �, ��. The point P
with coordinates ����, ��, ��� belong to the surface of 
integration. As shown in the monograph [11], the 
problem of electrical monitoring is reduced to a 
system of integral equations for the density of 
secondary sources (simple layer) distributed along the 
boundaries of contacting media. Let q0(x,y,z) and 
q12(x,y,z) be the densities of a simple layer of 
secondary charges distributed along the dam-air 
surface and along the water-dam boundary. Under the 
assumption that the electrical conductivity of water is 
much greater than the conductivity of the dam body, 
and literally applyingthe method of the monograph 
[11], we write the following integral equations: 
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Here G(x,x′,y,y′,z,z′) is is the Green’s function of 
the problem, which depends on the following 
arguments ���, ��, � � ��, �, �′�. In formulas (1), 
(2), the functions are differentiated along the 
direction of the external normal to the boundary at 
the point ���, �, ��. 

Note that integration over the surfaces ��и ��� 
can be represented as a sequential integration over a 

generator directed along the y axis, and then along 
the contours ��		���	��� respectively. ��is the 
contour of the surface ��, and ��� s the contour of 
���. Since the dam is elongated along the y axis, 
formulas (1), (2) can be written in the following 
form: 
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The internal integrals in equations (3), (4) are 

the convolution integrals of the function 
�����, ��, ��� and �

���� � �
�

����,����,�����with respect 
to the coordinate y. The coefficient ᴂ�� depends on 
the resistivities of the dam and the water, and is 
equal to +1 or -1 for a conductive and non-
conductive fluid, respectively.  

Next, we move to the spectral space. Since the 
functions ����, �, ��, �����, ��, ���,	 �
���� � �

�
����,����,�����  and  �

��� � �
�

����,����,����� are 

even functions with respect to the variable y, we use 
the partial cosine Fourier transform [11]: 
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 By virtue of the two-dimensional geometry of 

the medium, the normal n does not depend on the 
coordinate y; therefore, the Fourier transform and 
differentiation commute. 

 Spectra �����, ��, ��,	 ������, ��, ���,	 

�
����
� � � �

����,��,�����	 and �
���
� � � �

����,����,����� are 

the amplitudes of spatial harmonics with respect to 
frequency. Then the integral equation (3) after the 
cosine Fourier transform takes the form: 
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Hence, 
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 We perform the same procedure for the integral equation (4): 
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So, the equation (4) takes the form: 
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Integral equations (6), (7) is the cosine Fourier 

transform of the system of integral equations (1), 
(2). 

For a homogeneous half-space the expression in 
the integral equation (6) is written as: 
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where n is the unit vector of the external normal to 
the surface Г0 at the point (x, y, z). Given by (1у · n) 
= 0, for the spectra ��

���� ���� �
�� ��� �� ���and 

��
���� ���� ��� ��� �� ��� we obtain the following 
expressions: 
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Here �� � �� � ���� � �� � ����� 				��� ��� � ���� � �� � ����. The values of the �,�� 
represent projections of the distances �, ��onto the 
plane хОz respectively.  

For the second integral equation, we have 
similarly: 
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where	� � ���� ��� ��� – is the unit vector of the 
external normal to the surface 	��� also at the point 
���� �� ��. Take into account that (1у · n) = 0:
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In formulas (8)-(10) there is a cosine 

transformation of the functions of the form �
�������

�
�
 

where � � �����. For this transformation we have: 
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where ����� – is the MacDonald function (modified 
Bessel function of the second kind) of the first 
order. In numerical solutions of integral equations 
(6), (7), standard libraries of Fortran for the function 
K1(x) are used to compute �

���� � �
�

|��|� and 
�

����
� � �

|��|�. In order to reduce (6), (7) to the 
system of linear algebraic equation (SLAE), the 
contours �� and ��� are divided into elements	��� и 
���� within which ����� �� ��, ������� ��� ��� are 
considered constant. Having found the spectral 

density of secondary sources ��, we pass to spatial 
variables using the inverse Fourier cosine transform: 
 

~

0 0
0

1( , , ) ( , , ) cos( )y y yq x y z q x k z k y dk




   (12) 

 

Next, based on the computed density of the 
secondary charges, we calculate the electric field 
potential by integration over the corresponding 
surface. 

 
Numerical implementation. 
 
The numerical solution of the integral equations 

was carried out by discretizing formulas (6), (7) and 
(12) on a logarithmic grid with respect to frequency. 
To calculate the cosine – Fourier transform, we 
consider the finite part of the boundaries Г0 and Г12. 
Uniform grids are built at the boundaries of dam-air 
and dam-water. The shape of the boundaries are 
approximated by the radial basis function (RBF) 



9B.G. Mukanova, D.S. Rakisheva

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 11, №1, 4 (2020)

method [19] – [22]. At the dam-air interface, we 
take into account that no current flows into the air; 
and at the water-dam boundary, the current flows 
down depending on the resistivity of the media. The 
supply electrode is located on the dam. In the 
calculations, the height of the water and the position 
of the supply electrode are varied. The field 
potential is computed at points corresponding to the 
location of the measuring electrodes. Then, through 
the potential differences of the field, the apparent 
resistivity of the medium are calculated by standard 
formulas. 

Numerical solutions are made for the following 
cases: 

1. The position of the water-dam boundary was 
changed when the water was supposed to be 
infinitely conductive and distilled. However, even  
 

the second case is quite rare in practice, it is 
interesting from the point of view of mathematical 
modeling. This will determine the nature of the 
anomalies of apparent resistivity if the resistivity of 
the dam material is significantly less than the 
resistivity of the liquid. Based on the calculated 
electric field, apparent resistivity curves are 
constructed. 

2. The position of the source electrode is 
changed when the water level stays the same, 
and curves of apparent resistivity are also 
plotted. 

Figures 2 a) and b) show the density distribution 
of a simple layer q (M) at the air-dam boundary Г0 

when the water is infinitely conductive, the value is 
ᴂ��= +1 and when the water is distilled, with the 
value is ᴂ��= -1, respectively. 

 

а)  

b)  

Figure 2 – The density distribution of a simple layer q (M) on the surface Г0,  
achieved using the Fourier transform method, when water is infinitely conductive(a), and for distilled water (b) 
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Figure 2 shows the distribution of the simple 
layer density q (M) on the surface Г0 obtained after 
the Fourier transform when the water is infinitely 

conductive (a), and when the water is distilled (b). 
In Figure 3 corresponding apparent resistivity 
curves are demonstrated also. 
 
 

Figure 3 – Apparent resistivity curves 
(-) – distilled water, (-) – infinitely conductive water 

 
 

This test shows that for infinitely conductive 
water, the apparent resistivity curve is inverted with 
respect to the second case, as the current flows into 
the water. 

The second test was conducted under conditions 
when the dam resistivity is ρ1=10, and the water 

resistivity is ρ2=100. The position of the supply 
electrode is changed: it was assumed that  
Ароs = 16m, 18m, 20m from the origin, the water 
level does not change and is placed at the point at a 
distance of Сpos = 10m from the origin  
(Figure 4). 

 
 

Figure 4 – Curves of apparent resistivity at the position of the source electrode  
(-) Ароs = 16m, (--) Ароs = 18m, (…) Ароs = 20m

 
 

 Figure 4 illustrates the apparent resistivity 
curves at the positions of the source electrode Ароs 
= 16m, Ароs = 18m and Ароs = 20m. It can be seen 

that the proximity of the liquid to the source 
electrode increases the amplitude of the anomaly in 
the apparent resistivity of the medium. 



11B.G. Mukanova, D.S. Rakisheva

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 11, №1, 4 (2020)

 Conclusion 
 
 In a numerical solution, there is an investigation 

of the behavior of the apparent resistivity curves for 
infinitely conductive and distilled water. It is shown 
that in these cases the anomalies are of the opposite 
nature. These curves are in agreement with 
geophysical studies. It is also shown how the 
position of the source electrode affects the apparent 
resistivity curves at a constant water level. 

 Authors express their deep gratitude to the 
anonymous reviewer whose comments helped 
improve the presentation of the results.  
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EXPLICIT MODEL FOR SURFACE WAVES IN  
A PRE-STRESSED, COMPRESSIBLE ELASTIC HALF-SPACE 

 
 

Abstract. The paper is concerned with the derivation of the hyperbolic-elliptic asymptotic model for 
surface wave in a pre-stressed, compressible, elastic half-space, within the framework of plane-strain 
assumption. The consideration extends the existing methodology of asymptotic theories for Rayleigh and 
Rayleigh-type waves induced by surface/edge loading, and oriented to extraction of the contribution of 
studied waves to the overall dynamic response. The methodology relies on the slow-time perturbation 
around the eigensolution, or, equivalently, accounting for the contribution of the poles of the studied 
wave. As a result, the vector problem of elasticity is reduced to a scalar one for the scaled Laplace 
equation in terms of the auxiliary function, with the boundary condition is formulated as a hyperbolic 
equation with the forcing terms. Moreover, hyperbolic equations for surface displacements are also 
presented. Scalar hyperbolic equations for surface displacements could potentially be beneficial for 
further development of methods of non-destructive evaluation. 
Key words: surface wave; pre-stressed, compressible, elastic half-space; Rayleigh and Rayleigh-type 
waves. 

 
 
Introduction and Literature Review 
 
Mathematical modelling of dynamic problems 

of elasticity related to propagation of surface waves 
is an important problem having various applications 
in modern engineering and technology, including in 
particular areas of seismic protection, non-
destructive testing, development of high-speed 
railway transport, etc., see e.g. [1-3] and references 
therein. 

Studies of elastic surface waves originate from 
the classical work of Lord Rayleigh [4], followed by 
numerous contributions to the subject, see for 
example [5-8] to name a few. One of the important 
sub-areas is associated with propagation of surface 
waves in pre-stressed media [9,10], which becomes 
especially relevant for more accurate modelling of 
seismic vibrations in the near-surface domain. Some 
more recent advances in the area of Rayleigh wave 
include waves with transverse structure [11], 
representation through quasi-particles [12], as well 
as reciprocity approach [13]. 

A prospective methodology of hyperbolic-
elliptic asymptotic models for surface waves 
(induced by prescribed surface loading) oriented to 
surface waves only has been developed in the last 
decade, see e.g. [14, 15] and references therein. This 

formulation relies on the representation of a surface 
wave field in terms of a single harmonic function [5, 
16], with the decay over the interior governed by the 
Laplace equation. At the same time, the wave 
propagation is described by a hyperbolic equation 
on the surface, with the loading terms appearing in 
the right hand side. The results of the reduced model 
prove to be especially relevant in dynamic problems 
of elasticity, when the Rayleigh wave dominates, in 
particular, in the near-resonant regimes of moving 
loads, see e.g. [17]. The approach has also been 
extended to a special case of anisotropy associated 
with attenuation without oscillations in [18], as well 
as pre-stressed incompressible half-space [19]. A 
parallel parabolic-elliptic formulation for dispersive 
bending edge Rayleigh-type waves has been 
presented in [20]. Other recent developments 
include composite models for dispersion of waves in 
an elastic layer [21], application of the formulation 
to seismic meta-surfaces [22], as well as coated half-
space with clamped surface and relatively soft 
coating layer [23].  

In this paper, we extend the previous 
considerations to a pre-stressed compressible elastic 
half-space within the plane strain assumption, 
complementing the results in [19]. It is known that 
incorporation of compressibility may enrich the 
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dynamics behaviour of pre-stressed material, see 
e.g. [24]. First, a slow-time perturbation procedure 
is constructed, revealing at leading order the 
eigensolution for surface waves, including the 
scaled Laplace equation for the auxiliary function 
following from the fourth order elliptic equation for 
one of the displacements. Then, at next order 
correction, a hyperbolic equation on the surface is 
established, implying hyperbolic equations for 
surface displacements. It is also noticed that in 
absence of the pre-stress, the results reduce to a 
known formulation for an isotropic elastic half-
space. The results are also discussed within the 
framework of the known asymptotic models for 
Rayleigh and Rayleigh-type waves for other 
material properties. 

 
Materials and Methods 
 
Statement of the problem  
Consider an elastic, isotropic, compressible 

body in three-dimensional Cartesian coordinate 
system in its natural unstressed state Bu. The body is 
then subjected to a homogeneous static deformation 
 i Ax X , thus transforming to a finitely deformed 

equilibrium configuration Be. Then, small-amplitude 
motion  ,i ju x t  is super-imposed over Be, resulting 
in the current configuration Bt. Thus, the current 
position vector is given by 

     ,,i A i A i jx X t x X u x t  .        (2.1) 
 

Consider the elastic half-space 2 0x  , with the 
coordinate axis directed along the principal 
directions of primary deformation. Throughout the 
paper we are focusing on two-dimensional super-
imposed motions for which u3 = 0, and uj (j = 1, 2)  
are independent of x3. 

Following [10], the governing equations of 
motion may be written as 
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are the components of the fourth-order elasticity 
tensor, with its non-zero elements defined by (see 
[25] for more detail) 
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In the above W is the strain-energy function,  
 
  1 2, ,W W I I J ,                   (2.5) 
 

depending on the invariants   

   2 2
1 2

1tr C, tr C tr C
2

I I      ,  and 

    1 2 3det u

e
J F   


   ,              (2.6) 
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with F and F  being the gradient deformation tensor 
associated with the mapping from Bu to Bt, and Bu to 
Be , respectively, C = FFT denoting the right 
Cauchy-Green tensor, 1 , 2  and 3  
conventionally denoting the principal stretches, pu  
and pe stand for  the material density in the 
configurations Bu and Be, respectively, whereas the 
principal Cauchy stresses i  are  

i
i

i

W
J








.                         (2.7) 

 
 

The linearised measure of the incremental 
traction is given by 

 

 ( )n l
j ijkl i

k

uA n
x

 



,                       (2.8) 

 
for more detail see e.g. [24]. The boundary 
conditions at the surface 2 0x   are prescribed in the 
form of specified traction components, i.e. 
 

 

 1 2 1 2
2121 2121 2 1 1122 2222 2

2 1 1 2
, .u u u uA A P A A P

x x x x
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                               (2.9) 

 
 

It should be noted that the material parameters 
are chosen within the range of stability of the mate-
rial, i.e. strong ellipticity conditions are satisfied, 
see [10].  

