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EDITORIAL

The most significant scientific achievements are attained through joint efforts of 
different sciences, mathematics and physics are among them. Therefore publication of 
the Journal, which shows results of current investigations in the field of mathematics 
and physics, will allow wider exhibition of scientific problems, tasks and discoveries.

One of the basic goals of the Journal is to promote extensive exchange of 
information between scientists from all over the world. We propose publishing 
service for original papers and materials of Mathematical and Physical Conferences 
(by selection) held in different countries and in the Republic of Kazakhstan.

Creation of the special International Journal of Mathematics and Physics is of 
great importance because a vast amount of scientists are willing to publish their 
articles and it will help to widen the geography of future dissemination. We will also 
be glad to publish papers of scientists from all the continents.

The Journal will publish experimental and theoretical investigations on 
Mathematics, Physical Technology and Physics. Among the subject emphasized 
are modern problems of Applied Mathematics, Algebra, Mathematical Analysis, 
Differential Equations, Mechanics, Informatics, Mathematical Modeling, Astronomy, 
Space Research, Theoretical Physics, Plasma Physics, Chemical Physics, Radio 
Physics, Thermophysics, Nuclear Physics, Nanotechnology, and etc.

The Journal is issued on the base of al-Farabi Kazakh National University. 
Leading scientists from different countries of the world agreed to join the Editorial 
Board of the Journal.

The Journal is published twice a year by al-Farabi Kazakh National University. We 
hope to receive papers from many laboratories which are interested in applications of 
the scientific principles of mathematics and physics and are carrying out researches 
on such subjects as production of new materials or technological problems. 
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NUMERICAL SOLUTION OF A CONTROL PROBLEM 

FOR ORDINARY DIFFERENTIAL EQUATIONS  
WITH MULTIPOINT INTEGRAL CONDITION 

 
 

Abstract.A linear boundary value problem with a parameter for ordinary differential equations with 
multipoint integral conditionis investigated.The method of parameterization is used for solving the 
considered problem. The linear boundary value problem with a parameter for ordinary differential 
equations with multipoint integral condition by introducing additional parameters at the partition points 
is reduced to equivalent boundary value problem with parameters. The equivalent boundary value 
problem with parameters consists of the Cauchy problem for the system of ordinary differential 
equations with parameters, multipoint integral condition and continuity conditions. The solution of the 
Cauchy problem for the system of ordinary differential equations with parameters is constructed using 
the fundamental matrix of differential equation. The system of linear algebraic equations with respect to 
the parameters are composed by substituting the values of the corresponding points in the built 
solutions to the multipoint integral condition and the continuity condition. Numerical method for 
finding solution of the problem is suggested, which based on the solving the constructed system and 
Runge-Kutta method of the 4-th order for solving Cauchy problem on the subintervals. 
Key words: control problem with multipoint integral condition, numerical solution, algorithm. 

 
 

Introduction 
 
Control problems, which are also called 

boundary value problems with parameters and the 
problem of identification parameter for a system 
of ordinary differential and integro-differential 
equations with parameters, have been intensively 
investigated in recent years. Questions of 
existence, uniqueness and stability of solving 
problems with parameters are very important for 
development of numerical methods of 
identification of parameters of the mathematical 
models described by ordinary differential equations 
with multipoint integral condition [1-8].To solve 
these classes of control problems, there were used 
the optimization methods, topological methods, the 
maximum principle, etc. In spite of this, the 
questions of finding the effective signs of unique 
solvability and constructing the numerical 
algorithms for finding the optimal solutions of 
control problems for the   systems of ordinary 
differential equations with parameters still remain 

open. One of the constructive methods for 
investigating and solving the boundary value 
problems with parameters for the system of 
ordinary differential equations is the 
parameterization method [9]. The parameterization 
method was developed for the investigating and 
solving the boundary value problems for the 
system of ordinary differential equations. On the 
basis of this method, coefficient criteria for the 
unique solvability of linear boundary value 
problems for the system of ordinary differential 
equations were obtained. Algorithms for finding 
the approximate solutions were also proposed and 
their convergence to the exact solution of the 
problem studied was established. Later, the 
parameterization method was developed for the 
two-point boundary value problems for the 
Fredholmintegro-differential equations [10-14]. 
Necessary and sufficient conditions for the 
solvability and unique solvability are established, 
the algorithms for finding the approximate 
solutions of the problems considered are 
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the linear Fredholm integro-differential equation on 
the basis of new algorithms of parameterization 
method are constructed. This approach are applied 
to two-point boundary value problems for system of 
ordinary and ordinary loaded differential equations 
with parameter [16-17].   

In the present paper, linear problem with a 
parameter for an ordinary differential equation with 
multipoint integral condition is investigated. Based 
on the parameterization method and numerical 
methods, the numerical method for solving the 
problem considered  is developed, and the 
algorithms for their implementation are proposed. 
By introducing additional parameters as the values 
of the desired solution at some points of the interval 
�0, 𝑇𝑇�, where the problem is considered, the obtained 
problem is reduced to the equivalent problem 
consisting of a special Cauchy problem for the 
system of ordinary differential equations, multipoint 
integral conditions, and continuity conditions for the 
solution at the points of partition. Using the integral 
equation, that equivalent to the special Cauchy 
problem for the system of ordinary differential 
equation, we obtained a representation of the 
solution of the special Cauchy problem using the 
entered parameters at the assumption of invertibility 
of a some matrix. Based on this representation, a 
system of algebraic equations with respect to the 
parameters is constructed from the multipoint 
integral condition and the continuity conditions of 
the solution. We offer algorithm for solving the 
control problem for the ordinary differential 
equation with multipoint integral condition, and its 
numerical implementation.  

Statement of problem and scheme of 
parametrization method 

 
We consider a linear boundary value problem 

with a parameter for an ordinary differential 
equation with multipoint integral condition 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑡𝑡�𝑑𝑑 � 𝐴𝐴��𝑡𝑡�𝜇𝜇 � 𝑓𝑓�𝑡𝑡�,     

 
 𝑥𝑥 𝑥 𝑥𝑥�,      𝜇𝜇 𝜇𝜇𝜇 �,     𝑡𝑡𝑡  �0, 𝑇𝑇�,              (1) 

 

� 𝐶𝐶�𝑥𝑥�𝑡𝑡��
���

���
� 𝐵𝐵�𝜇𝜇 � � 𝑀𝑀�𝑡𝑡�𝑥𝑥�𝑡𝑡�𝑑𝑑𝑑𝑑

�

�
� 𝑑𝑑,    

  𝑑𝑑 𝑑𝑑𝑑 ���,                          (2) 
 

where the �𝑛𝑛 � 𝑛𝑛�-matrix 𝐴𝐴�𝑡𝑡�, �𝑛𝑛 � ��-matrix 
𝐴𝐴��𝑡𝑡�, ��𝑛𝑛 � �� � 𝑛𝑛�-matrix 𝑀𝑀�𝑑𝑑�  and 𝑛𝑛-vector-

function 𝑓𝑓�𝑡𝑡� are continuous on �0, 𝑇𝑇�, the ��𝑛𝑛 �
�� � 𝑛𝑛�-matrices 𝐶𝐶�, � � 0, 𝑁𝑁 � �����������,  the ��𝑛𝑛 � �� �
��-matrix 𝐵𝐵�  are constants.  

The solution to problem (1), (2) is a pair 
�𝑥𝑥∗�𝑡𝑡�, 𝜇𝜇∗�, where continuous on �0, 𝑇𝑇� and 
continuously differentiable on �0, 𝑇𝑇� a function 
𝑥𝑥∗�𝑡𝑡� satisfies the ordinary differential equation (1) 
and condition (2) with 𝜇𝜇 � 𝜇𝜇∗. 

To solve the problem with parameter (1), (2), the 
approach developed in [24-26] is used, based on the 
algorithms of the parameterization method and 
numerical methods for solving Cauchy problems.  

Scheme of the method. Points 0 � 𝑑𝑑� � 𝑑𝑑� �
� � 𝑑𝑑� � 𝑑𝑑��� � 𝑇𝑇 are taken and the interval 
�0, 𝑇𝑇� is divided into 𝑁𝑁 subintervals: 

 
�0, 𝑇𝑇� � ⋃ �𝑑𝑑���, 𝑡𝑡�������� . 