 
1.1.  Explicit model for surface wave field 
 
Following the procedure in [18], the following 

ansatz for displacement components may be adopted 
  2, , ,      1, 2i iu u x i   ,             (2.10) 
 

where 1x ct   , and t   is slow time, with 
the physical meaning of the small parameter being 
the deviation of the phase speed from the surface 
wave speed. Then, the displacement components iu  
are expanded as asymptotic series 
 

 0 1
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    .     (2.11) 

The leading order problem is then given by 
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where 2 2ˆ ec c , subject to the boundary 
conditions 
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Equations (2.12) may be transformed to a single 
fourth order PDE in respect of one displacement 
component, say, 1u , giving in operator form 

 
 2 2

22 1 22 2 10 0k k u              ,    (2.14) 

 
where 
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The solution of (2.14) is given by  
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where φ10 and φ20 are arbitrary functions, harmonic 
in the first two arguments. Using (2.12) along with 
the Cauchy-Riemann identities, we deduce 
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where the asterisk denotes the harmonic conjugate, 
and 
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On substituting (2.15) and (2.16) into (1.62), the 

solvability of the system implies 
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which coincides with the surface wave speed 
equation obtained in [10], hence the speed c in the 
definition of the moving co-ordinate   coincides 
with the surface wave speed cR, being the unique 
root of (2.18). An addition, a relation between the 
functions 10  and 20  is established 
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Thus, the leading order displacements 10u  and 

20u  are expressed in terms of a single harmonic 
function as 
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Next order problem may now be formulated, involving the equations of motion  

 

   

   

22 2 2
2 1011 11 21

2121 1111 1122 12212 2
22

22 2 2
2 2021 21 11

2222 1212 1122 12212 2
22

ˆ 2 ,

ˆ 2 ,

e R

e R

uu u uA A c A A c
xx

uu u uA A c A A c
xx


  


  

  
     

    

  
     

    

                     (2.23)



17D.A. Prikazchikov

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 11, №1, 13 (2020)

 
 

 

subject to the boundary conditions 
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The solutions of (2.23) may be found in a 

similar way to that employed in [18]. Furthermore, 
on substituting the latter into (2.24), from the 
solvability on the boundary 2 0x  , a hyperbolic 

equation may be deduced for the auxiliary function 
1

1 10   , namely 
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Here the asterisk may be interpreted in the sense 

of the Hilbert transform, and the material constants 
1RA  and 2RA  are given by   
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Note, the hyperbolic equation (2.24) serves as a 

boundary condition to the elliptic equation 
 
 2

1,22 1 1,11 0  k ,                    (2.27) 

following from (2.14) and (2.15). 
 
Results and Discussion 
 
Thus, the hyperbolic-elliptic model for surface 

wave in a pre-stressed compressible elastic half-
space under the plane-strain assumption has been  
 

derived, comprised of the hyperbolic equation 
(2.25) and elliptic equation (2.27). It should be no-
ted that once the auxiliary function φ1 is determi-
ned, the displacements follow from the expressions 
of (2.21) and (2.22). Moreover, displacements sati-
sfy the following hyperbolic equations on the 
surface  
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and
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It may be shown that in case of no pre-stress the 

obtained results simplify to the known results for 
classical Rayleigh waves in linearly elastic, 
isotropic media (cf., for example, equation (3.1) in 
absence of tangential load (P1 = 0) with equation 
(98) in [15]). 

Another observation which may be made is 
related to similarity of the derivation procedure 
between the orthorhombic case in [18] and the 
current problem, which is highlighting once again 
the formal parallels between anisotropy and pre-
stress, having although an important difference 
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related to symmetry/non-symmetry of the stress 
tensor.  

Another remark can be made regarding the 
similarity of the slow-time perturbation procedures 
in the current problem with that for the dispersive 
bending edge wave on a semi-infinite Kirchhoff 
plate, presented in [20]. Indeed, both of the cases are 
dealing with the scaled bi-harmonic equation, in 
respect of the displacements. The auxiliary function 

1  may be interpreted within the sense of a partial 
potential decomposition, since its analogue in the 
isotropic case would be a derivative of the 
longitudinal Lamé potential. 

 
Conclusion 
 
A hyperbolic-elliptic model for Rayleigh-type 

wave induced by prescribed load on the surface of a 
pre-stressed, compressible, elastic half-space has 
been formulated in terms of a single plane harmonic 
function. The decay over the interior is governed by 
a scaled Laplace equation, whereas wave 
propagation is modelled by a hyperbolic equation. 
The results complement existing ones for isotropic 
media [15], as well as particular type of 
orthorhombic media [18] and pre-stressed 
incompressible media [19]. Scalar hyperbolic 
equations for surface displacements could 
potentially be beneficial for further development of 
methods of non-destructive evaluation. 

The advantage of the obtained formulation is 
clearly associated with a reduction of the vector 
problem of elasticity to a scalar problem for a 
Laplace equation, thus opening the path to a number 
of analytical solutions for prescribed forms of 
surface loading. At the same time, it is emphasised 
that the model is only accounting for surface wave 
contribution and would therefore be efficient in 
situations when the surface wave field is dominant, 
and the contribution of the bulk waves is negligible. 
Examples of such behaviour include the far-field 
analysis or near-resonant regimes of the moving 
load. Moreover, the proposed approach may be 
further developed for seismic meta-surfaces, see e.g. 
[22], [26], as well as for layered half-space [15], 
[23]. Finally, we mention a less obvious generali-
sation to inhomogeneous media, see e.g. [27].  
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NUMERICAL SIMULATION  
OF A SUPERSONIC TURBULENT COMPRESSIBLE JET  

IN A CO-FLOW WITH STOCHASTIC  
SPECTRAL INFLOW BOUNDARY CONDITIONS 

 
 

Abstract. A compressible supersonic turbulent jet of a perfect gas in a co-flow with the formulation of 
stochastic spectral inflow boundary conditions is numerically modeled. The base equations are the LES 
averaged Navier – Stokes equations closed by the Smagorinsky model, the solution of which is carried 
out by the ENO scheme of the third order of accuracy. The stochastic boundary conditions at the inlet are 
constructed on the basis of the spectral method of generating fluctuations of gas-dynamic variables to 
obtain an inhomogeneous anisotropic turbulent flow. The numerical results of turbulent characteristics are 
compared with experimental data for the shear layer problem. The thickness of the shear layer is obtained, 
in which the growth of the shear layer between the jet and the co-flow for three types of grid (coarse, 
medium and fine) is demonstrated. Coherent vortex structures appearing in the jet are constructed in 
dynamics, which made it possible to analyze in detail the growth and development of vortices over time. 
Key words: supersonic jet, supersonic co-flow, LES, spectral boundary conditions, shear layer. 

 
 
Introduction 
 
Turbulent jet flows are of particular interest 

when considering many aerodynamic problems, 
such as turbulent mixing of a jet of fuel with co-
flowing air in rocket combustion chambers, 
predicting the noise level of propulsion systems, the 
interaction of jets when launching space rocket 
technology with launch equipment. Turbulent jets 
were experimentally studied in the works of many 
authors [1-7,25]. The issue of numerical simulation 
of such flows is especially relevant today, and the 
application of the LES method (large eddy 
simulation) is justified, since it gives a more 
accurate description of turbulence, while, in contrast 
to the direct numerical simulation (DNS), without 
requiring large computational resources. The main 
problem of the LES method is the correct 
formulation of the inflow boundary conditions. 
Stochastic spectral boundary conditions are 
promising for this method, since they give the result 
closest to reality and do not require a large amount 
of information about the statistics of turbulent 
characteristics. The spectral boundary conditions 
use a set of random numbers that satisfies the given 
statistical turbulence data [8–13], and the key point 

in their formulation is the introduction of an 
anisotropic perturbation field. The ways of 
introducing anisotropy and inhomogeneity in the 
velocity field lead to a similarity between turbulence 
obtained numerically and natural real turbulence. In 
[14], using the spectral boundary conditions, an 
inhomogeneous anisotropic field of turbulence 
velocities with zero divergence was synthesized for 
a plane turbulent flow in a channel and for a 
circulation flow, and as a result, turbulent structures 
in the flow close to the real ones were obtained. In 
many works, spectral boundary conditions were 
used to solve actual physical problems, as, for 
example, in [15] the effect of wind on a tall steel 
building was studied. The authors found that the 
velocity profiles of the incoming wind flow mainly 
affect the average pressure coefficients of the 
building and the profiles of random turbulent 
intensities significantly affect the fluctuation forces 
of the wind. In [16], a comparison was made 
between the LES models with different boundary 
conditions, including spectral ones, as well as a 
comparison with experiment in order to determine 
the accuracy of the LES method when simulating 
flows in combustion chambers, using the example of 
particle distribution in circulating two-phase flows. 



21A. Zadauly, A.O. Beketaeva

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 11, №1, 20 (2020)

 
 
                                                                                  

As a result, the authors simulated the characteristic 
fluctuation velocity fields, which gave a satisfactory 
agreement with the experiment. The authors of [17] 
studied the spread of atmospheric pollution on the 
streets of the city by modeling atmospheric flows 
with a boundary layer with obstacles. The study was 
conducted numerically using the RANS model and 
the LES model with spectral boundary conditions. 
Both methods were compared with each other and 
with experimental data. As a result, the LES method 
was able to detect both external and internal induced 
periodicities and, accordingly, pulsating and 
unstable fluctuations in the flow field, which made 
it possible to obtain the correct calculation of the 
transient process of mixing air with a pollutant using 
the example of city streets. This in turn led to a 
more accurate prediction of horizontal concentration 
diffusion, since it was the LES method with spectral 
boundary conditions that made it possible to 
reproduce unsteady concentration fluctuations. In 
[18], using the LES, turbulent combustion of 
methane and oxygen with preliminary mixing was 
simulated using spectral boundary conditions, a 
comparison was made with experiment, and a 
satisfactory agreement between the numerical and 

experimental calculations was obtained. The authors 
of [19] investigated the effect of oncoming turbulent 
structures in the air flow on the low-speed wing. 
Good results were obtained from the wing response 
to the effects of turbulent structures in both two-
dimensional and three-dimensional modeling. In 
[20], a turbulent flow passing through a rotating 
wind turbine was simulated using the LES with 
spectral boundary conditions in order to study the 
formation and propagation of a wake behind a wind 
turbine. As a result, the structures obtained behind 
the wind turbine turned out to be a system of intense 
and stable rotating spiral vortices, which determined 
the dynamics of the wake. As a recommendation, 
the authors proposed the following: the boundary 
between the near and far wake should be defined as 
the initial location for the decay of the wake. Also, a 
comparison with experiment was made in the work, 
which gave good agreement on the time-averaged 
pressure coefficients. 

The aim of this work is numerical simulation of a 
supersonic turbulent jet of a perfect gas in a co-flowing 
air stream using the LES method with stochastic 
spectral boundary conditions at the input. The 
schematic flow diagram is presented in Figure 1: 
 

 
 

Figure 1 – Schematic flow diagram 
 

 
Basic equations 
 
The basic equations are a system of three-

dimensional LES-filtered Navier-Stokes equations 
for a compressible turbulent perfect gas in a 
Cartesian coordinate system, written in a 
conservative form: 
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where vectors of dependent parameters and vectors 
of flow are defined as: 
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The components of the viscous stress tensor are 
defined as follows: 
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Heat flows are represented as: 
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Effective viscosity is the sum of the dynamic 
and vortex viscosities: sgsleff   , where l  

is obtained from the Sutherland’s formulae, and sgs  
is as follows:  
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where  С  is semi-empirical coefficient of the model, 

zyx    is the width of the filter. 
Pressure and temperature are set as follows: 
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In (1) vwu ,,   are the components of the velocity 

vector,   is the density, vc  is the specific heat at 
constant volume,   is the specific heat ratio, M  is 
the flow Mach number. 

The system (1) is written in dimensionless form, 
where the flow parameters   Tρu ,,  taken as a 
reference values; for the pressure P  and the total 
energy Et the reference values are 2

uρ , the length 
scale is the initial vorticity thickness of a mixing 
layer: 
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Pr , Re  are the Prandtl and the Reynolds 

numbers.  Index 0 corresponds to the parameters of 
the jet and index  corresponds to the parameters 
of the flow. 

 
Boundary and Initial conditions 
 
At the input, the initial conditions for the 

velocity profile are set in the form:  
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At the transition of two gas flows, the above 
physical variables are determined by the function of 
the hyperbolic tangent: 
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where  С  is semi-empirical coefficient of the model, 
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Pressure and temperature are set as follows: 
 

   



  222

2
11 vwuEP t 

 

 



 







 222

2
11 vwuE

c
T t

v



        (3)        

  21
1




M
cv 

 

 
In (1) vwu ,,   are the components of the velocity 

vector,   is the density, vc  is the specific heat at 
constant volume,   is the specific heat ratio, M  is 
the flow Mach number. 

The system (1) is written in dimensionless form, 
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At the transition of two gas flows, the above 
physical variables are determined by the function of 
the hyperbolic tangent: 
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where d  is the random frequency and n  is the 
random phase shift, both determined in the interval 
[0;1], here N is taken as 100N  and nq  is the 
normalized amplitude: 
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where E(k) is  the modified von Karman energy 
spectrum: 
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In the output and the lateral boundaries the non 
reflective boundary conditions are specified [21].  

 
Method of solution 
 
Preliminary, at the level of the jet injection, a 

thickening of the grid is introduced for a more 
accurate numerical solution. Then the system (1) in 
the transformed coordinate system is written in the 
form: 
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~  и    zyxJ ,,/,,  η   is the 

Jacobian transform. 
The solution of the system (9) is performed with 

semi-implicit method  proposed in [22, 23]. 
Firstly, the linearization procedure is applied to 

the equations (9).  Then, the factored scheme of the 
linearized system is written.  This form reduced the 
three-dimensional matrix inversion problem to the 
three one-dimensional problems in directions   ,  
 ,  . Secondly, the obtained one-dimensional 
problems are solved implicitly with matrix sweep 
method for the vector U~ . Here, the advective terms 
are approximated using the third-order ENO scheme 
in detail represented by authors in [22, 23]. The 
central differences of the second order accuracy are 
used for approximation of diffusion terms.  

 
Results  
 
The verification of the numerical model is 

conducted by the comparison of the computational 
results with the experimental data of [24] for the 
shear layer problem. Schematic diagram of the flow 
is presented in Figure 2:  
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Figure 2 – Schematic diagram of the shear layer problem 

 
 

Two parallel flows with different Mach numbers are defined by the following parameters: 
 

1M  2M  cM  21 / UU 21 /  T p 
1.80 0.51 0.51 0.36 0.64 291K 1 atm. 

 
 

where 
)/()(,/)( 21122111 aaUaUaaUUM cc   is 

the convective Mach number and 21, UU   are 
velocities of the upper (indexed by 1)  and lower 
flows (indexed by 2), and  21, aa  are the local sound 
velocities of flows. The pressure at the input 
remains constant. The simulation is made for three 
types of grids: coarse (75х25х25 nodes), middle 
(135х51х51 nodes), fine (271х101х101 nodes). This 
is made in purpose for the grid independence 
analysis which shows that the simulation with the 
computational grid of 301х131х131 nodes gives the 
same results as for the 271х101х101 nodes 

simulations. And this is the cause why there is no 
need of using more computational resources with 
finer grid and here the grid of 271х101х101 nodes is 
in use. At the input, the spectral boundary 
conditions are used. 

The results of comparing turbulent characte-
ristics with experiment are shown in Figure 3-5 for x 
= 180 cross-section. For stream wise and lateral 
turbulence intensities and for Reynolds stress 
profiles a satisfactory agreement with experiment is 
obtained (grid of 271х101х101 nodes). This result 
confirms the validity and correctness of the selected 
spectral boundary conditions at the input. 
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Figure 3 – Streamwise turbulence intensities Figure 4 – Lateral turbulence intensities
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Figure 5 – The Reynolds stress profiles 

 
 
 

The following are the results of numerical 
modeling of the problem with the following 
parameters: ,1∞ M  20 M , 510Re  , 6d  is 
the diameter of the orifice, atmP 1  is the pressure 
which is constant. The sizes of the domain are next 
Hx = 200, Hy = 200, Hz = 30 and y0 = 25,  
z0 = 25 are coordinates of the center of the jet.  

In Figure 6 showing the vorticity thickness 

max

0

)/( zu
uu




 
   of the shear layer, shows the 

results of calculations with three types of grids for 
comparison. In the case of a fine mesh (black solid 
line), the vorticity thickness increases from 4.7 to 
8.5. 

 
Figure 6 – Vorticity thickness for three types of grids. 

 
 
Figure 7 (a) presents instantaneous isosurfaces 

for densities  and vorticity, and Figure 7 (b) shows 
isolines of density and vorticity in a cross section 
y=25 for natural jet in co-flow: 

 

а)  

b)
Figure 7 – Instantaneous isosurface for densities  and vorticity (a) ,  

isolines of density and vorticity in cross section y=25 (b) for natural jet in co-flow 
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The results on Figure 7 show that with 
spectral boundary conditions taken at the input the 
obtained turbulence is close to the real one. As it 
is seen there are 6 vortices appeared starting from 
the point x = 55 which is seems to be a good 
result for this kind of flows. The main problem in 
all supersonic flows is in making the starting 
point (where the vortices start to form) distance as 

shorter as possible. Solving this problem leads to 
beneficial improvements in construction of the 
combustion chambers, namely the reduced size of 
combustors. More detailed analysis of the 
formation of vortices is shown on Figure 8 where 
the dynamic of the vortices structures in the shear 
layer between jet and co-flow is demonstrated: 
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Figure 8 – Evolution of vorticity isolines at various times for natural jet in co-flow 
 
 
 It  shows that to the time t = 37.5 the vortices 

are started forming and they are moving 
downstream (Fig. 8 (b)). Pairing of the adjacent 
vortices with forming the larger ones is 
demonstrated in Fig. 8 (c). And the relatively stable 
turbulence occurs to the time t = 62,5  (Fig. 8 (d)). 

 
Conclusion 
 
Stochastic boundary conditions at the entrance 

are presented based on the spectral method of 
generating fluctuations of gas-dynamic variables to 
obtain an inhomogeneous anisotropic turbulent 
flow. Based on them, the problem of injecting the 
compressible supersonic turbulent jet into a co-
flowing stream is numerically solved. The analysis 
of grid independence for computational grids is 
carried out, which gave the most suitable number 
of nodes for the grid. Comparison of the results of 
obtained turbulent characteristics with experiment 
showed satisfactory agreement. It was also 
revealed that the far region of the jet in the shear 
layer is characterized by a developed turbulent 
structure. Thus, the formulation of stochastic 
spectral boundary conditions made it possible to 
obtain anisotropic inhomogeneous turbulence close 
to real. 
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AN EXISTENCE SOLUTION  

TO AN IDENTIFICATION PARAMETER PROBLEM  
FOR HIGHER-ORDER PARTIAL DIFFERENTIAL EQUATIONS  

  
 

Abstract. The initial-boundary value problem with parameter for higher-order partial differential 
equations is considered. We study the existence of its solution and also propose a method for finding 
approximate solutions. We are established a sufficient conditions for the existence and uniqueness of the 
solution to the identification parameter problem under consideration. Introducing new unknown 
functions, we reduce the considered problem to an equivalent problem consisting of a nonlocal problem 
for second-order hyperbolic equations with functional parameters and integral relations. An algorithm for 
finding an approximate solution to the problem under study is proposed and its convergence is proved. 
Sufficient conditions for the existence of a unique solution to an equivalent problem with parameters are 
established. The conditions for the unique solvability of the initial-boundary value problem with 
parameter for higher-order partial differential equations are obtained in terms of the initial data. Unique 
solvability to the initial-boundary value problem with parameter for higher-order partial differential 
equations is interconnected with unique solvability to the nonlocal problem with parameter for second-
order hyperbolic equations. 
Key words: higher-order partial differential equations, identification parameter problem, nonlocal 
problem with parameters, hyperbolic equations of second order, solvability. 

 
 
Introduction 
 
An initial-boundary value problems with and 

without parameters for higher-order partial 
differential equations belong to one of the most 
important classes of problems in mathematical 
physics [1-14]. For studying of various problems 
with and without parameters for higher-order partial 
differential equations, along with classical methods 
of mathematical physics, such as the Fourier 
method, the Green's function method, the Poincare 
metric concept, the method of differential 
inequalities, and other methods of the qualitative 
theory of ordinary differential equations are also 
often applied. Based on these methods, the 
solvability conditions of the considered problems 
with and without parameters were established and 
ways to solve them were offered in [15-33]. 
However, the search for effective criteria of the 
unique solvability of initial-boundary value 
problems with parameters still remains relevant.  

It is known that an ordinary differential equation 
of higher order can be reduced to a system of 
ordinary differential equations of the first order by 

special substitution. Using the methods of the 
qualitative theory of ordinary differential equations, 
the solvability conditions for the obtaining system 
can be formulated in the terms of the fundamental 
matrix of the differential part or the right side of the 
system. An analogous approach can be applied to 
higher-order hyperbolic equations with two 
independent variables and their can be reduced to a 
system of second order hyperbolic equations with 
mixed derivatives by replacement. Further, using 
well-known methods for solving problems for 
systems of hyperbolic equations with mixed 
derivatives, the solvability conditions can be 
established in different terms. 

 Mathematical modeling of many problems of 
physics, mechanics, chemistry, biology, and other 
sciences has resulted into the necessity of studying 
initial-boundary value problems with parameter for 
higher-order partial differential equations of 
hyperbolic type. Applying the methods of the 
qualitative theory of differential equations directly 
to these problems, we can establish the conditions 
for their solvability [1, 7, 8, 14, 23, 27-30]. 
Nonlocal problems with parameter for higher-order 
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partial differential equations of hyperbolic type by 
replacement are reduced to nonlocal problems with 
parameter for system of second-order hyperbolic 
equations. The theory of nonlocal problems with 
parameter for system of second-order hyperbolic 
equations has been developed in many papers. To 
date, various solvability conditions for nonlocal 
problems with parameter for hyperbolic equations 
have been obtained. 

The criteria for the unique solvability of some 
classes of linear nonlocal problems for hyperbolic 
equations with variable coefficients were obtained 
relatively recently [34-36]. In [34], a nonlocal 
problem with an integral condition for systems of 
hyperbolic equations by introducing new unknown 
functions is reduced to a problem consisting of a 
family of boundary value problems with an integral 
condition for systems of ordinary differential 
equations and functional relations. It is established 
that the well-posedness of a nonlocal problem with 
an integral condition for systems of hyperbolic 
equations is equivalent to the well-posedness of a 
family of two-point boundary value problems for a 
system of ordinary differential equations. In terms 
of the initial data, a criterion is established for the 
well-posedness of a nonlocal problem with an 
integral condition for systems of hyperbolic 
equations.  

 In present paper, we consider a higher-order 
partial differential equation defined in a rectangular 
domain. The boundary conditions for the time 
variable are specified as a combination of values 

from the partial derivatives of the desired solution in 
rows t = 0, t = T and t . We also study the 
existence and uniqueness of the solution to the 
initial-boundary value problem with parameter for a 
higher-order partial differential equation and its 
applications.  

 To solve the problem under consideration, we 
use the method of introducing additional functional 
parameters [34-36] and reduce the original problem 
to an equivalent problem consisting of a nonlocal 
problem with parameter for a second-order 
hyperbolic equation with functional parameters and 
integral relations. We establish sufficient conditions 
for the unique solvability of the considered problem 
in the terms of unique solvability of nonlocal 
problem with parameter for a second-order 
hyperbolic equation. Algorithms for finding a 
solution to an equivalent problem are constructed. 
The conditions for the unique solvability of the 
initial-boundary-value problem with parameter for 
the higher-order partial differential equations are 
established in the terms of the coefficients of the 
system and the boundary matrices.  

 
Statement of problem and scheme of method 

introduction functional parameters 
 
At the domain ],0[],0[  T , we consider 

the initial-boundary value problem with parameter 
for the higher-order partial differential equation of 
the following form: 
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where ),( xtu  and )(x  are an unknown 

functions, the functions ),( xtAi , ),( xtBi , mi ,1 , 
),( xtC , and ),( xtf  are continuous on  , the 

functions )(xPij , )(xSij , mi ,1 , 1,0j , and 

)(x  are continuous on ],0[  , Ttt  100 , the 

functions )(ts , 1,0  ms , are continuously 
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differentiable on ],0[ T , the functions )(xL , 
)(xM , and )(1 x  are continuous on ],0[  , and 

T0 . Relation (4) is additional condition for 
determining unknown functional parameter )(x . 
The initial data satisfy the matching condition. 

 A pair of functions ))(),,(( xxtu  , with 
component ),(),( RCxtu  , 

)],,0([)( RCx    having partial derivatives 

),(),( RC
xt
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 

, mp ,1 , 1,0r , is called 

a solution to problem with parameter (1) – (4) if it 
satisfies equation (1) for all ),( xt , the initial-
boundary conditions (2), (3) and additional 
condition (4).  

We will investigate the questions of the 
existence and uniqueness of solutions to the initial-
boundary value problem with parameter for a 
higher-order partial differential equation (1) – (4) 
and the construction of its approximate solutions. 
For these purposes, we apply the method of 
introducing additional functional parameters 
proposed in [34–36] for solving various nonlocal  
 

problems for systems of hyperbolic equations with 
mixed derivatives. The considered problem is 
reduced to a nonlocal problem with parameter for 
second-order hyperbolic equations, including 
additional functions, and integral relations. An 
algorithm for finding an approximate solution to the 
problem under study is proposed and its 
convergence is proved. Sufficient conditions for the 
existence of a unique solution to problem with 
parameter (1) – (4) are obtained in terms of the 
initial data. 

 
 Scheme of the method and reduction to 

equivalent problem.  
 
We introduce new unknown functions  
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and re-write problem with parameter (1)-(4) in the 
following form: 
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Here the conditions (3) are taken into account in (10).  
Differentiating (10) by t , we obtain  
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),(),( RCxtvs   have partial derivatives 
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
, 1,1  ms , is called a 

solution to problem with parameters (6)-(10), if it 
satisfies the second-order hyperbolic equation (6) 
for all ),( xt , boundary conditions (7) and (8), 
additional condition (9) and integral relations (10).  

 For fixed ),( xtvs , 1,1  ms , problem (6)--
(9) is a nonlocal problem with parameter for the 
hyperbolic equation with respect to ),( xtv  and 

)(x  on  . Integral relations (10) allow us to 

determine unknown functions ),( xtvs , 1,1  ms  
for all ),( xt . 

  
Algorithm 
 
 We determine the unknown function ),( xtv  

from the nonlocal problem with parameter for 
hyperbolic equations (6)-(9). Unknown functions 

),( xtvs , 1,1  ms , will be found from integral 
relations (10). 

 If we know the functions ),( xtvs , 1,1  ms , 
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And so on.  
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The following theorem provides conditions for 

the feasibility and convergence of the constructed 
algorithm, as well as conditions for the existence of 
a unique solution to problem with parameter (6)--
(10). The functions functions ),( xtAi , ),( xtBi , 

mi ,1 , ),( xtC , and ),( xtf  are continuous on 

 , the functions )(xPij , )(xSij , mi ,1 , 1,0j , 

and )(x  are continuous on ],0[  , the functions 

)(ts , 1,0  ms , are continuously differentiable 
on ],0[ T , the functions )(xL , )(xM , and )(1 x  
are continuous on ],0[  .  

 
 Theorem 1. Let  
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The proof of Theorem 1 is similar to the proof 
of Theorem 1 in [35]. 
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Theorem 3. Let  
a) conditions i) – iii) of Theorem 1 be fulfilled; 
b) the (2x2)- matrix ),,( TxQ  is invertible for 

all ],0[ x . 