 
Let 𝐶𝐶��0, 𝑇𝑇�, 𝑥𝑥��  be the space of continuous on 

�0, 𝑇𝑇� functions 𝑑𝑑� �0, 𝑇𝑇� � 𝑥𝑥� with norm ‖𝑥𝑥‖� �
max�𝑥��,��‖𝑑𝑑�𝑑𝑑�‖ ; 𝐶𝐶��0, 𝑇𝑇�, ��, 𝑅𝑅������� - the space of 

systems of functions 𝑥𝑥�𝑡𝑡� �
�𝑑𝑑��𝑡𝑡�, 𝑥𝑥��𝑡𝑡�, … , 𝑥𝑥����𝑑𝑑��, where 𝑥𝑥�� �𝑑𝑑���, 𝑡𝑡�� �
𝑅𝑅� are continuous on �𝑑𝑑���, 𝑡𝑡�� and have finite left-
sided limits lim������ 𝑥𝑥��𝑑𝑑� for all  r=�, 𝑁𝑁 � �����������, with 

norm ‖𝑑𝑑���‖� � max���,������������ sup
�𝑥�����,���

‖𝑥𝑥��𝑑𝑑�‖. 

The restriction of the function 𝑑𝑑�𝑑𝑑� to the  � �th 
interval �𝑑𝑑���, 𝑡𝑡�� is denoted by 𝑥𝑥��𝑑𝑑�, i.e. 𝑥𝑥��𝑡𝑡� �
𝑑𝑑�𝑑𝑑� for 𝑑𝑑 𝑥 �𝑑𝑑���, 𝑡𝑡��, r=�, 𝑁𝑁 � �����������. Then we reduce 
problem (1), (2) to the equivalent multipoint 
boundary value problem 

 
𝑑𝑑𝑑𝑑�
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑡𝑡�𝑥𝑥� � 𝐴𝐴��𝑡𝑡�𝜇𝜇 � ��t�,  

 
𝑡𝑡𝑡  �𝑡𝑡���, 𝑡𝑡��,   � � �, 𝑁𝑁 � ����������� ,             (3) 

 

� 𝐶𝐶�𝑥𝑥����𝑡𝑡��
�

���
� 𝐶𝐶��� lim����� 𝑥𝑥����𝑡𝑡� � 

� 𝐵𝐵�𝜇𝜇 � ∑ � 𝑀𝑀�𝑡𝑡�𝑥𝑥��𝑑𝑑�𝑑𝑑𝑑𝑑��
����

������ � 𝑑𝑑,    (4) 
 

lim������ 𝑥𝑥��𝑡𝑡� � 𝑑𝑑����𝑡𝑡��,    � � �, 𝑁𝑁�����.    (5) 
 

where (5) are conditions for matching the solution at 
the interior points of partition. 

The solution of problem (3) - (5) is the pair 
�𝑥𝑥∗�𝑑𝑑�, 𝜇𝜇∗� with elements 𝑥𝑥∗�𝑡𝑡� �
�𝑑𝑑�∗�𝑡𝑡�, 𝑥𝑥�∗�𝑡𝑡�, … , 𝑥𝑥���∗ �𝑑𝑑�� 𝑥
𝐶𝐶��0, 𝑇𝑇�, ��, 𝑅𝑅�������, 𝜇𝜇∗ ∈𝑅𝑅 �, where  functions 
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𝑥𝑥�∗�𝑡𝑡�, 𝑟𝑟 � �, � � ����������� ,  are continuously 
differentiable on �𝑡𝑡���, 𝑡𝑡��, which satisfies system 
of ordinary differential equations (3) and condition 
(4) with 𝜇𝜇 � 𝜇𝜇∗ and continuity conditions (5). 

We introduce additional parameters 𝜆𝜆� �
𝑥𝑥��𝑡𝑡����, 𝑟𝑟 � �, � � �����������, 𝜆𝜆��� � 𝜇𝜇. Making the 
substitution 𝑥𝑥��𝑡𝑡� � 𝑑𝑑��𝑡𝑡� � 𝜆𝜆� on every 𝑟𝑟-th 
interval �𝑡𝑡���, 𝑡𝑡��,    𝑟𝑟 � �, � � �����������, we obtain 
multipoint boundary value problem with parameters 

 
𝑑𝑑𝑑𝑑�
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑡𝑡��𝑢𝑢� � 𝜆𝜆�� � 𝐴𝐴��𝑡𝑡�𝜆𝜆��� � ��t�,   

 
 𝑡𝑡 𝑡 �𝑡𝑡���, 𝑡𝑡��,   𝑟𝑟 � �, � � ����������� ,                (6) 

 
𝑢𝑢��𝑡𝑡���� � �, 𝑟𝑟 � �, � � ����������� ,         (7) 

 

� ��𝜆𝜆���
�

���
� ����𝜆𝜆��� � 

 
����� lim����� 𝑢𝑢����𝑡𝑡� � ��𝜆𝜆��� � 

 
� ∑ � 𝑀𝑀�𝑡𝑡��𝑢𝑢��𝑡𝑡� � 𝜆𝜆��𝑑𝑑𝑑𝑑��

����
������ � 𝑑𝑑,   (8) 

 
𝜆𝜆� � lim������ 𝑢𝑢��𝑡𝑡� � 𝜆𝜆���,    � � �, ������.    (9) 

 
 

A pair �𝑢𝑢∗�𝑡𝑡�, 𝜆𝜆∗� with elements  
𝑢𝑢∗�𝑡𝑡� � �𝑑𝑑�∗�𝑡𝑡�, 𝑢𝑢�∗�𝑡𝑡�, … , 𝑢𝑢���∗ �𝑡𝑡�� 𝑡
����, 𝑇𝑇�, ��, 𝑅𝑅�������,  

𝜆𝜆∗ � �𝜆𝜆�∗ , 𝜆𝜆�∗ , … , 𝜆𝜆���∗ , 𝜆𝜆���∗ � 𝑡 𝑅𝑅�������� is said 
to be a solution to problem (6)-(9) if the functions 
𝑢𝑢�∗�𝑡𝑡�, 𝑟𝑟 � �, � � ����������� ,  are continuously 
differentiable on �𝑡𝑡���, 𝑡𝑡�� and satisfy (6) and 
additional conditions (8), (9) with 𝜆𝜆� � 𝜆𝜆�∗, � �
�, � � �����������, and initial conditions (7). 

If the pair �𝑥𝑥∗�𝑡𝑡�, 𝜇𝜇∗� is a solution of problem 
(1), (2), then the pair �𝑢𝑢∗�𝑡𝑡�, 𝜆𝜆∗� with elements 
𝑢𝑢∗�𝑡𝑡� � �𝑑𝑑�∗�𝑡𝑡�, 𝑢𝑢�∗�𝑡𝑡�, … , 𝑢𝑢���∗ �𝑡𝑡�� 𝑡
����, 𝑇𝑇�, ��, 𝑅𝑅�������, 𝜆𝜆∗ �
�𝜆𝜆�∗ , 𝜆𝜆�∗ , … , 𝜆𝜆���∗ , 𝜆𝜆���∗ � 𝑡 𝑅𝑅��������, where 𝜆𝜆�∗ �
𝑥𝑥�∗�𝑡𝑡����, 𝑢𝑢�∗�𝑡𝑡� � 𝑥𝑥�∗�𝑡𝑡� � 𝑥𝑥�∗�𝑡𝑡����, 𝑡𝑡 𝑡
�𝑡𝑡���, 𝑡𝑡��,   � � �, � � �����������, 𝜆𝜆���∗ � 𝜇𝜇∗ ∈ 𝑅𝑅�,  is the 
solution of problem (3)-(6). Conversely, if a pair 
�𝑑𝑑��𝑡𝑡�, 𝜆𝜆��  with elements 𝑢𝑢��𝑡𝑡� �
�𝑑𝑑���𝑡𝑡�, 𝑢𝑢���𝑡𝑡�, … , 𝑢𝑢�����𝑡𝑡�� 𝑡
����, 𝑇𝑇�, ��, 𝑅𝑅�������, 𝜆𝜆� � �𝜆𝜆��, 𝜆𝜆��, … , 𝜆𝜆����� 𝑡
𝑅𝑅��������,  is a solution of (3)-(6) , then the pair 
�𝑥𝑥��𝑡𝑡�, 𝜇𝜇�� defined by the equalities   𝑥𝑥��𝑡𝑡� � 𝑑𝑑��𝑡𝑡� �
𝜆𝜆��,  𝑡𝑡 𝑡 �𝑡𝑡���, 𝑡𝑡��,   � � �, � � �����������, 𝑥𝑥��𝑇𝑇� �

lim����� 𝑢𝑢���𝑡𝑡� � 𝜆𝜆�� and   𝜇𝜇� � 𝜆𝜆����, will be the 
solution of the original boundary value problem 
with parameter (1), (2).  

Let 𝑋𝑋��𝑡𝑡� be a fundamental matrix to the 
differential equation ��

�� � 𝐴𝐴�𝑡𝑡�𝑥𝑥 on �𝑡𝑡���, 𝑡𝑡��,   � �
�, � � �����������. 

Then the unique solution to the Cauchy problem 
for the system of ordinary differential equations (6), 
(7) at the fixed values 𝜆𝜆 � �𝜆𝜆�, 𝜆𝜆�, … , 𝜆𝜆���, 𝜆𝜆����  
has the following form

 

𝑢𝑢��𝑡𝑡� � 𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝐴𝐴�𝜏𝜏�𝑑𝑑𝑑𝑑
�

����

λ� � 𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝐴𝐴��𝜏𝜏�𝑑𝑑𝑑𝑑
�

����

λ��� � 

�𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝑑𝑑�
���� ,     𝑡𝑡 𝑡 �𝑡𝑡���, 𝑡𝑡��,   � � �, � � �����������.                                  (10) 

 
 

Substituting the corresponding right-hand sides 
of (10) into the conditions (8), (9), we obtain a 

system of linear algebraic equations with respect to 
the parameters 𝜆𝜆�, 𝑟𝑟 � �, � � �����������: 

 

� ��𝜆𝜆���
�

���
� ����𝜆𝜆��� � ��𝜆𝜆��� � ����𝑋𝑋����𝑇𝑇� � 𝑋𝑋����� �𝜏𝜏�𝐴𝐴�𝜏𝜏�𝑑𝑑𝑑𝑑

�

��

λ��� � 

�����𝑋𝑋����𝑇𝑇� � 𝑋𝑋����� �𝜏𝜏�𝐴𝐴��𝜏𝜏�𝑑𝑑𝑑𝑑
�

��

λ��� � 
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� � � 𝑀𝑀�𝑡𝑡� �𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝐴𝐴�𝜏𝜏�𝑑𝑑𝑑𝑑
�

����

λ� � 𝜆𝜆�� 𝑑𝑑𝑡𝑡
��

����

���

���
� 

� � � 𝑀𝑀�𝑡𝑡� �𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝐴𝐴��𝜏𝜏�𝑑𝑑𝑑𝑑
�

����

λ���� 𝑑𝑑𝑡𝑡
��

����

���

���
� 

� 𝑑𝑑 � ����𝑋𝑋����𝑇𝑇� � 𝑋𝑋����� �𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝑑𝑑
�

��

� 

� ∑ � 𝑀𝑀�𝑡𝑡�𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝑑𝑑�
���� 𝑑𝑑𝑑𝑑��

����
������ ,                                         (11) 

 

𝜆𝜆� � 𝑋𝑋��𝑡𝑡�� � 𝑋𝑋����𝜏𝜏�𝐴𝐴�𝜏𝜏�𝑑𝑑𝑑𝑑
��

����

λ� � 𝑋𝑋��𝑡𝑡�� � 𝑋𝑋����𝜏𝜏�𝐴𝐴��𝜏𝜏�𝑑𝑑𝑑𝑑
��

����

λ��� � 𝜆𝜆��� � 

� �𝑋𝑋��𝑡𝑡�� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝑑𝑑��
���� ,    � � �, ������.                                   (12) 

 
 

We denote the matrix corresponding to the left 
side of the system of equations (11), (12) by 𝑄𝑄∗�𝛥𝛥�� 
and write the system in the form 

 

𝑄𝑄∗�𝛥𝛥��𝜆𝜆 � �𝐹𝐹∗�𝛥𝛥��,   𝜆𝜆 𝜆 𝜆𝜆�������� ,   (13) 
 
where

  
𝐹𝐹∗�𝛥𝛥�� �

⎝
⎜⎜
⎛

�𝑑𝑑 � ����𝑋𝑋����𝑇𝑇� � 𝑋𝑋����� �𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝑑𝑑�
�� � ∑ � 𝑀𝑀�𝑡𝑡�𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝑑𝑑�

���� 𝑑𝑑𝑑𝑑��
����

������
𝑋𝑋��𝑡𝑡�� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝑑𝑑��

��⋯    ⋯     ⋯
𝑋𝑋��𝑡𝑡�� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝑑𝑑��

���� ⎠
⎟⎟
⎞

. 

 
 
It is not difficult to establish that the solvability 

of the boundary value problem (1), (2) is equivalent 
to the solvability of the system (13). The solution of 
the system (13) is a vector 𝜆𝜆∗ �
�𝜆𝜆�∗ , 𝜆𝜆�∗ , … , 𝜆𝜆���∗ , 𝜆𝜆���∗ � 𝜆 𝜆𝜆�������� consists of 
the values of the solutions of the original problem 
(1), (2) in the initial points of subintervals, i.e. 𝜆𝜆�∗ �
𝑥𝑥∗�𝑡𝑡����, � � �, � � �����������,   𝜆𝜆���∗ � �∗. 

Further we consider the Cauchy problems for 
ordinary differential equations on subintervals  

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑡𝑡�𝑑𝑑 � 𝑃𝑃�𝑡𝑡�,   

 
 𝑧𝑧�𝑡𝑡���� � �,    𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,   � � �, � � �����������,   (14) 

 
where 𝑃𝑃�𝑡𝑡� is either (𝑛𝑛 � 𝑛𝑛� matrix, or 𝑛𝑛 vector, 
both continuous on �𝑡𝑡���, 𝑡𝑡��,   � � �, � � �����������.  
Consequently, solution to problem (14) is a square 

matrix or a vector of dimension 𝑛𝑛. Denote by 𝑎𝑎�𝑃𝑃𝑃𝑃𝑃 �  
the solution to the Cauchy problem (14). Obviously, 

 

𝑎𝑎�𝑃𝑃𝑃𝑃𝑃 � � 𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�P�𝜏𝜏�𝑑𝑑𝑑𝑑
�

����

,    
𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,      

 
where 𝑋𝑋��𝑡𝑡� is a fundamental matrix of differential 
equation (14) on the r-th interval. 

 
Numerical implementation of 

parametrization method 
 
We offer the following numerical 

implementation of algorithm based on the Runge–
Kutta method of 4th order and Simpson’s method.  

1. Suppose we have a partition ∆�:  � � 𝑡𝑡� �
𝑡𝑡� � ⋯ � 𝑡𝑡� � 𝑡𝑡��� � 𝑇𝑇. Divide each r-th interval 
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�𝑡𝑡���, 𝑡𝑡��,   � � 1, 𝑁𝑁 � 1����������, into 𝑁𝑁� parts with 
step ℎ� � �𝑡𝑡� � 𝑡𝑡�����𝑁𝑁�. Assume on each interval 
�𝑡𝑡���, 𝑡𝑡�� the variable 𝑡̂𝑡 takes its discrete values: 𝑡̂𝑡 �
𝑡𝑡���, 𝑡̂𝑡 � 𝑡𝑡��� � ℎ�, … , 𝑡̂𝑡 � 𝑡𝑡��� � �𝑁𝑁� � 1�ℎ�,  
𝑡̂𝑡 � 𝑡𝑡�,  and denote by �𝑡𝑡���, 𝑡𝑡�� the set of such 
points.  

2. Solving the Cauchy problems for ordinary 
differential equations 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑡𝑡�𝑑𝑑 � 𝐴𝐴�𝑡𝑡�,    

𝑧𝑧�𝑡𝑡���� � 0,    𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,    
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑡𝑡�𝑑𝑑 � 𝐴𝐴��𝑡𝑡�,    

𝑧𝑧�𝑡𝑡���� � 0,    𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,    
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑡𝑡�𝑑𝑑 � 𝑓𝑓�𝑡𝑡�,    

𝑧𝑧�𝑡𝑡���� � 0,    𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,   � � 1, 𝑁𝑁 � 1,����������� 
 
by using again the Runge–Kutta method of 4th order, 
we find the values of (𝑛𝑛 � 𝑛𝑛� matrices 𝑎𝑎��A, 𝑡̂𝑡�,  
𝑎𝑎��𝐴𝐴�, 𝑡̂𝑡�  and 𝑛𝑛 vector 𝑎𝑎��𝑓𝑓𝑓𝑓𝑓 � on �𝑡𝑡���, 𝑡𝑡��,   � �
1, 𝑁𝑁 � 1����������. 

3. Applying Simpson’s method on the set 
�𝑡𝑡���, 𝑡𝑡��,   we evaluate the definite integrals 

 
m�

�� � � M�𝜏𝜏�𝑑𝑑𝑑𝑑��
���� , 

 
m�

���A� � � M�𝜏𝜏�𝑎𝑎�
���A, 𝜏𝜏�𝑑𝑑𝑑𝑑��

���� , 
 

m�
���A�� � � M�𝜏𝜏�𝑎𝑎�

���A�, 𝜏𝜏�𝑑𝑑𝑑𝑑��
���� ,  

 
 m�

���𝑓𝑓� � � M�𝜏𝜏�𝑎𝑎�
���𝑓𝑓𝑓𝑓𝑓 �𝑑𝑑𝑑𝑑��

���� , � �
1, 𝑁𝑁 � 1.����������� 

 
4. Construct the system of linear algebraic 

equations with respect to parameters 
 

𝑄𝑄∗���𝛥𝛥��𝜆𝜆 � ��∗���𝛥𝛥��,   𝜆𝜆 𝜆 𝜆𝜆�������� ,   (15) 
 

Solving the system (15), we find 𝜆𝜆��. As noted 
above, the elements of 𝜆𝜆��=(𝜆𝜆��

�, 𝜆𝜆��
�, … , 𝜆𝜆����� ) are the 

values of approximate solution to problem (1), (2) in 
the starting points of subintervals: 𝑥𝑥����𝑡𝑡���� � 𝜆𝜆���,
� � 1, 𝑁𝑁 � 1����������, 𝜇𝜇∗ � 𝜆𝜆���∗ . 