Then the initial-boundary value problem with 
parameter for the higher-order partial differential 
equation (1)--(4) has a unique classical solution 

))(),,(( xxtu   . 
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Conclusion 
 
Therefore, we are studied the identification 

parameter problem for higher-order partial 
differential equations with two variables. We are 
established the sufficient conditions for the 
existence and uniqueness of the solution to the 
considered identification parameter problem. We are 
reduced this problem to the equivalent problem 
consisting of the nonlocal problem for second-order 
hyperbolic equations with functional parameters and 
integral relations by introducing new unknown 
functions. An algorithm for finding an approximate 
solution to the equivalent problem with parameters 
is proposed and its convergence is proved. 
Sufficient conditions for the existence of the unique 
solution to the equivalent problem with parameters 
are established. The conditions for the unique 
solvability of the initial-boundary value problem 
with parameter for higher-order partial differential 
equations are obtained in terms of the initial data. 
Unique solvability to the identification parameter 
problem for higher-order partial differential 
equations is interconnected with unique solvability 
to the identification parameter problem for second-
order hyperbolic equations. These results will be 
developed to various initial-boundary value 
problems with parameters for the higher-order 
system of partial differential equations and control 
problems for second-order system of hyperbolic 
equations.  
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AN IRREGULAR CONJUGATIONPROBLEM FOR THE SYSTEM  
OF THE PARABOLICE QUATIONS IN THE HOLDER SPACE 

 
 

Abstract. We consider the conjugation problem for the system of parabolicequations with two small 
parameters �> 0, �> 0 in the boundary conditions.There are proved the existence, uniqueness and uniform 
coercive estimates ofthe solution with respect to the small parameters in the Holder space. Thisproblem is 
linearized one of the nonlinear problem with the free boundary ofFlorin type and it is in the base of the 
proof of the solidified of this nonlinearproblem in the Holder space.We study the problem with the free 

boundary of the Florin type in the Holder space 1,2,=),(
/2,12

jC jT

ll

tx 


 where � � is non-integer 
positive number. Existence, uniqueness, estimates for solution of the problem with constants independent 
of small parameters in the Holder space areproved. It gives us the opportunity to establish the existence, 
uniqueness and estimates of the solution of the problem without loss of smoothness of given functions for 
� = 0, �> 0; �> 0; � =0 and � = 0, � = 0. 
Key words :parabolic equations, existence, uniqueness of the solution, coercive estimates, Holder space. 

 
 
1 Introduction 
 
In the work the problem of Florin type is studied 

for the system of parabolicequations in the Holder 
spaces. This problem is a mathematical model 
describingfiltration of liquids and gases in the 
porous medium. Linear problems with 
smallparameters with time derivatives functions of 
the free boundary were studied in [1]-[7]. In this 
article the problem is studied without time 
derivatives functionsof the free boundaries  ���� in 
the right-hand sides of the conditions (6), (7), 
whichcorresponds to a degenerate nonlinear the free 
boundary problem of melting binaryalloys and in 
which free boundary is set as an implicit function. In 
contrast fromproblems in [1]�[7], where free border 
is set explicitly. 

LetΩ� � ��, ���, 	Ω� � ���, ��, � � �� � �,
� � �, 	Ω�� � Ω� � ��, ��, � � �,�, �� � ��, ��,
����	be a smooth shear function, equal to one 
at|�| � ��andzero for|�| � ���and having the 
rating|�������| � ������, �� � ����� � �. 

Define second order elliptic operators 
 

����, �� ����� � ����, ������� � 
�����, ������ � ����, ����, 

 

������, �� ����� � ������, ������� � 
�������, ������ � ������, ����, 

 
where ����, ��, ������, �� � �� � ����� � � in 
Ω���, � � �,�� 

It is required to find functions ����, ��, 	����, ��,	 
� � �,�,	and  ���� satisfyingparabolic equations 

 
	���� � ����, �� ����� � ����, ����� � ������ � 

� ����, ��inΩ���,			� � �,�,                 (1) 
 

	���� � ������, �� ����� � ����, ����� � ������ � 
� ������, ��inΩ���,			� � �,�,                (2) 

 
and initial conditions 

 
�|��� � �,				��|��� � ���,			 
��|��� � ���,		inΩ,			� � �,�,                 (3) 

 
boundary conditions 

 
��|��� � �����, ��|��� � �����,						� � 	 ��,    (4) 

 
��|��� � �����, ��|��� � �����,						� � 	 ��,    (5) 
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and conjugation conditions on the border � � �� 
 
��� � ���|���� � �����,						� ∈ 	 ��,            (6) 

 
��� � ����, �����|���� � �����,	 

	� � 1,�,					� ∈ 	 ��,                         (7) 
 
�����, ������ � �����, �������|���� � 

� ����� � ������,						� ∈ 	 ��,             (8) 
 
�����, ������ � �����, �������|���� � 

� ����� � ������,						� ∈ 	 ��,             (9) 
 

where ����, �� � �� � ����� � 0, 	����, �� � �� �
����� � 0, 	����, �� � �� � ����� � 0, � � 1,�,
� � 	0, � � 0 �small parameters, 	�� � ����, 	�� �����, �� 	� ����. 

Problem (1)-(9) is a linearized problem of the 
Florintype nonlinear problem, which describes the 
process of filtering liquids and gases in the porous 
medium. 

This problem will be studied in Holder spaces. Let � 
be a noninteger positivenumber, � � � � ��� ∈ �0,1�. 

Under ,)(/2, 
T

ll
txC  ,)(/2 

T
l
tC 

 
we will 

understand Banach spaces of functions���, ��and  
����,with  thenorms 

 

|�|����� ≔ � |��������|�� � � ������������,��
��� � �����������,��

������ �
���������

���

�������
 

 
� � �����������,��

���������
���������

, 
 

																																												|�|������� ≔ � |�����|��
�����

����
� �����������������������,																																	�10� 

 
Ω� � Ω � �0, ��, |�|�� � ���

��,��∈��
|�|, 

 

����,��
��� � ���

��,��,��,��∈��
|���, �� � ���, ��|

|� � �|� , 	����,��
��� � ���

��,��,��,���∈��
|���, �� � ���, ���|

|� � ��|� .			 
 
 

Through ),(
/2,

T

ll

txC 


we denote the subspaces 

of functions ���, �� belonging to )(
/2,

T

ll

txC  and 
satisfying the conditions 

 
����|���,			� � 0,� , �����. 

 
The following lemma holds. 

Lemma 1.In the space ),(2
)1(

T

l

tC 



� � is a 

non-integer positive number, the norm 		|�|����������, 
defined by the formula (10), is equivalent to the 
norm 

 

‖�‖���
����� � � ���������

�∈��
|�|��� � 

 

������������������
����� ������ ��. 

 
We define function of Banach spaces for solving 

the problem. Let 

��Ω�� ≔ 


)( 1

/2,12

T

ll

txC


 

× 


)( 2

/2,12

T

ll

txC





)( 1

/2,12

T

ll

txC


 

× 


)( 2

/2,12

T

ll

txC


)(
/21

T

l

tC 

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be the space of vector-functions 
� � ���, ��, ��, ��, �	� with the norm 

 
‖�‖����� � 

� ∑ ��������
����� � �������

������ � |�|������������� ,    (11) 

	
≔  )( 1

/2,

T

ll

txC


 )( 1

/2,

T

ll

txC


 )( 1

/2,

T

ll

txC


 

× )( 1

/2,

T

ll

txC 


� )(
/21

T

l

tC 


� )(
/21

T

l

tC 


� 

× )(
/21

T

l

tC 


� )(
/21

T

l

tC 


� )(
/21

T

l

tC 


� 

× )(
/21

T

l

tC 


� )(
/21

T

l

tC 


� )(2
)1(

T

l

tC 


 � 

× )(2
)1(

T

l

tC 


 � )(2
)1(

T

l

tC 


 � )(2
)1(

T

l

tC 




 ��Ω�� 
 

is the space of vector-functions � � ���,��, ��, ��, ��, ��, ��, ��, ��, ��, ��, ��, ���, ��, ����wit
h the norm 

 
 

‖�‖����� ����������
��� � ���������

��� � ������
����

�� � ������
����

���
�

���
� 

�∑ |��|��
����

������ +|��|��
���
� � �|��|��

���
� �|��|��

���
� � �|��|���������.																																								�1��  

 
 

It is required fulfillment of the conditions for 
matching the initial and boundarydata for solving 
boundary value problems for parabolic equations in 
a Holder space. 

We define these conditions for the problem 
(1)�(9) [8]. They are found from the boundary 
conditions (4)�(9) by differentiating them by �, 
excluding thederivatives �����, �����, � � 1,�, � �
0,1, …	,	found from the equations (1), (2), and using 
the initial conditions (3). Find them. 

From the equations (1), (2) we find the time 
derivatives 

 
	���� � ����, �� ����� � ����, ����� � ������ � 

�����, ��,			� � 1,�,                       (13) 
 
���� � ������, �� ����� � ����, ����� � ������ � 

�������, ��,			� � 1,�,                   (14) 
 

we substitute them into the boundary and 
conjugation conditions (4)�(7). 

By virtue of the initial conditions (3) we have 
 

������, ��|��� � �������,		 �����, ��|��� � ��� ���,	 	���, �� � |��� � �����. 
 
The zero order matching conditions will be 
 
����0,0� � ���0�, ����0,0� � ���0�,					 �����, 0� � ���0�, �����, 0� � ���0�, 

for� � 0, � � �and 
������, 0� � ������, 0� � ���0�, 

 
������, 0� � ������, 0����, 0�������, 0� � 

� ���0�,			� � 1,�, 
 

� �����, 0��������, 0� ��������, 0��������, 0�� |���� � 

� ���0� � ����0�, 
 

� �����, 0��������, 0� ���������, 0��������, 0�� |���� � 

� ���0� � ����0� 
 
for� � ��. 

To obtain the first order matching condition, let 
us differentiate the boundary and conjugation 
conditions (4)�(7) with respect to the variable �, 
taking intoaccount (13), (14). 

The first order matching conditions for � � �� 
are 

��������, 0� � �������, 0��|���� � 
�������, 0� � �����, 0�����|��� � 
������, 0� � �����, 0� � �����0�,        (15) 

 
���������, 0�|���� � �����, 0����|��� � 

��������, 0� � �����, 0���������, 0�|���� � 
������, 0����|��� � �����, 0�� � 

� �����0�, � � 1,�.                  (16) 
Find the ���|���from formulas (15) and (16) 
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���|��� ≔
�����0� � ��������, 0� � �������, 0��|���� � �����, 0� � �����, 0�

�����, 0� � �����, 0� ,																		�1�� 
 

and  

		���|��� ≔
�����0� � ���������, 0�|���� � �������, 0� � �����, 0���������, 0�|���� � �����, 0�

�����, 0� � �����, 0������, 0� ,				�1�� 
 
 

where |�����, 0� � �����, 0�| � 0, ������, 0� �
�����, 0������, 0�| � 0, � � 1,�. 

Equating the found derivatives (17), (18) , we 
get the matching condition 

 
 

	���|��� ≡
�����0� � ��������, 0� � �������, 0��|���� � �����, 0� � �����, 0�

�����, 0� � �����, 0� � 

 

� �����0� � ���������, 0�|���� � �������, 0� � �����, 0���������, 0�|���� � �����, 0�
�����, 0� � �����, 0������, 0� , � � 1,�. 

 
 

We say that for the problem (4)�(7) the 
conditions for matching the order of� are satisfied if 
the equalities 

 
�������, ��|���,��� � ��������0�, 
		�������, ��|���,��� � ��������0�, 

 
�������, ��|���,��� � ��������0�, 
		�������, ��|���,��� � ��������0�, 

 
��������, �� � �������, ��� |����,��� � ��������0�,	 

� � 0,…	,1 � �����, 
 

��������, �� � ����, ���������, ��� |����,��� 

� ��������0�, � � 1,�, � � 0, … ,1 � ����� 
 

take place. 
Here the derivatives �����, �����, � � 1,�,		are 

determined by the recurrence formulas: 
 

	���� � ����, �; ����� 
�����, ����� � ������ � ����, ��,			 

 
����� � �������� � ������ � ������ � 

�	������, ����� � ��������� � 
 

�����, ����� � ���������� � ������, ��, 
… 

 

		����� � ����������� � ��������� � 
��� � 1������������ � �� ��������� � 

����������, ����� � ������ � 
��� � 1����������, ����� � ���������� � �� 
�����, ����� � ���������� � ���������, ��, 

 
����� � ����������� � ����������� � 

��� � 1�������������� � �� ����������� � 
+���������, ����� � ������ � 

+�� � 1����������, ����� � ���������� � �� 
�����, ����� � ���������� � �����������, ��. 
 
We rewrite the problem (1)�(9) in the operator 

form 
�� � �,                               (19) 

 
where the operator � is defined by the expressions 
in the left parts of the equationsand conjugation 
conditions problem (1)�(9). 

We will assume that the following conditions: 
 

������, ��, ������, ��, ����, ��, ������, ��, 
	����, ��, ������, ��, ����, ��, ����, �� 

∈ ,)(
/2,

jT

ll

txC  ����, �� ∈ ,)(
/21

T

l

txC 


 

����, ��, ����, �� ∈ ,)(
/2)1(

T

l

txC 


	 
� � 1,�, � � � � ��� ∈ �0,1�; 
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��	�����, �� � ����, ���|���� � �� � ����� � 
� �, � ∈ ���, �����, �� � ����, ������, ���|���� � 
� �� � ����� � �, � � �,�, � ∈ ���, �������, �� � 
�������, ������, ���|���� � �� � ����� � 

� �, � � �,�, � ∈ ��� are fulfilled. 
 
2 Main results 
 
Theorem 1.  Let� � � � ��, � � � � �� or 

� � � � ��, � � � � ��  and conditions ��, ��	are 
fulfilled. 

For any functions ����, �� ∈ ),(
/2,

jT

ll

txC 


������, �� ∈ ),(
/2,

jT

ll

txC 


������ ∈ ,)(
2

j

l

xC 


 

������ ∈ )(
2

j

l

xC 


, �����,		 
����� ∈ )(

2/1

T

l

tC 


, � � �,�, 
	����� ∈ )(

2/1

T

l

tC 


, � � �,�,�� �����,			 
������, �����, ������ ∈ ,)(

/2)1(

T

l

txC 


 problem (1)-
(9) has a unique solution 

����, �� ∈ )(
/2,12

jT

ll

txC 


,	 

����, �� ∈ )(
/2,12

jT

ll

txC 


,		 
���� ∈ )(

2/1

T

l

tC 


 and following estimate is true 

 
 

‖�‖����� ����������
����� � �������

������ � |�|��
����

��
�

���
� 

� �� ���|��|���
��� � |����|���

��� � |���|��
����� � |���|��

����� � |��|��������� � |��|����������
�

���
� 

																								�� |��|���������
�

���
� |��|��������� � �|��|����������|��|��������� � �|��|����������,													���� 

 
 

where �� does not depend on � and �. 
Proof. The existence of the solution is proved 

by constructing the regularizer [8], and the estimate 
(20) is proved by the Schauder method. 

We cover the domain Ω with intervals 
�����, ������ with common center 	��.Let	�����, 	����� 
be smooth shear functions subject to the covering 
domains  Ωsuch that 	����� � �, if 	|� � ��| � � 
and 	����� � �, if 	|� � ��| � ��, and with 
properties ∑ ������ 	����� � � and 
 

	|����|, 	|����| � ��,����.	 Denote the intervals 
asfollows: for� ∈ �� intervals �����contain a point 
��, for� ∈ �� and � ∈ �� intervals ������ adjoin the 
boundary of the domain � � � and � � � 
accordingly, with � ∈ �� intervals ������ are entirely 
contained in Ω� ∪ Ω�. 

Note that for the equations (1), (2) ��� � ��� � �, 
� ∈ ��	and ��� � ��� � � at � ∈ �� ∪ ��, 	�� � �. 

We define the regularizer � by formula 
 

 
�� � ����,���, ���, ���,���	� � 

� ��	�������,���, ��
�∈�

,� 	�������,���, ��
�∈�

,� 	�������,���, ��
�∈�

,� 	�������,���, ��
�∈�

, � 	����������
�∈��

�, 
 
 

where � � �� ∪ �� ∪ �� ∪ ��, are functions 
��,���, ��, ��,���, ��, � � �,�, �����	 satisfy zero 
initial data and are defined as solutions model  
 

conjugation problem for� ∈ ��, the first boundary 
value problem for� ∈ �� ∪ �� and Cauchy 
problem with� ∈ ��. 
 



41Zh.K. Dzhobulaeva 

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 11, №1, 36 (2020)

Let  
������ � ����� � �0, ��, ������� � 

� ������� 	∩ �Ω� ∪ Ω��� � �0, ��. 
 

1. Let � ∈ ��. Perform a coordinate 
transformation � � �������� � � � � ��.		This 
conversion translates areas � � ��, ����� �
��	|	� � 0�  and � � �� into ����� � ��	|	� � 0�. 

Set	���������, ��, 		���������, ��|��������� � 
� ��,���, ��, ����,���, ���	����������|���, 

����������|���, ����������|���, ����������|��� � ��,����, ��,����, 
		����������|���� � ��,����, � � �,�, ����������,	 

�����������, ����������, ����������� � 
� ��,����, ���,����, ��,����, ���,����	 

and continue the functions��,� , ����,�zero in�����. 
We define the functions ���,���, ��, ���,���, ��,	 

� � �,�, ����� as a solution to thefollowing 
conjugation problem: 

 
	�����,� � �����, 0�������,� � 

������, 0���������� �� ��,���, ��in������,	 
	� � �,�,                               (21) 

 
	�����,� � �������, 0�������,� � 

������, 0���������� � ����,���, ��in������,		 
� � �,�,                               (22) 

 
����,� � �����, 0����,��|��� � ��,����, � � �,�,    (23) 

 
������, 0������,� � ������, 0������,��|��� � 

� ��,���� � ���,����,					                (24) 
 

������, 0������,� � ������, 0������,��|��� � 
� ��,���� � ���,����.					                (25) 

 
In [1],  Theorem was proved. 
 
Theorem 2.  Let0 � � � ��, 0 � � � ��	and be 

executed conditions	��, ��. 
For any functions ��,���, �� ∈ ),(

)(
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where �� does not depend on � and �. 
 The functions ���,���, ��, ���,���, ��, � � �,�,		are 

defined as asolution  of the first boundaryvalue 
problems � ∈ �� ∪ ��,	and functions 
��,���, ��, ��,���, ��, � � �,� with � ∈ �� are solution 
of Cauchy problem. Each of these problems under 
the conditions of the Theorem 2has a unique 
solution and it is subject to estimates (27), (28) [8] 
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We introduce the norm [1] 
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where ������� � ������� 	∩ �Ω� ∪ Ω��� � �0, ��. The 
norms of ��������, �������� are defined by 

formulas (11), (12). Note that the norms (29) are 
equivalent to the norms ‖�‖�����, ‖�‖������8�. 

Lemma 2. The operator ��� 	��Ω�� � 	��Ω�� 
is bounded: ��������� � ����������. 

Let us turn to the problem (1)-(9), which we 
recorded in operator form (19) �� � �. Obviously, 
�� ��Ω�� � 	��Ω��. 
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����, ���, ���, ���, 0,0,0,0,0, ���, ���, ���, ����,���, �����, �����, � � 1,�, ���, ��� contain lower 
terms or higher terms with small coefficients. 
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Lemma 4. Under the conditions of the Theorem 

1 for � � ��estimate 
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is fulfilled, where ӕ ∈ �0,1�. 
 
Lemma 5. Under the conditions of the Theorem 

2 there exists for � � �� bounded right inverse 
operator ���� � 	��� � �����	��Ω��� � ��Ω���,	 
where � is the unit operator. 

Proof. We have the problem �� � �. 
Substituting �� instead of �, we get ��� � � �
	�� � �� � ���.		 Let �� � ��� � ��,	 where 
�� ∈ 	��Ω���.	 Accordingto the assessment (30) this 
equation has a unique solution � ∈ 	��Ω���, which 
is subject to estimate ��������� �

�
��ӕ ���������� 

for anyone  vector �� ∈ 	��Ω���.	Then there is a 
limited the inverse operator �� � ���� in the space 
��Ω���. Substituting � � �� � ������ into the 
equation ��� � �� � � � ��, we get the identity 
���� � ������ � �� for any �� ∈ 	��Ω��� or 
���� � ���� � �. According to the definition 
implies that the operator � has the right inverse of  
 

the bounded operator ���� � ��� � ����,	and the 
problem �� � � has the solution � �
���, ��, ��, ��, �� ∈ ��Ω��� for any vector � ∈
	��Ω���. 

We obtain an estimate for the solution of the 
problem (1)-(9) using the Schauder method. 
Consider the functions of 
��,���, �� � ���������, ��, ��,���, �� � ���������, ��,
� � 1,�, ����� � �����	����, which are defined in 
������ � �0, ��� and extend them by zero outside this 
area. Depending on the location of the interval ������ 
in Ω for functions ��,���, ��, ����, ��, � � 1,�, ����� 
from the problem (1)�(9) the model pairing 
problem, the first boundary value problem, and the 
Cauchyproblem can be obtained. 

Multiply parabolic equations and problem 
conditions (1)�(9) on the cutting function �����. In 
the equations and conditions we will make 
transformations coordinates		� � �������� � � � �
�� as � ∈ �� for functions 
���,���, �� � ��,���, ��|���������, ���,���, �� ���,���, ��|���������, � � 1,�, ����� we get the 
conjugation problem with zero initial data in 
������, � � 1,�, 
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��,���, ��, contain smallest coefficients or leading 
coefficients with small coefficients. 

The conjugation problem (31), according to 
Theorem 2, uniquely solvable and for it's solution 
estimate (26) holds. Therefore, solutionof the 
problem (31)obeys the inequality 
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where �� does not depend on � and �. 

We also get the functions ���,���, ��,	 
���,���, ��, � � 1,� as solutions of the firstboundary 
value problems for � ∈ �� � ��,		and functions 
��,���, ��, ����, ��, � � 1,� for � ∈ �� as the is 
solution of the Cauchy problems. Based on [1], the 
firstboundary problem and the Cauchy problem are 
uniquely solvable. To solve the first boundary 
problem and the problem Cauchy valid estimates 
similar to those 

estimated. (27), (28) and (32), as well as similar 
functions arising in right partsof the equations of the 
first boundary value problems and the Cauchy 
problem. 

The norms of the functions ��,���, ��,
����,���, ��, ��,���, ��, ����,���, ��, � � 1,�, are 
estimated the same way as with the proof of Lemma 
3 norms of operators ���, �����, �����, � �
1,�, ���, ���. Moreover, if note that in the interval 
����� the cutoff function 	����� � 1,	then in ����� ��0, ��, ��,� ≔ ���� � ��, ��,� ≔ ���� � ��, �� ≔
��� � �. 

Using estimates of solutions of the conjugation 
problem (32), the first boundaryproblems and 
Cauchy problems we will have inequality 
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Hence, we get 
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where ������ � ������ ∩ �Ω� ∩ Ω��� � �0, ��. 
We proceed in the inequality (33) to the 

supremum on i, taking into accountthe definitions of 
the norms ��������� and ��������� in (29), as a 
result get anestimate 
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��������� � ������������. 
 
From this inequality, by virtue of the 

equivalence of norms ���������, ��������� and 
‖�‖������, ‖�‖������,		follows the evaluation of the 
solution to the problem (1)�(9) 

 
‖�‖������ � ���‖�‖������.           (34) 

 
The problem (1)�(9) is linear problem. The 

uniqueness of the solution followsfrom the 
evaluation (34). We proved the existence and 
uniqueness of the solutionof the problem (1)�(9) for 
� � ������, ���. Continuing the solution by � as in 
[8], we obtain Theorem 1 for �	 � 	�. 
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STUDYING UPWELLING PHASES IN THE KAZAKHSTAN 
PART OF THE CASPIAN SEA

Abstract. The process of upwelling is the rise of cold water masses to the surface of the reservoir and is the 
subject of study around the world, because this process affects many water parameters. Upwelling increa-
ses biological productivity and provides nutrients to marine fauna, partially causes changes in the mass of 
coastal waters, and the influx of cold water can affect local changes in the climate cycle.
In open and closed reservoirs, the process occurs in different ways. The Caspian Sea is a closed reservoir 
where the upwelling process is observed in the summer. In the article, based on satellite data of sea surface 
temperature, as well as local data on wind speed and direction, the phases of upwelling in the Kazakh part 
of the Caspian Sea, which occurred in the period from June 5 to August 22, 2017, are determined. The 
influence of constant North and North-East winds on the stages of upwelling development is shown, the 
spatial and temporal scales of the process development are determine.
Key words: process of upwelling, mass of coastal waters, satellite data, Ekman transfer, SNAP program.

Introduction 

The upwelling process is the lifting of nutrient-
rich colder waters from the depth to the upper layers 
[1]. The process occurs in coastal and open areas of 
the oceans and seas [2, 3, 4].

A strong constant horizontal wind creates 
tension in the surface layer of the reservoir, which 
is transmitted to the lower layers. A surface force 
occurs, is balanced by the Coriolis force of the next 
layer, and an Ekman spiral is formed, along which 
water masses are transferred from the depth to the 
surface. This effect was first physically explained by 
the Swedish oceanographer Vagn Walfrid Ekman and 
is called Ekman transfer [5].

The upwelling process can consist of two phases: 
the active phase and the relaxation phase. In the active 
phase, there is a strong constant horizontal wind, 
which causes the transfer of Ekman. The relaxation 
phase occurs when the wind force decreases, while the 
Ekman transfer is also observed, strong temperature 
changes persist, but the process gradually fades. 
According to [6], these phases can be divided into 
three stages depending on the wind speed: the first 
stage reflects the active phase with Ekman transfer, the 
second stage describes an intermediate state covering 

the end of the active phase and the beginning of the 
relaxation phase, and the third stage characterizes the 
end of the upwelling process.

There are generally accepted classifications of 
the following types of upwelling: Equatorial, coastal, 
neoceanic, artificial, etc.

The largest Equatorial upwelling of the open 
ocean is located near the equator in the Eastern 
Pacific ocean [2].

Coastal upwelling have been well studied off the 
North-West coast of Africa near the Canary Islands, in 
the southern regions of the African coast at latitudes 
5-300, in the Gulf of Guinea, on the Pacific coast of 
South America in the area of the Peruvian current, 
etc. In General, stable coastal upwelling are observed 
mainly at the Eastern edges of the oceans and seas.

The process of coastal upwelling occurs differently 
in open and closed reservoirs. Coastal upwelling in 
the Eastern part of the Baltic Sea regularly affects the 
Gulf of Finland, which is about 400 km long and 100 
km wide [7]. A group of Estonian scientists is actively 
working on the problems of wave dynamics of closed 
reservoirs. They regularly conduct measurements to 
track currents in the upper water layer at a test site 
located near the southern coast of the Gulf of Finland 
and the Baltic Sea. They have obtained interesting 
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results that can be used in the study of similar 
processes in the Caspian Sea, similar in type to the 
Baltic Sea.

In the Caspian Sea in the summer, wind-
induced upwelling results in a noticeable decrease in 
temperature and an increase in biomass in the upper 
layer of the Eastern part of the reservoir [8, 9, 10, 
11, 12]. A number of Russian scientists have studied 
and recorded changes in the surface temperature of 
the Northern part of the Caspian Sea using a very 
high resolution radiometer (AVHRR). In addition to 
instrumental measurements of water flow velocity, 
the dynamics of the Caspian Sea can be studied 
with high accuracy using remote sensing data from 
space (satellite altimetry) [13, 14,15,16,17]. Iranian 
scientists are exploring the southern part of the 
Caspian Sea using the optical flow (OF) method, 
or the so-called Horn-Shunk method. This method 
makes it possible to study small-scale processes 
in small regions, providing information about the 
intensity of movements in each pixel with high 
spatial resolution [18]. But the disadvantage of this 
method is that the optical flow looks smooth on all 
images, and to determine the temperature difference, 
you need to enter parameters for the size of the 
smoothness, which must be selected accordingly, 
which is quite a time-consuming task [19].

Mesoscale dynamics of the Caspian Sea is 
also analyzed using SET satellite data to record 
fast submesoscale currents. Thus, in [20] to better 
understand the process of mixing and transport at 
mesoscales, the seasonal circulation of the Caspian 
Sea caused by wind was studied.

Statement of the problem 

The Caspian Sea is characterized by the 
phenomenon of upwelling, which is most clearly 
expressed near the coast of the Middle Caspian. 
The main cause of the process is constant North and 
North-easterly winds. The process of upwelling in 
June-August 2017 is investigated. SST data from the 
Earth observation satellite system (EOS) is used to 
obtain moderate resolution images (MODIS) Aqua 
level 2 (MODIS heat bands 31 (11 µ) and 32 (12 µ)) 
from the NASA OceanColor open access website 
(http: //oceancolor.gsfc.nasa.gov/).