5. To define the values  of approximate 
solution at the remaining points of set �𝑡𝑡���, 𝑡𝑡��, we 
solve the Cauchy problems 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑡𝑡�𝑥𝑥 � 𝐴𝐴��𝑡𝑡�λ����� � 𝑓𝑓�𝑡𝑡�,    

 
𝑥𝑥�𝑡𝑡���� � λ���,    𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,   � � 1, 𝑁𝑁 � 1����������. 

 
And the solutions to Cauchy problems are found 

by the Runge–Kutta method of 4th order. Thus, the 
algorithm allows us to find the numerical solution to 
the problem (1), (2).  

To illustrate the proposed approach for the 
numerical solving linear boundary value problem 
with a parameter for an ordinary differential 
equation with multipoint integral condition (1), (2) 
on the basis of parameterization method, let us 
consider the following example. 

Example. We consider a linear boundary value 
problem with a parameter for an ordinary 
differential equation with multipoint integral 
condition 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑡𝑡�𝑥𝑥 � 𝐴𝐴��𝑡𝑡�𝜇𝜇 � 𝑓𝑓�𝑡𝑡�,      

 
𝑥𝑥 𝑥𝑥𝑥 �,      𝜇𝜇 𝜇𝜇𝜇 �,     𝑡𝑡 𝑡 �0,1�,           (16) 

 
𝐶𝐶�𝑥𝑥�𝑡𝑡�� � 𝐶𝐶�𝑥𝑥�𝑡𝑡�� � 𝐶𝐶�𝑥𝑥�𝑡𝑡�� � 

 
�𝐵𝐵�𝜇𝜇 � � 𝑀𝑀�𝑡𝑡�𝑥𝑥�𝑡𝑡�𝑑𝑑𝑑𝑑�

� � 𝑑𝑑,     𝑑𝑑 𝜆 𝜆𝜆�.   (17) 
 

Here   𝑡𝑡� � 0, 𝑡𝑡� � �
�,  𝑡𝑡� � 1,   

𝐴𝐴�𝑡𝑡� � �𝑡𝑡� 2𝑡𝑡
1 𝑡𝑡 � 9�,    𝐴𝐴��𝑡𝑡� � � 2 𝑡𝑡 𝑡𝑡 � 3

𝑡𝑡� 0 3𝑡𝑡 �,  
 

𝐶𝐶� �
⎝
⎜
⎛

2 0
� ��
1 6
0 2
9 1 ⎠

⎟
⎞

,  𝐶𝐶� �
⎝
⎜
⎛

�3 1
5 2
3 0
8 6
1 9⎠

⎟
⎞

, 

 

  𝐶𝐶� �
⎝
⎜
⎛

�6 1
5 3
8 1
2 6
0 9⎠

⎟
⎞

, 𝐵𝐵� �
⎝
⎜
⎛

1 3 0
3 1 ��
0 � �6

�2 1 8
6 1 0 ⎠

⎟
⎞

, 

 

 𝑑𝑑 �

⎝
⎜
⎜
⎜
⎛

��2
���

�
���
��

���
�

���
� ⎠

⎟
⎟
⎟
⎞

,  𝑀𝑀�𝑡𝑡� �
⎝
⎜
⎛

1 0
𝑡𝑡 �2

𝑡𝑡 � 3 𝑡𝑡�
0 9

�3 1 ⎠
⎟
⎞

,     
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 𝑓𝑓�𝑡𝑡� � � �8𝑡𝑡� � 𝑡𝑡� � 25𝑡𝑡� � 2𝑡𝑡 � 30

�4𝑡𝑡� � 3�𝑡𝑡� � 𝑡𝑡� � 107𝑡𝑡 � 20�. 
 

We use the numerical implementation of 
algorithm. Accuracy of solution depends on the 
accuracy of solving the Cauchy problem on 
subintervals and evaluating definite integrals. We 
provide the results of the numerical implementation 
of algorithm by partitioning the subintervals [0, 0.5],  
[0.5, 1] with step h = 0.025. 

Solving the system of equations (15), we obtain 
the numerical values of the parameters 

 
λ��

� � � 7.00000083
�1.9999995��,    

 
 λ��

� � �7.50000135
3.00000449�,    

 

λ��
� � �

2.00000297
�3.00000131
8.99999832

�. 

 
We find the numerical solutions at the other 

points of the subintervals using Runge-Kutta 
method of the 4-th order to the following Cauchy 
problems 

 
𝑑𝑑𝑑𝑑��
𝑑𝑑𝑑𝑑 � ��𝑡𝑡�𝑥𝑥�� � ���𝑡𝑡�λ��

� � 𝑓𝑓�𝑡𝑡�,    
 

𝑥𝑥���𝑡𝑡���� � λ���,    𝑡𝑡 � �𝑡𝑡���, 𝑡𝑡��,   � � 1,2����. 
 

 
Exact solution of the problem (16), (17) is pair  

�𝑥𝑥∗�𝑡𝑡�, 𝜇𝜇∗�, where  𝑥𝑥∗�𝑡𝑡� � � 𝑡𝑡 � 7
4𝑡𝑡� � 9𝑡𝑡 � 2�, 

 𝜇𝜇∗ � �
2�3
9

�. 

 
The results of calculations of numerical 

solutions at the partition  points are presented in the 
following table:  

 
 

𝑡𝑡 𝑥𝑥���𝑡𝑡� 𝑥𝑥���𝑡𝑡� 𝑡𝑡 𝑥𝑥���𝑡𝑡�  𝑥𝑥���𝑡𝑡�
0 7.00000083 -1.99999956 0.5 7.50000135 3.00000449

0.025 7.02500086 -1.77493687 0.525 7.52500139 3.30381719
0.05 7.05000088 -1.54949918 0.55 7.55000142 3.61550487

0.075 7.0750009 -1.32331148 0.575 7.57500146 3.93544255
0.1 7.10000092 -1.09599878 0.6 7.60000149 4.26400522

0.125 7.12500094 -0.86718609 0.625 7.62500152 4.60156787
0.15 7.15000097 -0.63649839 0.65 7.65000155 4.94850549

0.175 7.17500099 -0.40356069 0.675 7.67500158 5.30519309
0.2 7.20000101 -0.16799798 0.7 7.7000016 5.67200565

0.225 7.22500104 0.07056472 0.725 7.72500161 6.04931816
0.25 7.25000106 0.31250243 0.75 7.75000162 6.4375056

0.275 7.27500109 0.55819013 0.775 7.77500161 6.83694297
0.3 7.30000111 0.80800284 0.8 7.80000158 7.24800522

0.325 7.32500114 1.06231555 0.825 7.82500153 7.67106734
0.35 7.35000117 1.32150326 0.85 7.85000144 8.10650427

0.375 7.3750012 1.58594096 0.875 7.8750013 8.55469097
0.4 7.40000123 1.85600367 0.9 7.90000111 9.01600237

0.425 7.42500126 2.13206638 0.925 7.92500083 9.49081337
0.45 7.45000129 2.41450409 0.95 7.95000044 9.97949887

0.475 7.47500132 2.70369179 0.975 7.9749999 10.48243371
0.5 7.50000135 3.00000449 1 7.99999916 10.99999269

 
𝜇𝜇�� � �����  𝜇𝜇�� � ����� 𝜇𝜇�� � �����  

2.00000297 -3.00000131 8.99999832 
 
For the difference of the corresponding values of 

the exact and constructed solutions of the  problem 
the following estimate is true:  

 

max���,���������𝑑𝑑∗�𝑡𝑡�� � 𝑑𝑑��𝑡𝑡��� � 0.000007 and 

𝑚𝑚𝑚𝑚𝑚𝑚‖𝜇𝜇∗ � 𝜇𝜇�‖ � 0.000003. 
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Conclusion 
 