Adequate information on wind data is needed to 
account for atmospheric impacts. For this purpose, 
we use local data on sea wind measured at the Fort 
Shevchenko station. Station Fort Shevchenko is 
located on the Eastern shore of the Caspian Sea in 
Bucinskas Bay, which is part of the Tyub-Karagan 

Bay, and is located on the sandy Tyub-Karagan spit 
that separates the Bay from the sea. The zero mark of 
the post is 28.00 m BS (Baltic system). Coordinates 
of the post: latitude 44°33’, longitude 50°15’. Since 
there was no reliable information about the stability 
of the air flow during the study interval, a constant 
correction factor of 0.85 was applied. This coefficient 
was chosen because it was calculated for similar con-
ditions of a closed reservoir [12].

Results

SST maps do not allow you to determine the start 
of the upwelling process when cold water has not yet 
reached the sea surface. According to SST, upwell-
ing becomes apparent when cold water reaches the 
surface layer. The data was processed in the SNAP 
(Sentinel Application Platform) program developed 
by the European space Agency (ESA). The program 
allows you to quickly create images taking into ac-
count atmospheric phenomena and displaying error 
areas, and determine the location of an object with 
convenient graphical processing (GPF). Advanced 
level management allows you to add and process new 
overlays, such as images from other bands, images 
from WMS servers, or ESRI shapefiles. ESA tool-
boxes support the scientific operation of ERS-ENVI-
SAT and Sentinels 1/2/3 missions.

The obtained research results are shown in fig-
ures 1-3. Figure 1 shows the results of processing 
SST data in the SNAP program. Figure 2 shows a 
graph of wind speed and direction using local data, 
and figure 3 shows a calculation of temperature prop-
agation depending on the distance from the coast us-
ing satellite data. Figure 2 and figure 3 were obtained 
using the MatLab program.

The SST maps (Fig.1) show that upwelling was 
caused by constant North and North-westerly winds 
that blew from 1-4 June 2017 at an average speed of 
4.25 m/s (Fig. 2). According to satellite data, since 
June 5, 2017, the SST has decreased from 18° C to 
15°C (Fig.1, a). By mid-June 2017, cold water filled 
a 300 km long coastal zone along the Eastern coast of 
Kazakhstan (Fig.1, b-d). This water soon formed jets 
(Fig.1, e-g), which reached a distance of 50 -55 km 
from the coast, as shown in Fig.3. The legend indica-
tes the month / date. At the last stage 3 of upwelling, 
starting from July 28, the average wind speed fell be-
low 5 m/s (Fig.2).

For consistency, the daily rate of temperature chan-
ge was calculated from SST data. During the first phase 
of the rise of colder water to the surface layer (stage 1), 
the temperature dropped by about 1°C per day. 
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Figure 1 – SST maps of the Caspian Sea, cold-water distribution on the surface
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Figure 2. Values of wind speed (a) and wind azimuth  
(b) according to the Fort Shevchenko station at various stages of upwelling

Figure 3 – Graph of temperature changes depending on the distance from the coast
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This decrease was most intense at a distance of 50 
km from the coastline and was significantly less away 
from the coast. During the next period of relatively 
strong winds (stage 2), the SST gradually increased, 
on average, by about 0.5°C per day. The subsequent 
relaxation phase (stage 3, June 11-15) was charac-
terized by a decrease in wind speed. A much faster 
increase in SST (by 0.5-1°C per day) indicates the 
presence of intense mixing, which is most noticeable 
at a distance of 50-100 km from the coast.

Upwelling begins in June, but it reaches its hig-
hest intensity in July and August. As a result, there 
is a decrease in temperature on the water surface (by 
13-15 C0). SST data at the time of their explicit pre-
sentation on June 5-August 22 as clearly distinguis-
hable sections of colder water on the surface of the 
sea allowed us to determine its spatial and temporal 
scales and study the spatial distribution of waters.

Thus, on SST maps, the upwelling process is cle-
arly visible in the Eastern part of the Caspian Sea. 
Using local wind data and SST data, the temperature 
changes relative to the distance from the coast were 
calculated and the upwelling phases were determi-
ned, when cold water reaches the sea surface, forms 
water jets with low mixing intensity, and then the wa-
ter jets mix intensively in weak winds.

Conclusion

The phases of the upwelling process that took 
place in the Middle part of the Caspian Sea in the 
period from June 5 to August 22, 2017, as well 
as the spatial and temporal scales of the process 
development were Determined.

It was found that the nature of movements in the 
surface layer of the sea strongly depends on the wind 
speed. For moderate (6-10 m / s) and strong (>10 
m / s) winds, the Ekman transfer is formed. For a 
weak wind (<5 m/s), intensive mixing of different 
temperature waters occurs, which leads to the last 
stage of the process.

In the areas under consideration, upwelling 
reaches its highest intensity in July-August, with a 
temperature drop of 13-15 C0 observed on the water 
surface.

Acknowledgement like this: 

Work has been supported financially by the 
research project No AP05132939 “Control system 
design of the satellite formation motion for remote 
sensing of the Earth”, for 2018-2020 of the al-Farabi 
Kazakh National University, which is gratefully 
acknowledged by the authors.

References

1.	 Bakun, A., 1990. Global climate change and 
intensification of coastal ocean upwelling. Science 
247 (4939), 198–201.

2.	 Bondarenko, A.L. The Caspian Sea coastal 
upwelling (1998) Water Resources, 25 (4), pp. 467-
469.

3.	 Knysh V. V., Ibrayev R. A., Korotaev G. 
K., and Inyushina N. V.. Seasonal Variability of 
Climatic Currents in the Caspian Sea Reconstructed 
by Assimilation of Climatic Temperature and Salinity 
into the Model of Water Circulation. Izvestiya, 
Atmospheric and Oceanic Physics, 2008, Vol. 44, 
No. 2, pp. 236–249.

4.	 Monakhova Galina Anatolyevna, 
Akhmedova Gulnara Akhmedovna. The rise of deep 
waters off the Western coast of the middle Caspian. 
The scientific journal of the Kuban state agrarian 
University, №63(09), 2010.

5.	 Gill A., Dynamics of the atmosphere and 
ocean, 2 (1988) 8-12 p.

6.	 Zhurbas, V., Laanemets, J., Vahtera, E., 2008. 
Modeling of the mesoscale structure of coupled 
upwelling/downwelling events and the related input 
of nutrients to the upper mixed layer in the Gulf of 
Finland, Baltic Sea. J. Geophys. Res. Oceans 113 
(Art. No. C05004).

7.	 Nicole Delpeche-Ellmann a, Toma 
Mingelaitė, Tarmo Soomere. Examining Lagrangian 
surface transport during a coastal upwelling in 
the Gulf of Finland, Baltic Sea. Journal of Marine 
Systems 171 (2017) 21–30.

8.	 Halil J. Sur,  Emin Ozsoy, Rashit Ibrayev. 
Satellite-derived flow characteristics of the Caspian 
Sea. Satellites, Oceanography and Society edited by 
David Halpern. 2000 Elsevier Science B.V. 289-297.

9.	 Asghar Bohlulya, Fariba Sadat Esfahani 
, Masoud Montazeri Namin, Fatemeh Chegini. 
Evaluation of wind induced currents modeling 
along the Southern Caspian Sea. Continental Shelf 
Research 153 (2018) 50–63.

10.	 Ivkina N. I. Features of coastal upwelling 
in the Eastern part of the middle Caspian. 
Hydrometeorology and ecology. 2 (65). 2012. 81-87. 
UDC: 556.536

11.	 Rivo Uiboupin, Jaan Laanemets. Upwelling 
characteristics derived from satellite sea surface 
temperature data in the Gulf of Finland, Baltic Sea. 
Boreal Environment research 14: 297-304. 2009.

12.	 Shiea, M., Bidokhti, A.A. The study of 
upwelling in the eastern coast of the Caspian Sea 
using numerical simulation (2015) Journal of the 
Earth and Space Physics, 41 (3), pp. 535-545.



50 Studying upwelling phases in the Kazakhstan part of the Caspian sea

Int. j. math. phys. (Online)International Journal of Mathematics and Physics 11, №1, 45 (2020)

13.	 13Gurova, G., Lehmann, A., Ivanov, A., 
2013. Upwelling dynamics in the Baltic Sea studied 
by a combined SAR/infrared satellite data and 
circulation model analysis. Oceanologia 55, 687–
707.

14.	 Lebedev S. A., Kostyanoy A. G., Ginzburg A. 
I. Dynamics of the Caspian Sea based on instrumental 
measurements, modeling results and remote sensing 
data. May 2015. https://www.researchgate.net/
publication/280254971

15.	 Abutalieva I. R. Oil and gas Content and 
main sources of hydrocarbon pollution of the 
Northern Caspian Sea. // Bulletin of the Astrakhan 
state technical University. 2005, 158-162 p.

16.	 Daisuke Kitazawa, Jing Yang. Numerical 
analysis of water circulation and thermohaline 
structures in the Caspian Sea. J Mar Sci Technol 
17(2012) 168–180

17.	 Rakisheva Z. B., Kuzembayev K. K. On the 
problem of studying the wave climate of the Caspian 

Sea using satellite altimetry. / / «Bulletin of KazNPU» 
2017. 2-vol. №2, 7p. 

18.	 Emad Ghalenoei, Mahdi Hasanlou, 
Mohammad Ali Sharifi,  Stefano Vignudelli, Ismael 
Foroughi. Spatiotemporal monitoring of upwelled 
water motions using optical flow method in the 
Eastern Coasts of Caspian Sea. Journal of Applied 
Remote Sensing. Jul–Sep 2017, 036016-1, Vol. 11(3)

19.	 Shebalov A.A., Bazhenov A.N.. Research 
of performance of optical flow calculation methods. 
Scientific and technical Bulletin of spbpu Informatika. 
Telecommunications. Management, 6(2012), 152-158.

20.	 Gunduz M., Özsoy E.. Modelling seasonal 
circulation and thermohaline structure of the Caspian 
Sea. Ocean Sci., 10 (2014) 459–471.

21.	 Soomere T., Männikus R., Pindsoo K., 
Kudryavtseva N., Eelsalu M.. Modification of closure 
depths by synchronisation of severe seas and high 
water levels. // Geo-Marine Letters. February 2017, 
Volume 37, Issue 1, pp 35–46.



© 2020 al-Farabi Kazakh National University	  

International Journal of Mathematics and Physics 11, №1, 51 (2020)

Int. j. math. phys. (Online)
 

IRSTI 44.31.31                                                            https://doi.org/10.26577/ijmph.2020.v11.i1.07 
 
 

M. Gorokhovski 
 

Ecole Centrale de Lyon, Lyon, France 
e-mail: saulemaussumbekova@gmail.com 

 
APPLICATION OF OVERFIRE AIR TECHNOLOGY 

FOR REDUCTION OF HARMFUL EMISSIONS 
 
 

Abstract. When burning any fossil fuels, one of the most harmful combustion products are nitrogen 
oxides NOx, which damage both the environment and human health in particular. Reduction of NOx 
emissions from fuel combustion at TPPs plays an important role in reducing the total level of nitrogen 
oxides NOx emitted into the atmosphere. One way to reduce the concentration of nitrogen oxides NOx is 
the stepwise combustion of the pulverized coal mixture, in particular the «Over fire Air» technology. The 
essence of this method is that the main volume of air is fed into the pulverized burners, and the rest of the 
air is further along the height of the torch through special nozzles. Structurally, the method of stepwise 
combustion of fuel can be carried out in boilers with a two-tier arrangement of burners along the height of 
the combustion chamber. In this case, practically no significant reconstruction of the boiler is required, 
which is associated with additional costs. In the present work, computational experiments on the use of 
modern overfire air technology (OFA) in the combustion chamber of the PK-39 boiler of the Aksu TPP 
were carried out and the fields of the main characteristics of heat and mass transfer, as well as the 
influence of the mass flow of the oxidant through the OFA injectors on the combustion process were 
obtained. 
Key words: overfire air technology, coal combustion, numerical simulation. 

 
 
Introduction 
 
As of today Kazakhstan is one of the states 

possessing a huge stock of hydrocarbons which 
render essential influence on formation and a 
condition of the world energy market [1-3]. In the 
Republic of Kazakhstan, about 80% of the country's 
energy supply comes from the production of 
electricity by 69 power plants, the main source of 
which is Kazakh coal [4-6]. 

The coal mining in Republic is carried out 
basically by the open way , which makes this type of 
solid fuel the cheapest, but low-grade (high ash 
content in its composition) in our country a source 
of energy [3,7-8]. At the same time, the coal of 
Kazakhstan possesses a number of advantages – 
small sulphur content of coals and a high volatiles 
content on a dry ash-free basis. 

For the sustainable development of heat and 
power industry of the country in the near future, 
it is necessary to optimize the combustion of 
traditional energy fuel (Kazakh coal), to develop 
and implement clean energy technologies; to 
protect the environment from harmful dust and 
gas emissions and ensure the efficiency of power 
plants. One of the methods for reduction of NOx 

concentration is the overfire air technology – 
OFA. 

Technological methods for suppressing the 
formation of nitrogen oxides are based on a 
reduction in the peak temperature and oxygen 
content in the active combustion zone, as well as in 
the formation in the combustion chamber of zones 
with a reducing medium, where the products of 
incomplete combustion, reacting with the formed 
nitric oxide, lead to the reduction of NOx to 
molecular nitrogen N2. 

Thus, in the zone of active combustion, an 
oxygen-depleted and fuel-enriched combustion zone 
is formed. Due to the lack of air in this area, the 
average temperature is lower than in traditional 
combustion, which allows to reduce the amount of 
fuel and thermal nitrogen oxides. Further, above the 
level of the main burners, additional air is supplied 
through the tertiary air nozzles necessary for 
afterburning the products of incomplete combustion 
and an oxidizing medium is formed [9-10]. 

The most difficult step in realization of the OFA 
technology is to define the optimal location height 
and diameter of nozzles through which air will be 
supplied, and to find the best ratio of air supplying 
through the main burner and OFA-injectors. These 
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characteristics depend on design of the boilers and 
the method of supplying fuel-air mixture [10-11]. 

To effectively implement this technology on an 
industrial boiler, the height of the OFA injectors 
should be chosen so that in the active combustion 
zone a complete burn-out of the fuel and its 
afterburning to the final combustion products are 
ensured, since incomplete mixing of fuel and 
oxidant can increase underburning [12]. 

 
Mathematical model of heat and mass 

transfer processes 
 
For three-dimensional motion of a fluid with 

variable physical properties, the field of velocity, 
temperature, and concentration is described by a 
system of differential equations (1-4) 
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where i = 1,2,3; j = 1,2,3; β = 1,2,3, ... N. 

To simulate turbulent viscosity, the well-known 
k-ε turbulence model was used, consisting of the 
equation for the conservation of the kinetic energy 
of turbulence k, its dissipation rate ε, and the model 
relation for turbulent viscosity. The K-ε turbulence 
model is the standard model for forced and natural 
convection flows. The model include equation of 
transport of turbulent kinetic energy k and equation 
of dissipation of turbulent kinetic energy ε: 
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where σk, σε – the corresponding turbulent Prandtl 
numbers; Р – turbulent kinetic energy production: 
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Considering the processes of heat exchange in 

technical reacting flows in combustion chambers, 
heat exchange by means of radiation makes the 
greatest contribution to total heat transfer. In the 
flame zone, the contribution of radiant heat 
exchange is up to 90% of the total heat transfer and 
even more [13]. In this regard, the simulation of heat 
transfer through radiation in reacting flows in 
combustion chambers is one of the most important 
stages in the calculation of heat transfer processes in 
real combustion chambers. 

 
Physical model of the combustion chamber 
 
To solve the systems of differential equations 

describing the processes of heat and mass transfer in 
the combustion chamber of the boiler PK-39 of 
Aksu TPP, the control volume method [6, 14-16] 
was used.  

The essence of the method is that the space of 
the combustion chamber is divided into control 
volumes and for each point of space surrounded by a 
certain volume, the equations of conservation of 
physical quantity (mass, momentum, energy, etc.) 
are solved. 

Before the numerical experiments using the 
PREPROZ program [17], files and startup programs 
were created for two investigated cases, including 
initial and boundary conditions, the characteristics 
of the fuel (elemental composition, heat of 
combustion, fractional composition of Ekibastuz 
coal), the geometry of the boiler and burner devices 
[6, 18]. The main characteristics of the combustion 
chamber of the boiler PK-39 of Aksu TPP and burnt 
Ekibastuz coal are presented in table 1. 
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Table 1 – Characteristics of the combustion chamber of the boiler PK-39 of Aksu TPP and the pulverized coal burned 
on it (Ekibastuz coal) [3] 

 
The name of the characteristics, dimensionality Designation Value 
Fuel consumption per boiler, kg/h В 87 500 
Fuel consumption per burner, kg/h Вb=В/Z 7291.1 

Fuel – Ekibastuz coal  
Composition of coal,% 

Wp 
Ap 
Sp 
Cp 
Hp 
Op 
Np 

7.0 
40.9 
0.8 

41.1 
2.8 
6.6 
0.8 

Calorific value, MJ/kg QH
p 15.87 

Volatile, % VF 30.0 
Coefficient of excess air at the exit from the furnace т 1.25 
Coefficient of excess air in the burners  г 1.15 
Temperature of the air mixture, °C (K) Ta 150(423) 
Temperature of secondary air, °C (K) T2 327(600) 
Type of burners Vortical 
Number of burners, pcs nB 12 
Height of the furnace, m z(H) 29.985 
Width of the furnace, m Y 10.76 
Depth of the furnace, m X 7.762 

 
 
Figure 1 provides a general view and a gridding 

of the boiler: for traditional pulverized coal 
combustion (Fig. 1a), at implement of secondary air 
nozzles – OFA (Fig. 1b). The major structural 
characteristics are presented in table 2. In the work, 
cases with a percentage of the supply air through the 
nozzles OFA equal to 0 (base case), 10 and 20% of 
the total amount of secondary and tertiary air 
supplied to the combustion chamber. 

 

 
Figure 1 – General view and a gridding  

of the PK-39boiler 

Table 2 – Constructional characteristics of a boiler PK-
39 of Aksu TPP at the organization of staged combustion 
of fuel 

 
The characteristic Value
Number of OFA-nozzles, pcs 6 
The height of the tier of the lower burners, m 7,315 
The height of the tier of the upper burners, m 10,115
The height of the tier of the OFA-nozzles, m 15,735 
Diameter of OFA-nozzles, m 0,7 

 
Results and discussion 
 
Results of researches obtained with the 

FLOREAN software package [19-22] are presented 
below in the paper. Figure 2 shows the distribution 
of the full-velocity vector in different sections of the 
combustion chamber for the base case (OFA 0%) 
and with the use of the overfire air technology (OFA 
20%). Analysis of the figures shows that with the 
use of OFA technology, the combustion process in 
the central part of the combustion chamber is more 
intense compared to the base case. 
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a)

 
b) 

 
c) 

 
Figure 2 – The distribution of the velocity vector in different sections  

of the combustion chamber  a) Y=5.38 m; b) Z=15.735 m; c) Z=29,595 m 
 
 
Figure 3 shows the distribution of average 

temperatures on height of furnace chamber for the 
investigated cases. The results of full-scale 
experiment conducted at Aksu TPP [23] are also 
plotted on the graph. Moving towards the exit of the 
furnace temperature field is equalized and 
differences in temperature values for different 
occasions decrease. 

Also, it can be seen that the greatest differences 
between the results of computational and full-scale 
experiments are observed in the area of ignition of 
the pulverized coal mixture. Moving towards the 
exit from the furnace space, these differences are 
insignificant, which indicates good consistency and, 
as a consequence, the adequacy of the used models.  

Figures 4-5 show graphs of the distribution of 
combustion products – carbon CO2 and nitrogen NO 
oxides along the height of furnace chamber of PK-
39 boiler of Aksu TPP. Analyzing the distribution of 
carbon monoxide (Figure 4), it can be seen that the 
greatest differences in the values are noticeable in 

the area of the burner belt and OFA-injectors. To the 
exit from the combustion chamber with increasing 
mass flow of air through the OFA-nozzles, the 
concentration of carbon dioxide CO2 is reduced. 

 

 
Figure 3 – Temperature distribution over the height of the 

combustion chamber of the boiler PK-39 for different values of 
air supplied through the nozzles OFA and comparison with 

experiment [23] 
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Figure 5 represents the distribution of the 
concentration of nitrogen oxide NO along the height 
of furnace chamber of PK-39 boiler of Aksu TPP. 

Analysis of Figure 5 allows us to conclude that 
an increase in the mass flow of air supplied through 
OFA injectors leads to a decrease in NO 
concentration at the outlet from the furnace chamber 
of PK-39 boiler of Aksu TPP. This is confirmed by 
the known dependence of NO oxides formed on 
temperature [24] and analysis of the temperature 
distribution in the combustion chamber of the boiler 
PK-39, presented in Figure 3. 

 

 
Figure 4 – Distribution of CO2 concentration along  

the furnace chamber height for different values of air supplied 
through the nozzles OFA and comparison with experiment [23] 

 

 
Figure 5 – Distribution of NOx concentration along  

the furnace chamber height for different values  
of air supplied through the nozzles OFA 

 
Figure 6 – The effect of the percentage of mass  

air flow through the OFA injectors on the NO concentration  
at the outlet from the combustion chamber  

of the PK-39 boiler of the Aksu TPP 
 
The increase in air supplied through the OFA 

injectors allows to reduce the concentration of nitric 
oxide at the outlet from the combustion chamber 
from for about 20 %. The results of the studies are 
presented in the form of a diagram in Figure 6. 

 
Conclusion 
 
This paper presents the experiments on the 

implementation of the overfire air technology on the 
combustion chamber of PK-39 boiler of Aksu TPP. 
This technology is based on the separation of the 
oxidant supplied to the combustion chamber in such 
a way as to reduce the amount of fuel NOx in the 
burner location by reducing excess air, and reduce 
the amount of thermal NOx by reducing the 
temperature of the flame in the region of the 
location of the OFA-injectors. 

Studies show that the implementation of OFA 
technology on the boiler PK-39 Aksu TPP leads to a 
change in the distribution of temperature T, the 
concentrations of carbon CO2 and nitrogen NO 
oxides in the combustion chamber. 

Thus, the studies in this paper demonstrate that 
overfire air technology is one of the most promising 
ways to reduce emissions of harmful substances 
(nitrogen oxide NOx and carbon dioxide CO2) in the 
atmosphere and can be used in the combustion of 
high-ash fuels in combustion chambers of coal-fired 
TPPs. 
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Nomenclature 
ij – tensor of viscous tension; 
fi – volume forces, N; 
h – enthalpy; 
qres – energy flux density due to molecular heat 

transfer; 
Sh – a source of energy; 
сn – mass concentration of the components of 

the substance; 

ncD  – the diffusion coefficient of a component; 

ncS  – the source term taking into account the 
contribution of the chemical reactions in the change 
in the concentration of components; 

k – turbulent kinetic energy per unit mass; 
µeff – effective viscosity; 
σk, σε – turbulent Prandtl numbers – empirical 

constants in turbulence model; 
Р – the production of turbulent kinetic energy, 

which is determined by the following equation; 
ε – dissipation rate of turbulent kinetic energy 

per unit mass; 
δij – Kronecker delta; 
µturb– turbulent viscosity; 
сε1, cε2, cµ – empirical constants; 
 
References 
 
1. Askarova A., Bolegenova S., Bekmukhamet 

A., Maximov Yu.V., Beketayeva M., Ospanova Sh. 
Gabitova Z.K. Investigation of turbulence 
characteristics of burning process of the solid fuel in 
BKZ 420 combustion chamber. WSEAS Transac-
tions on Heat and Mass Transfer 9, (2014): 39-50. 

2. Askarova A.S., Bekmukhamet A., 
Bolegenova S.A., Beketayeva M.T., Maximov 
Yu.V., Ospanova Sh.S., Gabitova Z.K. Numerical 
modeling of turbulence characteristics of burning 
process of the solid fuel in BKZ-420-140-7c 
combustion chamber. International Journal of 
Mechanics 8 (2014): 112-122. 

3. Askarova A.S., Bolegenova S.A., Maximov 
V.Y., Bekmukhamet A, Beketayeva M.T., Gabitova 
Z.K. etc. Computational method for investigation of 
solid fuel combustion in combustion chambers of a 
heat power plant. High temperature 53, Issue 5 
(2015): 751-757. 

4. Askarova A., Bolegenova S., Bekmukhamet 
A., Ospanova Sh., Gabitova Z. Using 3D modeling 
technology for investigation of conventional 
combustion mode of BKZ-420-140-7c combustion 
chamber. Journal of Engineering and Applied 
Sciences 9, Issue 1 (2014): 24-28.  

5. Askarova A.S., Bolegenova S.A., 
Bekmuhamet A., Maximov V.Yu. Mathematical 
simulation of pulverized coal in combustion 
chamber. Procedia Engineering 42, (2012): 1259-
1265. 

6. Askarova A., Bekmukhamet A., Bolegeno-
va S., Ospanova Sh., Bolegenova Symbat, Maximov 
V. Beketayeva M., Gabitova Z., Ergalieva A. 3D 
modeling of heat and mass transfer during combus-
tion of solid fuel in BKZ-420-140-7c combustion 
chamber of Kazakhstan. Journal of Applied Fluid 
Mechanics 9, Issue 2, (2016): 699-709. 

7. Askarova, A.S., Lavrichsheva, Ye.I., 
Leithner, R., Müller, H., Magda, A. Combustion of 
low-rank coals in furnaces of Kazakhstan coal-firing 
power plants. VDI Berichte 1988, (2007): 497-502. 

8. Askarova, A. S., Vockrodt S., Leithner. et 
al. Firing technique measures for increased 
efficiency and minimization of toxic emissions in 
Kasakh coal firing. VDI, 19th German Conference 
on Flames, Germany, VDI Gesell Energietechn; 
Verein Deutsch Ingn., Combustion And Incine-
ration, VDI Berichte, v.1492, (1999): 93. 

9. Kuang M., Li Z., Liu C., Zhu Q., Zhang Y., 
Wang Y. Evaluation of overfire air behavior for a 
down-fired 350 MWe utility boiler with multiple 
injection and multiple staging. Applied Thermal 
Engineering 48, (2012): 164-175. 

10. Askarova A.S., Messerle V.E., Ustimenko 
A.B., Bolegenova S.A., Bolegenova S.A., Maximov 
V.Y., Ergalieva A. Reduction of noxious substance 
emissions at the pulverized fuel combustion in the 
combustor of the BKZ-160 boiler of the Almaty 
heat electropower station using the “Overfire Air” 
technology. Thermophysics and aeromechanics 23, 
Issue 1, (2016): 125-134.  

11. Askarova A.S., Heierle E.I., Bolegenova 
S.A., Maximov V.Ju., Bolegenova S.A., Mana-
tbayev R., Beketaeva M.T., Ergalieva A.B. CFD 
study of harmful substances production in coal-fired 
power plant of Kazakhstan. Bulgarian Chemical 
Communications Special Issue E, (2016): 260-265. 

12. Li M., Wang X., Sun S., Zhen X., Li Q., 
Zhang T. Influence of Overfire air jet form on low 
NOx retrofit effect of an opposed firing boiler. 
Journal of Chinese society of power engineering 4, 
(2015): 263-269. 

13. Weber K. Dreidimensionale Simulation der 
Gas–Festoff–Strömung in kohlegefeuerten Dam-
pferzeugern. Fortschritt–Berichte VDI–Verlag 6, 
Issue 415, (1999): 198.  

14. Askarova A., Bolegenova S. et al. Influence 
of boundary conditions to heat and mass transfer 



57M. Gorokhovski

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 11, №1, 4 (2020)
 

processes. International Journal of Mechanics 10 
(2016): 320-325. 

15. Askarova A., Bolegenova S., Maximov V. 
et al. On the effect of the temperature boundary 
conditions on the walls for the processes of heat and 
mass transfer. International Journal of Mechanics 
10, (2016): 349-355. 

16. Askarova, A. S., Bolegenova, S.A., Maxi-
mov, V.Y., Bekmukhamet, A, Ospanova, S.S. Nu-
merical research of aerodynamic characteristics of 
combustion chamber BKZ-75 mining thermal power 
station. Procedia Engineering 42, (2012): 1250-1259. 