In this work, we propose a numerical 

implementation of parametrization method for 
finding solutions to linear boundary value problem 
with a parameter for an ordinary differential 
equation with multipoint integral condition. Using 
the parametrization method, we reduce the 
considered problem to the equivalent boundary 
value problem with parameters. The unknown 
functions are determined from the Cauchy problems 
for the system of ordinary differential equations, and 
the introduced parameters are determined from the 
system of algebraic equations. A numerical 
algorithm for finding solution to the considered 
problem is constructed. The Cauchy problem is 
solved by Runge– Kutta method of 4th-order 
accuracy. The examples illustrating the numerical 
algorithms of parametrization method are provided. 
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Strongly unpredictable solutions of difference equations 

 
 

Abstract. It so happens that the line of oscillations in the classical theory of dynamical systems, which 
is founded by H.Poincar´e and G.Birkhoff was broken at Poisson stable motions. The next oscillations 
were considered as actors of chaotic processes. This article discusses the new type of oscillations, 
unpredictable sequences, the presence of which proves the existence of Poincare chaos. The sequence is 
defined as an unpredictable function on the set of integers. The results continue the description of chaos 
which isinitiated from a single motion, an unpredictable one. To demonstrate the effectiveness of the 
approach, the existence and uniqueness of the unpredictable solution for a quasilinear difference 
equation are proved. An example with numerical simulations is presented to illustrate the theoretical 
results. Since unpredictability is request for all coordinates of solutions, the concept of strong 
unpredictability can be useful for investigation of neural networks, brain activity, robotics, where 
complexity is related to optimization and effectiveness. 
Key words: Difference equations, Strongly unpredictable solutions, Existence and uniqueness, 
Asymptotical stability. 

 
 
Introduction 
 
Throughout the paper, �,�and � will stand for 

the set of real, natural and integer numbers, 
respectively. Additionally, � � ��, � � �,and the 
norm||�||� � ���� || ��||, where �� �
����, � , ����, ��� � �, ||��|| � ������������� , � ��,�, � , �, � � �,will be used. The following 
definition isone of the main in our study. 

Definition 1. [1,2] A bounded sequence 
��, � � �, in �� is called unpredictable if there exist 
a positive number �� and sequences ��, ��, � � �, 
of positive integers both of which diverge to 
infinity such that ������ � ��� → � as � → � for 
each � in bounded intervals of integers and 
������� � ���� � �� for each � � �. 

Some coordinates of an unpredictable sequence 
may be not unpredictable. This is why, in the 
following definition, we consider a stronger version 
of the concept. 

Definition 2. A bounded sequence ��, � � �, in 
�� is called strongly unpredictable if there exist a 
positive number �� and sequences ��, ��, � � �, of 
positive integers both of which diverge to infinity 
such that ������ � ��� → � as � → � for each � in 

bounded intervals of integers and �κ������ � κ��� � �
ε� for each � � �,� , � and � � �. 

Inthispaper, a strongly unpredictable sequence 
and a strongly unpredictable solutionare understood 
as mentioned in Definition 2. We investigate the 
existence, uniqueness andstability of strongly 
unpredictable solutions of a non-linear difference 
equation. 

The research of complex dynamics as well as 
differential equations with singularities has been of 
great interest in recent decades [3-8]. 

 
Main result 
 
Let us consider the following discrete equation 
 

���� � ��� � ����� � ��,(1) 
 
where�� � ����, � , ����, ��� � �, � � �, � ��,� , �, � � �������, ��, � , ��� is a real valued 
nonsingular matrix, � � ���, ��, � , ���, �� �� →
��, � � �, is a continuous function, and �� �����, ���, � , ����, � � �, is a strongly unpredictable 
sequence. 

Since ��, � � �, is a strongly unpredictable 
sequence, there exist a positive number  �� and 
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Since 𝜓𝜓�, 𝑖𝑖 𝑖 𝑖𝑖 is a strongly unpredictable 
sequence, there exist a positive number  𝜀𝜀� and 
sequences 𝜁𝜁�, 𝜂𝜂�, 𝑛𝑛 𝑛 𝑛𝑛 of positive integers both of 
which diverge to infinity such that �𝜓𝜓���� � 𝜓𝜓�� 𝑛
0 as 𝑛𝑛 𝑛 𝑛 for each 𝑖𝑖 with  𝛼𝛼 � 𝑖𝑖 � 𝛾𝛾, 𝛼𝛼, 𝛾𝛾 𝑖 𝑖, and 
�ψ�����

� � ψ��
� � � 𝜀𝜀�, � � 1, … , 𝑝𝑝 for each 𝑛𝑛 𝑛 𝑛. 

Denote    𝑀𝑀� � ��𝑝𝑝ℝ‖𝜓𝜓�‖.   
Let 𝑈𝑈 be the set of infinite sequences 𝑥𝑥 �

�𝑥𝑥��, 𝑥𝑥� � �𝑥𝑥��, … , 𝑥𝑥�
��, 𝑥𝑥�

� 𝑖 ℝ, 𝑖𝑖 𝑖 𝑖, � �
1, 2, … , 𝑝𝑝𝑝 such that: 

(A1)  ‖𝑥𝑥‖� � 𝐻𝐻, where 𝐻𝐻 is a positive real 
number; 

(A2)  There exists a sequences 𝜁𝜁�,  𝜁𝜁� →∞  as 
𝑛𝑛 𝑛 𝑛 such that �𝑥𝑥���� � 𝑥𝑥�� 𝑛 0 as 𝑛𝑛 𝑛 𝑛 on 
each bounded interval of integers. 

The following conditions are needed throughout 
this paper. 

(C1) There exists a positive number 𝑀𝑀� such 
that sup

||�||��
||ℎ�𝑥𝑥�|| � 𝑀𝑀�;   

(C2) There exists a positive number 𝐿𝐿� such that 
‖ℎ�𝑥𝑥� � ℎ�𝑦𝑦�‖ � 𝐿𝐿�‖𝑥𝑥 � 𝑦𝑦‖ for all ‖𝑥𝑥‖ �
𝐻𝐻𝐻 ‖𝑦𝑦‖ � 𝐻𝐻; 

(C3)  𝑏𝑏� � 𝐿𝐿� � 1, where 𝑏𝑏� � ���� |𝑏𝑏�| ; 
 
(C4) �𝑀𝑀� � 𝑀𝑀�� �

���� � 𝐻𝐻; 
 
(C5)   ��

�� ��
� � ��

�� � 𝐿𝐿�; 
 
(C6)  �� � ��������

��
� �

�, where 𝑏𝑏 � ���� |𝑏𝑏�|. 
 
According to the result of [9], a bounded 

sequence 𝑥𝑥� is a solution of equation (1) if and only 
if the following relation is satisfied 

 
𝑥𝑥� � ∑ 𝐵𝐵����ℎ�𝑥𝑥���� � 𝜓𝜓��������� , 𝑖𝑖 𝑖 𝑖𝑖   (2) 
 
Let us rewrite equation (2) in coordinate form: 
 

𝑥𝑥�� � � 𝑏𝑏�
����ℎ��𝑥𝑥���� � 𝜓𝜓���� �

�

����
, 

 
�𝑖𝑖 𝑖 𝑖, �� � 1, … , 𝑝𝑝.                    (3) 

 
The sequence 𝜑𝜑 𝑖 𝑈𝑈, 𝜑𝜑 � �𝜑𝜑��, 𝜑𝜑� �

�𝜑𝜑��, 𝜑𝜑��, … , 𝜑𝜑�
��. Define on 𝑈𝑈 the operator Π such 

that Π𝜑𝜑 � �Π�𝜑𝜑𝜑𝜑 �𝜑𝜑𝜑𝜑𝜑𝜑   �𝜑𝜑�, and Π�𝜑𝜑 �
��Π�𝜑𝜑���,1 � � � 𝑝𝑝, 𝑖𝑖 𝑖 𝑖, where 

�Π�𝜑𝜑�� � ∑ 𝑏𝑏�
����ℎ��𝜑𝜑���� � 𝜓𝜓���� ������ .   (4) 

 
Fix a sequence 𝜑𝜑 𝜑𝜑𝜑𝜑  Then one can find that 
 

|�Π�𝜑𝜑��| � � �𝑏𝑏�
�����𝑀𝑀� � 𝑀𝑀��

�

����
� 

 
≤ �𝑀𝑀� � 𝑀𝑀�� �

����, 
 
for 1 � � � 𝑝𝑝, 𝑖𝑖 𝑖 𝑖. Thus, by condition (C4) it 
implies that Π𝜑𝜑 𝜑𝜑𝜑  and condition (A1) is satisfied. 

Let us fix arbitrary positive number 𝜀𝜀 and an 
interval of integers �𝛼𝛼, 𝛾𝛾�. There exists an integer 
𝛾𝛾 � 𝛼𝛼 and a number 𝜉𝜉 � 0,  which satisfy the 
following inequalities, 

 
𝜉𝜉�𝐿𝐿� � 1� �

���� � �
�                      (5) 

and  
2�𝑀𝑀� � 𝑀𝑀�� �����

���� � �
�.                    (6) 

 
There exists sufficiently large 𝑛𝑛 such that 

�|𝜑𝜑������ � 𝜑𝜑���|� � 𝜉𝜉 and ||𝜓𝜓������ � 𝜓𝜓���|| �
 𝜉𝜉 for 𝑖𝑖 𝑖 �𝛾𝛾𝛾 𝛾𝛾�. Then  for  all 𝑖𝑖 𝑖 �𝛼𝛼𝛼𝛼𝛼 � we have that 

 
��Π�𝜑𝜑����� � �Π�𝜑𝜑��� � 

�  �∑ 𝑏𝑏�
����ℎ��𝜑𝜑������� � ℎ��𝜑𝜑���� ��

����

�𝜓𝜓������� � 𝜓𝜓���� � � ∑ 𝑏𝑏�
����ℎ��𝜑𝜑������� �������

–  ℎ��𝜑𝜑���� � 𝜓𝜓������� � 𝜓𝜓���� �� � 2�𝑀𝑀� �

�𝑀𝑀�� �����
���� � 𝜉𝜉�𝐿𝐿� � 1� �

����. 

 
Thus, by inequalities (5) and (6), for  large 

enough 𝑛𝑛 it is true that ��Π�𝜑𝜑����� � �Π�𝜑𝜑��� � 𝜀𝜀 
for all 1 � � � 𝑝𝑝 and 𝑖𝑖 𝑖 �𝛼𝛼𝛼𝛼𝛼 �. Since 𝜀𝜀 is arbitrary 
small number the condition (A2) is valid. 

For two sequences 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    the inequality 
 

|�Π�𝑎𝑎�� � �Π�𝑏𝑏��| � 

� � � 𝑏𝑏�
��� �ℎ��𝑎𝑎�� � ℎ��𝑏𝑏���

�

����
� � 

�  ��
���� ||𝑎𝑎 � 𝑏𝑏||�                   (7) 
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(10) 

is valid for all 𝑖𝑖 𝑖 𝑖𝑖 Thus, we can conclude that 
||Π� � Π𝑏𝑏||� � ��

���� ||� � 𝑏𝑏||� for all 𝑖𝑖 𝑖 𝑖𝑖 and by 
condition (C3) the operator Π is contractive. 

Theorem 1. Suppose that conditions (C1)-(C5) 
are valid, then the system (1) possesses unique 
asymptotically stable strongly unpredictable 
solution. 

Proof. By contraction mapping theorem there 
exists the fixed point 𝜔𝜔 𝜔 𝜔𝜔 of the operator Π which 
is a bounded solution of the system (1) and it 
satisfies the inequality ||𝜔𝜔𝜔𝜔� � 𝐻𝐻𝑖  

Now, we prove the unpredictability of the 
solution 𝜔𝜔 � �𝜔𝜔��𝑖 𝜔𝜔� � �𝜔𝜔��, 𝜔𝜔��, … , 𝜔𝜔�

�� of the 
system (1). The coordinates of the sequence 𝜔𝜔 
satisfy the relation (1), that is 

 
𝜔𝜔���� � 𝑏𝑏�𝜔𝜔�� � ���𝜔𝜔�� � ���,   

 
𝑖𝑖 𝑖 𝑖𝑖 𝑘𝑘 � �𝑖2𝑖 … 𝑖 �𝑖  

 
Fix a natural number 𝑘𝑘 � �𝑖2𝑖 … 𝑖 �𝑖 and 𝑛𝑛 𝑛 𝑛𝑛 

Consider two alternatives, (i) �𝜔𝜔�����
� � 𝜔𝜔��

� � � ��
�   

and  (ii) �𝜔𝜔�����
� � 𝜔𝜔��

� � � ��
� . 

(i) Using the relation  
 

𝜔𝜔�������� � 𝜔𝜔����� � 
 

� 𝑏𝑏��𝜔𝜔�����
� � 𝜔𝜔��

� � � ���𝜔𝜔������ � 
 

����𝜔𝜔��� � ������
� � ���

� ,                  (8) 
 
and condition (C5), we obtain for 𝑛𝑛 𝑛 𝑛 that 
 

�𝜔𝜔�������� � 𝜔𝜔����� � � 
 

� �������
� � ���

� � � �𝑏𝑏��𝜔𝜔�����
� � 𝜔𝜔��

� �� � 
 

�����𝜔𝜔������ � ���𝜔𝜔���� � �� � 
 

�𝑏𝑏� ε�
2 � 2𝐿𝐿�𝐻𝐻 � ε� � 

 

�𝑏𝑏� ε�
2 � ε�

2𝐻𝐻 �3
4 � 𝑏𝑏�

2� 2𝐻𝐻 � ε�
4 . 

(ii) For the case �𝜔𝜔�����
� � 𝜔𝜔��

� � � ��
� , by 

relation (8) and condition (C6) we have that 
 

�𝜔𝜔�������� � 𝜔𝜔����� � � 𝑏𝑏 ε�
2 � 2𝐿𝐿�𝐻𝐻 � 2𝐻𝐻 � 

 

� ε� �𝑏𝑏
2 � 2𝐻𝐻�𝐿𝐿� � ��

ε�
� � ε�

4 . 
 
Thus, we obtained that �𝜔𝜔�������� � 𝜔𝜔����� � �

��
� . That the solution 𝜔𝜔 of system (1) is strongly 
unpredictable with positive number ��

�   and 
sequences 𝜁𝜁� and 𝜂𝜂� � �. 

Using condition (C3) and the inequality (7), it is 
easy to verify that the solution 𝜔𝜔 of the system (1) is 
asymptotically stable [10]. The theorem is proved. 

 
An example 
Let us take into account the logistic discrete 

equation 
 

𝜆𝜆��� � 𝜇𝜇𝜆𝜆��� � 𝜆𝜆��.                  (9) 
 
The interval �0𝑖 �� is invariant under the 

iterations of (9) for 𝜇𝜇 𝜇 �0,4� [11]. In paper [1] was 
proved that the equation (9) has an unpredictable 
solution.  Let us denote by 𝜌𝜌�, 𝑖𝑖 𝑖 𝑖𝑖 the 
unpredictable solution of the logistic map (9) with 
𝜇𝜇 � 3𝑖��𝑖 In this section we use the sequence 𝜌𝜌� as 
a perturbation. 

Consider the system 
 

𝑥𝑥��� � � 2
3 𝑥𝑥� � 𝑘𝑘�������𝑦𝑦�� � 𝑘𝑘𝜌𝜌� 

𝑦𝑦��� � 3
5 𝑦𝑦� � 𝑘𝑘�������𝑥𝑥�� � 𝑛𝑛𝜌𝜌�. 

 
To satisfy conditions (C1)-(C6) we need to take 

𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘  quite small. To this end, we have chosen 
𝑘𝑘 � �

� 𝑖 𝑘𝑘 � �
� 𝑖 𝑘𝑘 � �

�� 𝑖 𝑛𝑛 � � �
�� and got the strongly 

unpredictable solution. Figures 1 and 2 represent the 
strongly unpredictable solution of the system (10) 
with initial data 𝜌𝜌� � 0𝑖35𝑖 𝑥𝑥� � 0𝑖25 and 𝑦𝑦� �
�0𝑖�5𝑖 
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ON the D-saturation property 
 
 

Abstract. In this paper we study the notion of a D-saturated model, which occupies an intermediate 
position between the notions of a homogeneous model and a saturated model. Both the homogeneous 
models and the saturated models play a very important role in model theory. For example, the saturated 
models are the universal domains of the corresponding theories in the sense that is used in algebraic 
geometry (one can also notice that the algebraically closed fields of infinite transcendence degree, 
which are the universal domains in algebraic geometry, are the saturated models of the theory of 
algebraically closed fields); this means that the saturated models realize all what is necessary for the 
effective study of the corresponding theory.The D-saturated models proved to be useful in various 
situations. Naturally the question arises on the conditions under which a model is D-saturated. In this 
paper we indicate some conditions of such sort for weakly o-minimal models and models of stable 
theories. Namely, for such models we prove that homogeneity and a certain approximation of D-
saturation imply D-saturation. 
Key words: D-saturated model, homogeneous model, weakly o-minimal model, stable theory. 