17. Askarova A.S., Bolegenova S.A., Bolege-
nova S., Bekmukhamet A., Maximov V.Yu., 
Beketayeva M.T. Numerical experimenting of 
combustion in the real boiler of CHP. International 
Journal of Mechanics 3, Issue 7, (2013): 343-352. 

18. Askarova, A.S., Messerle, V.E., Ustimenko, 
A.B., Bolegenova, S.A., Maksimov, V.Yu. 
Numerical simulation of the coal combustion 
process initiated by a plasma source. Thermophysics 
and aeromechanics 21, Issue 6, (2014): 747-754. 

19. Leithner R., Müller H. CFD studies for 
boilers. Second M.I.T. Conference on 

Computational Fluid and Solid Mechanics. 
Cambridge, (2003): 172. 

20. Leithner R., Müller H., Heitmüller R. 
Dreidimensionale Simulation von Dampferzeuger-
Brennkammern einschließlich der NOx-
Schadstoffkinetik. Essen, 1993. 

21. Müller H. Numerische Berechnung 
dreidimensionaler turbulenter Strömungen in 
Dampferzeugern mit Wärmeübergang und 
chemischen Reactionen am Beispiel des SNCR–
Verfahrens und der Kohleverbrennung // 
Fortschritt–Berichte VDI-Verlag, 268 (1992): 158. 

22. Gabitova Z.Kh., Gorokhovski M., 
Septemirova A., Kalybekov A., Bulysheva G. 
Numerical simulation of heat and mass transfer 
processes in combustion chamber of pk-39 boiler. 
International Journal of Mathematics and Physics 
10, Issue 1, (2019): 99-106. 

23. Aliyarov B.K., Aliyarova M.B. Szhiganie 
kazahstanskih ugley na TES i na krupnyih 
kotelnyih: opyit i problemyi, Almatyi, 2012. 

24. Zeldovich J. The oxidation of Nitrogen in 
combustions and explosions. Acta Physicochemica 
21, (1946): 557-628. 

 



© 2020 al-Farabi Kazakh National University	  

International Journal of Mathematics and Physics 11, №1, 58 (2020)

Int. j. math. phys. (Online)

IRSTI 27.35.17                                                                  https://doi.org/10.26577/ijmph.2020.v11.i1.08 
	
 

L.A. Nesterenkova, P.A. Nesterenkov, Z.H. Spabekova  
 

Al-Farabi Kazakh National University, Almaty, Kazakhstan, 
e-mail: stolkner@gmail.com 

 
ON TWO WAYS TO IMPROVE THE RHEOLOGY OF 

HIGH VISCOUS OIL IN AN OIL PIPELINE 
 
 

Abstract. Transportation of highly viscous and high-curing oils through main pipelines requires 
significant energy costs. Thus, the task of choosing the cheapest pumping modes is very relevant. The 
article describes and proposes a solution to the oil flow problem in a pipeline using two methods: with 
preheating and using a Laval nozzle at the inlet of the pipeline. Mathematical models of the flow of high-
viscosity oil in the main oil pipeline for the two named pumping methods have been compiled. An 
algorithm has been developed for calculating temperature, viscosity and pressure along the length of the 
Uzen-Atyrau pipeline at various oil flow rates. The results of temperature and pressure distribution are 
analyzed and compared at different oil flow rates along the length of the pipeline for two pumping 
methods. It is shown that the use of cavitation improves the rheological properties of oil and can 
significantly reduce the cost of pumping. The research results can be used to predict the operation of main 
oil pipelines pumping oil both in a heated state and in isothermal mode with a Laval nozzle. 
Key words: high viscosity oil, pressure and temperature along the pipeline, cavitation, oil pipelines 
operation costs. 

 
 
Introduction 
 
Kazakhstan has the largest deposits of liquid 

hydrocarbons. In terms of oil reserves, our country 
is one of the 15 leading countries in the world, and 
has 3.3% of the world's carbon reserves [1]. 

The bulk of the oil produced in our country is 
highly viscous, because it contains a large number 
of paraffin fractions, resins, asphaltenes and other 
components. Pipeline transport of such oils require 
significant energy costs [2].To reduce them, special 
methods are used to improve the rheological 
properties of the transported product [2,3]. For 
example, in the practice of transporting highly 
viscous high-hardening oils and petroleum products, 
methods such as pumping in a carrier stream have 
found application (in this method, oil is cooled to a 
level where it will be a solid granular body and 
transferred in a stream of liquefied gas); pipeline 
transport with continuous heating (using various 
coolants or electric heating of the pipeline); 
pumping with diluents (with dilution of oil with 
external low-viscosity oils, liquefied gas, etc.); 
hydro-transport (pumping oil with a near-wall water 
layer); pumping heat-treated oils with improving 
their rheological properties; preheating pumping and 
so on [3]. 

Material and methods 
 
Among the existing methods, the pre-heated 

pumping method has gained the greatest popularity, 
which can significantly reduce the viscosity of the 
transported product [3,4]. In this method of 
transportation, oil (usually 45 – 65 °C) heated to the 
optimum temperature is pumped into the main line 
by pumps. Through certain distances, intermediate 
heat and pumping stations are established along the 
pipeline route, where the oil that cools down along 
the way is heated and pumped to the next station. 
The distance between pumping stations and thermal 
stations is determined by the rate of temperature 
decrease and pressure depression. 

The operation of underground heated oil 
pipelines has a number of related features. first of 
all, with the influence of the conditions of their heat 
exchange with the environment. In many cases, 
there are reasons that adversely affect the 
temperature regime of the pipeline (annual changes 
in soil temperature; shutdowns and shutdowns of 
pumping and heating units, both planned and due to 
equipment failures, triggering of the automatic 
protection system; change in the thermal 
conductivity of the soil due to strong rains, intense 
melting of snow, floods, etc.). This creates a danger 
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of emergency situations and requires additional 
capital investments. 

Due to the fact that pipelines are being built in 
regions with different climatic and environmental 
conditions, problems arise in the selection and 
justification of laying methods and operation modes 
of pipelines. When designing them, the selection of 
the main technological and structural parameters 
and construction solutions is carried out mainly on 
the basis of the conditions of stationary operation of 
the pipeline. This necessitates further improvement 
of the methods for studying the transport of oil and 
oil products. In this regard, the issue of using non-
standard methods for changing the rheological 
properties of oils and petroleum products becomes 
relevant. 

One of promising methods for changing the 
viscosity of oil is cavitation [5,6]. For cavitation to 
occur, a hollow cylindrical pipe of variable section 
(tapering, and then expanding part in a certain way) 
is placed in the pipeline. The fact is that when oil 
passes through this pipe, called the Laval nozzle, 
due to cavitation, as a result of a decrease in 
pressure in the expanding part of the nozzle, a sharp 
change in its rheological properties occurs. At the 
outlet of the Laval nozzle, oil has a lower viscosity, 
higher fluidity, and lower tensile stress [7]. 

This paper explores the possibility of using a 
Laval nozzle at the inlet of the pipeline to create 
cavitation effects of the transported liquid, which 
can reduce the viscosity of oil by comparing the 
calculations of the flow of oil through a pre-heated 
oil pipeline and through a pipeline with a Laval 
nozzle. 

 
Results and discussion 
 
In a preheated oil pipeline, a steady non-

isothermal oil flow in linear sections between 
intermediate stations is described by a system of 
differential equations of motion, continuity and 
energy [3,4]. 

When constructing a mathematical model of the 
steady non-isothermal flow of highly viscous fluid 
in an underground pipeline laid over rough terrain, 
the following assumptions were made: 

 due to the large length of the main pipelines, 
we use a one-dimensional mathematical model of 
the flow, the X axis is compatible with the axis of 
the pipe, and all process parameters are averaged 
over the pipe section; 

 thermal and pumping stations located along 
the route are considered point-like because of their 
small size compared to the length of the pipeline; 

 the pipeline is divided into sections between 
thermal and pumping stations (so called “linear 
sections” in this work); 

 along the length of the pipeline there are no 
intermediate sources of mass; 

 oil is considered as a single-phase viscoplastic 
incompressible fluid; 

 heat transfer between the pipeline and the 
surrounding soil obeys the Newton-Richmann law;  

 the coefficients of density ρ, specific heat of 
oil c and soil thermal conductivity λ are independent 
of temperature. 

Under the assumptions made, the steady non-
isothermal flow of oil in the linear sections between 
intermediate stations will have [3,4]: 
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with boundary conditions 

 
р(0) = рn; Т(0) = Тn; w(0) = wn     (3) 

 
and interfacing conditions at intermediate stations: 
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where p – pressure in the pipeline, w; T – respectively, 
the flow velocity and oil temperature; D – internal 
diameter of the pipeline, z – geodetic height of the 
pipeline; Toкр – temperature of the soil surrounding the 
pipeline; k = 2λ / (D · ln (4h / D )) – heat transfer 
coefficient from the oil pipeline to the surrounding 
soil; h – laying depth to the pipe axles, ∆Тj, ∆рj; – 
changes in temperature and pressure at the jthstation, 
the j index indicates the station number; the indices 
“+” and “-“indicate the values of the values on the 
right and left border of the section; N – number of 
stations and linear sections between stations. 

To determine the frictional pressure loss of 
viscoplastic oil hтp, will use the Darcy – Leibenzon 
expression [3,8]: 
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where m and β are coefficients depending on the 
flow regime [3]. 

The kinematic viscosity coefficient v and the 
ultimate shear stress τ0 are largely dependent on 
temperature. For an analytical description of these 
dependencies, we use the expressions [3]: 
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where α1, α2 are empirical constants, T1 is a fixed 
temperature. 

The cost of operating the pipeline is mainly 
determined by fuel	 consumption	 level	 at thermal 
stations and electricity consumption	 at pumping 
stations. For a stationary flow regime, these costs 
are determined by the expression [4]: 
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where t – operating time of the pipeline;φj, ξj are, 
respectively, values proportional to the cost of a unit 
of fuel and electricity of the jth station. If the price of 
fuel and electricity at all stations is the same, the 
cost functional (7) taking into account (4) will be 
minimal under the following conditions [4]: 
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where Tmin, pmin – the minimum allowable 
temperature and pressure in the pipe. 

From the continuity equation from system (1) 
we have:���� � ����� � 	��. 

The energy equation (2) on the linear sections of 
the pipeline has an analytical solution: 
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The equation of motion from system (1), taking 
into account (5), (6), contains large nonlinearities, 
therefore, the pressure distribution along the 
pipeline route will be calculated numerically using 
finite-difference schemes. Having divided each 
linear section j into segments of length Δхj, and 
taking into account the boundary conditions, we find 
the temperature from (9) at each node and then the 
pressure from (1), (3), (4): 
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where Mj is the number of partitions on the jth 
segment. 

The algorithm for solving the thermo hydraulic 
fuel and energy problem (10) taking into account the 
cost of costs (7) is implemented as aapplication 

software. The calculation results for the Uzen-
Atyrau trunk pipeline are shown in Figures 1,2. 

In an oil pipeline with a Laval nozzle at the 
inlet, the mathematical model will be slightly 
different from model (1) – (10). 

 

 
 

Figure 1 –Pressure distribution along the Uzen-Atyrau oil pipeline 
 
 

 
 

Figure 2 – Temperature distribution along the Uzen-Atyrau oil pipeline 
 
 

Firstly, oil heating at intermediate stations is not 
required, because its viscosity decreases as it passes 
through the Laval nozzle. The decrease in viscosity 
depends on the nozzle entry angle α and the initial 
temperature Tn. The empirical formula has the form: 

 
�=(f·a2+y·α + n) ·ехр(и·Тn) 

 
where f, y, n, u – are empirical constants. 

Note that the viscosity in this case is constant, 
and oil is a viscoplasticfluid for which dhТp/dx are 
described by expression (5). 

Secondly, the effect of cavitation and a change 
in the cross section of the pipe leads to: 

 
τ0 =0,�=соnst  (11) 

 
and pressure losses, which can be calculated by the 
formulas [6, 9,10]: 
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where γ1, γ2 are empirical constants; wкp, pкав are the 
critical values of pressure and velocity at which 
cavitation occurs; Dmin is the minimum diameter in 
the Laval nozzle. 

Thirdly, as the experiment [7] showed, the 
decrease in viscosity is so significant, that for 
sufficiently long pipelines intermediate pumping 
stations can be abandoned using only the head one. 

Thus, the stationary process of oil transportation 
in this case will be described by the system of 
equations (1), (2), (5), (11), (12), and the linear 
section is the entire pipeline and N = 1. The 
boundary conditions taking into account (12) are 
given in the form: 
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Since in this case there are no nonlinearities in 

the model, problem (1), (2), (5), (11) – (13) is 
solved analytically: 
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The cost of the pipeline operation (7) in this case 

will be: 
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and the minimum cost will be achieved with p1 = 
pmin. 

The results of calculations of the oil flow in the 
pipeline using a Laval nozzle are shown in figures 
1,2. 

Comparison of the results of calculations of the 
oil pipeline with preheating and using cavitation at 
the inlet of the pipeline showed (see Figures 1-3) 
that its application allows to operate without 
intermediate heating stations and with much lower 
energy costs, which is economically very profitable. 
So, in the case shown in the graphs, the use of a 
nozzle allows reducing the cost of transporting high-
viscosity oil by 3 times. 

However, it should be noted that when using a 
Laval nozzle, high-viscosity oil recovers its original 
structure over time [5], which can somewhat reduce 
the positive effect of cavitation. 

 

 
 

Figure 3 –Comparison of operationcost  
of the Uzen-Atyrau oil pipeline  

 
Conclusions 
 
Mathematical models of the flow of high-

viscosity oil in the main oil pipeline for two 
pumping methods have been compiled: with 
preheating and using a Laval nozzle at the pipeline 
inlet. 

An algorithm has been compiled to calculate the 
temperature, viscosity and pressure along the length 
of the Uzen-Atyrau pipeline at different oil flow 
rates. 

The paper analyzes and compares the results of 
the distribution of temperature and pressure at 
different speeds of oil flow along the length of the 
pipeline for two pumping methods. 

It was found that the viscosity of cavitation-
treated oil is four times less than the initial value, 
which can significantly reduce the cost of pumping. 
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