 
 
Introduction 
 
In this paper models of first-order theories are 

studied. The notion of a homogeneous model 
introduced by Vaught [1], Jonsson [2], Craig 
[3]plays a very important role in model theory. In 
particular, the saturated models which are in a 
sense the universal domains of the corresponding 
theories are also homogeneous. In [4], the notion of 
a D-saturated model which is intermediate between 
homogeneity and saturationwas defined and it was 
shown that the notion is useful. For example, for 
D-saturated models the problem of finding an 
elementary extension with the same diagram has a 
nice solution. In [5], results on the existence of D-
saturated models in different cardinalities for stable 
theories were obtained. Some results on D-
saturated models (where they are called the normal 
models) can be found in [6].Naturally the following 
question arises: under what conditions will a model 
be D-saturated? In the present paper some 
conditions of such sort for weakly o-minimal 
models (the notion of weak o-minimality was 
introduced in [7] and studied in detail in [8] and 
other papers) and models of stable theories (for a 
perfect presentation of stability theory see [9]) will 
be found. Namely, for the indicated models it will 
be proved that homogeneity and some 
approximation of D-saturation imply D-saturation. 

Preliminaries 
 
Let us fix a sufficiently saturated model of a 

first-order language L(the universal domain).All 
the models, sets, elements thatwe will work with, 
will be elementary sub-models, subsets, elements 
of the universal domain. We will use the same 
symbol for a model and its underlying set. The 
cardinality of a set A will be denoted by |A|, but for 
the language by |L| we will denote the cardinality 
of the set of all its formulas. Byi, j, α, β, δ we will 
denote ordinals, and by κ, λ, μ infinite cardinals. 
The first infinite ordinal (cardinal) will be denoted 
by  , and the first uncountable cardinal will be 
denoted by 1 . The minimal cardinal, which is 
greater than λ, will be denoted by λ+.  

The definitions of all the model-theoretic 
notions that are used, but are not defined in this 
paper, can be found in [9]. 

Definition 1.1. (1) A model M is calledλ-
homogeneous if for every set A M  of 
cardinality A   and every element a M  each 
elementary map from A to M extends to an 
elementary map from  A a  to M. 

(2) A model M  is called homogeneous if M  is 
|M|-homogeneous. 
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Abstract. In this paper we study the notion of a D-saturated model, which occupies an intermediate 
position between the notions of a homogeneous model and a saturated model. Both the homogeneous 
models and the saturated models play a very important role in model theory. For example, the saturated 
models are the universal domains of the corresponding theories in the sense that is used in algebraic 
geometry (one can also notice that the algebraically closed fields of infinite transcendence degree, 
which are the universal domains in algebraic geometry, are the saturated models of the theory of 
algebraically closed fields); this means that the saturated models realize all what is necessary for the 
effective study of the corresponding theory.The D-saturated models proved to be useful in various 
situations. Naturally the question arises on the conditions under which a model is D-saturated. In this 
paper we indicate some conditions of such sort for weakly o-minimal models and models of stable 
theories. Namely, for such models we prove that homogeneity and a certain approximation of D-
saturation imply D-saturation. 
Key words: D-saturated model, homogeneous model, weakly o-minimal model, stable theory. 

 
 
Introduction 
 
In this paper models of first-order theories are 

studied. The notion of a homogeneous model 
introduced by Vaught [1], Jonsson [2], Craig 
[3]plays a very important role in model theory. In 
particular, the saturated models which are in a 
sense the universal domains of the corresponding 
theories are also homogeneous. In [4], the notion of 
a D-saturated model which is intermediate between 
homogeneity and saturationwas defined and it was 
shown that the notion is useful. For example, for 
D-saturated models the problem of finding an 
elementary extension with the same diagram has a 
nice solution. In [5], results on the existence of D-
saturated models in different cardinalities for stable 
theories were obtained. Some results on D-
saturated models (where they are called the normal 
models) can be found in [6].Naturally the following 
question arises: under what conditions will a model 
be D-saturated? In the present paper some 
conditions of such sort for weakly o-minimal 
models (the notion of weak o-minimality was 
introduced in [7] and studied in detail in [8] and 
other papers) and models of stable theories (for a 
perfect presentation of stability theory see [9]) will 
be found. Namely, for the indicated models it will 
be proved that homogeneity and some 
approximation of D-saturation imply D-saturation. 

Preliminaries 
 
Let us fix a sufficiently saturated model of a 

first-order language L(the universal domain).All 
the models, sets, elements thatwe will work with, 
will be elementary sub-models, subsets, elements 
of the universal domain. We will use the same 
symbol for a model and its underlying set. The 
cardinality of a set A will be denoted by |A|, but for 
the language by |L| we will denote the cardinality 
of the set of all its formulas. Byi, j, α, β, δ we will 
denote ordinals, and by κ, λ, μ infinite cardinals. 
The first infinite ordinal (cardinal) will be denoted 
by  , and the first uncountable cardinal will be 
denoted by 1 . The minimal cardinal, which is 
greater than λ, will be denoted by λ+.  

The definitions of all the model-theoretic 
notions that are used, but are not defined in this 
paper, can be found in [9]. 

Definition 1.1. (1) A model M is calledλ-
homogeneous if for every set A M  of 
cardinality A   and every element a M  each 
elementary map from A to M extends to an 
elementary map from  A a  to M. 

(2) A model M  is called homogeneous if M  is 
|M|-homogeneous. 

Following Shelah [10], for a subset A of a model 
M by D (A) we denote the set of all complete pure 
types that are realized by finite tuples of elements of 
M. We call the set D = D(M) the diagram of the 
model M. A complete 1-type p  over A is called a 
D-type over A if   D A a D   for some 
(equivalently, every) element a  that realizes p. 

The following result of Keisler and Morley [11] 
plays an important role in the study of homogeneous 
models. 

Lemma 1.1. Let M be a  -homogeneous model, 
A B , A  , B  , and    D B D M . 

Then every elementary map from A  to M  extends to 
an elementary map from B to M. 

Lemma 1.1 implies the following 
Lemma 1.2. A model N is  -homogeneous if 

and only if for every set A N of cardinality |A|<λ 
each D(N)-type over A is realized in N. 

The next statement follows from definitions. 
Lemma 1.3. The union of an increasing chain of 

D-types is also a D-type. 
For a 1-type p over a subset of a model M let 

p(M) be the set of all elements in M realizing p. 
Definition 1.2. A model M is called D-saturated 

if D(M)=D and for every set A of cardinality |A|<|M| 
and every non-algebraic D-type p over A we have 
|p(M)|=|M|. 

Proposition 1.4. Every countable model of a 
countable language has, for an appropriate D, a 
countable D-saturated elementary extension. 

Proof. First, for an arbitrary countable model M 
of a countable language we find a countable model 

*M Mf  such that |p(M*)|=ω for every Mp P , 
where PM is the set of all D(M)-types over finite 
subsets of M. To do it, we take an ω-saturated model 
M M f  and for every Mp P  choose a set 

 pA p M   of cardinality ω. Since PM is 
countable, by Lowenheim-Skolem Theorem, there 
exists a countable model *M M p  containing 

 :p MM A p P U . 

Now let N  be a countable model of a countable 
language. By induction on i=ω, we construct 
countable models Ni such that N0=N and *

1i iN N 

. Let ii
N N 

U . Then N Np  and Nω is 
D(Nω)-saturated and countable.  

Proposition 1.4 is proved. 
 

Remark. (1) A similar construction for an 
uncountable model gives a D-saturated elementary 
extension of cardinality μ such that   . The 
existence of such uncountable cardinals is not 
provable in ZFC. 

(2) Some results on the existence of D-saturated 
models of different cardinalities for a stable theory 
T under the assumption that T has a D-saturated 
model M of a certain cardinality (say, M T ) can 
be found in [5]. 

D-saturation and weak o-minimality 
Let M be a model of a language L that contains, 

among others, a binary relation symbol  , which is 
interpreted as a linear order on the underlying set of 
the model.  

A subset A of the model M is called convex if for 
any ,a b A  and c M  the condition  a c b   
implies c A . 

For example, intervals are convex sets. 
Singletons are also convex sets. 

In the following “definable” will mean 
“definable with parameters”. 

Definition 2.1. A model is called weakly o-
minimal if every its definable subset is the union of 
finitely many convex sets. 

Definition 2.2. (1) We say that a model M is (κ, 
λ)-normal if for every set A M  of cardinality 
|A|<κ and every non-algebraic 1-type p over A, 
which is realized in M, we have  p M  . 

(2) We say that a model M is  -normal if M is 
 ,M  -normal. 

(3) We say that a model M is normal if M is |M|-
normal. 

Lemma 2.1. A model M is D(M)-saturated if 
and only if M is normal and homogeneous. 

Proof. Follows from Lemma 1.2. 
Theorem 2.2. Let M be a weakly o-minimal 

model. Suppose that M is λ-homogeneous and 

  , 2 L


-normal, where    and 2 L  . 

Then M is (κ, λ)-normal. 
In order to prove Theorem 2.2, we need the 

following notions and results from [12]. 
Definition 2.3. We say that a sub-order of a 

given linear order is an α-sequence if it is 
isomorphic or anti-isomorphic to the ordinal α. 

Lemma 2.3. Every linear order of cardinality at 
least  2 

 contains a   -sequence. 
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Proof. See [12, Lemma 3.1]. 
Now let N be a weakly o-minimal model that 

contains a   -sequence I. We can assume that I 
increases (the case of decrease is considered 
similarly). Let L(A) be the set of all formulas of the 
language L with parameters from A. By weak o-
minimality, the set, which is definable in N by a 
formula    x L N  , is the union of finitely 
many convex sets. Let J  be the rightmost of these 

convex sets. Then either I J     and hence 

\I J   
   or \I J   . It follows that for 

any A N  the set 

      , : \AV I A x L A I J      

is a complete 1-type over A. 
Lemma 2.4. If L  , then for every B N  

of cardinality B   there exists BI I  of 

cardinality BI   such that every element from 
I|IB realizes AV(I,B). 

Proof. See [12, Lemma 3.2]. 
Corollary 2.5. If I is an |L|+-sequence in a 

model N and B is a subset of N, then AV(I,B) is a 
D(N)-type. 

Proof of Theorem 2.2. Let A M , A  , 

and let p be a non-algebraic 1-type over A  that is 
realized in M. We must prove that  p M  .  

Since the model M is   , 2 L


-normal, we 

have    2 Lp M


 . Then by Lemma 2.3, p(M) 

contains an |L|+-sequence  :iI a i L   . By 

induction on j L  , we define elements ja M  
such that αj realizes the type 

  , :j ip AV I a i j  . We can do it for all j   
because M is a λ-homogeneous model and, by 
Corollary 2.5, jp  is a D (M)-type. Since jp p  

for all j  , we have  p M  . Moreover, 

 :ia i   is a  -sequence because the formula 

ia x  belongs to the type jp  and hence i ja a  
for all i j   . 

Theorem 2.2 is proved. 

Corollary 2.6. Let M be a weakly o-minimal 

model. Suppose that M is homogeneous and  2 L 

-normal. Then M is D(M)-saturated. 
Proof. Follows from Theorem 2.2 and Lemma 

2.1. 
Let us notice that from the proof of Theorem 2.2 

the following statement follows. 
Proposition 2.7. Let M be a weakly o-minimal 

model. Suppose that M is λ-homogeneous, where  
λ > |L|. Then every |L|+-sequence in M can be 
extended to a  -sequence in M. 

D-saturation and stability 
Let λ(T) be the minimal cardinal in which the 

theory T is stable.  
Theorem 3.1. Let M be a model of a stable 

theory T . Then 
(1) for every λ > λ(T) and κ ≤ λ if M is λ-

homogeneous and (κ, λ (T)+)-normal, then M is (κ, 
λ)-normal; 

(2) if M is homogeneous and λ(Т)+-normal, then 
M is D(M)-saturated; 

(3) for every λ>|T| if M is  -homogeneous and 
(|T|+, |T|+)-normal, then M is(|T|+ λ)-normal. 

In order to prove Theorem 3.1, we need the 
following facts. 

Lemma 3.2. Every maximal infinite 
indiscernible set in a λ-homogeneous model has the 
cardinality at least λ. 

Proof. See [5, Lemma 3.2]. 
Definition 3.1. We say that a sequence 

 :b    of elements of a model is a Morley pre-
sequence  over A, where A is a subset of the model, 
if p p   for all     , where p  is the type 

realized by b  over  :A b    . 
In the following lemma we use the cardinal κ(T), 

the definition and properties of which can be found 
in [9]. We only notice that κ(T)≤|T|+, and the 
equality κ(T)=ω, is equivalent to superstability of 
the theory T. Let κr(T) be the minimal regular 
cardinal that is greater than or equal to κ(T). 

Lemma 3.3. Let  :b    be a Morley pre-
sequence over A in a model of a stable theory T, 
where   1r T     is a regular cardinal. Then 

there exists an ordinal 0   such that the set 

 0:b      is  indiscernible  over A. 
Proof. We use the notation from Definition 3.1. 

From the definition of  T  (see [9, p. 100]) and 
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regularity of μ,  it follows that there exists an ordinal 
1   such that for every 1   the type p  

does not fork over  1:b   . By [9, Chapter 

III, Lemma 2.12], the type 
1

p   is stationary. Then 
by [9, Chapter III, Lemma 1.10(1)], the set 
 1:b        is indiscernible over A . 

Lemma 3.3 is proved. 
Lemma 3.4. If M is a model of a  -stable 

theory, I M  and I A  , then there exists 

J I  such that J   and J  is indiscernible 

over A . 
Proof. See [9, Chapter I, Theorem 2.8]. 
Lemma 3.5. Let M be a model of a stable theory 

T. Suppose that M is T 
-homogeneous and 

 ,T T 
-normal, and p  is a non-algebraic 1-

type over A M , A T , that is realized in M. 
Then p(M) contains an indiscernible set of 
cardinality T 

. 

Proof. By induction on T  , we define 

elements a M   and non-algebraic D(M)-types 

p  over  :A A a       as follows. 

We let 0p p  and arbitrarily choose 

 0a p M .  

Suppose that the type p  and the element 

 a p M   have been defined. Since the model 
M is (|T|+, |T|+)-normal, we have |pα(M)| < |T|. 
Since  1acl A T A T     , we can choose 

   1 1\a p M acl A    . Let 

 1 1 1/p tp a A     . Clearly, 1p p   . 
Suppose that αα and pα have been defined for all 

α < δ, where δ < |T|+ is a limit ordinal, and 
p p   for all α < β < δ. Let p p    U . 

Since for every α < δ the type pα  is non-algebraic, 
the type pδ is also non-algebraic. Since all the pα  are 
D(M) -types, by Lemma 1.3 the type pδ is a D(M)-
type over A , where A A T     . Since 
the model M is |T|+-homogeneous, by Lemma 1.2 
the type p  is realized by some a M  . 

By construction,  :a T    is a Morley 

pre-sequence over A and hence, by Lemma 3.3, 
contains a set of cardinality T 

, which is 
indiscernible over A. 

Lemma 3.5 is proved.  
Proof of Theorem 3.1. (1) Let us consider a non-

algebraic type p over A M , A  , that is 

realized in M. We must prove that  p M  . 

Since the model M is   , T   -normal, we 

have    p M T . By Lemma 3.4, p(M) 
contains an indiscernible set I over A such that 
|I|>λ(T). Let us extend I to a maximal indiscernible 
over A set J M . Since  I p M  and J is 
indiscernible over A, we have  J p M . Since 
the model M is λ-homogeneous and |A|<κ≤λ, the 
model  ,

a A
M a


 is also λ-homogeneous. Then by 

Lemma 3.2, we have J   and hence p(M)≥λ. 
(2) Follows from (1) and Lemma 2.1. 
(3) We repeat the proof of (1) replacing κ by |T|+ 

and replacing λ(T) by |T|, and using Lemma 3.5 
instead of Lemma 3.4. 

Theorem 3.1 is proved.  
 
Conclusion 
 
In this paper we study the notion of a D-

saturated model. We prove that for weakly o-
minimal models and models of stable theories 
homogeneity and some approximation of D-
saturation imply D-saturation. 
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An inverse problem of dcis model  
based on nonlocal and terminal data 

 
 

Abstract. Astheearliest period of breast cancer, the ductal carcinoma in situ (DCIS) model has wide 
applications in the diagnosis of breast cancer and has been attracted much attention in recent years. In 
this paper, a novel PSO method is developed for solving an inverse problem of the DCIS model from 
nonlocal and terminal data. The numerical simulations show that the proposed method is efficient, 
accurate, robust against noise and fast. Moreover, it is better than the optimization method in the 
literature [8]. 
Key words: free boundary problem; PSO method; ductal carcinoma in situ; numerical simulation. 
 

 
1. Introduction 
 
Ductal carcinoma in situ (DCIS) means a 

specific diagnosis of cancer that is isolated within 
the breast duct, and has not spread to other parts of 
the breast. Tumor growth is an important research 
focus of mathematical modeling in recent 40 years 
[1-7].  

In this paper we study a model about tumor 
growth firstly proposed by Byrne and Chaplain in 
1995 [1-3]. Ward and King developed a velocity 
field to handle local volume changes caused by cell 
movement under some reasonable assumptions 
[4-5]. Mathematical modeling for the dynamical 
growth of DCIS is a free boundary problem and 
was developed in [6-9]. To find possible steps to 
simulate the growth of the DCIS model with 
clinical data, Xu and his collaborators performed 
some mathematical analysis on the modified model 
and performed numerical calculations on some 
typical cases [6]. Li and Zhou  studied an inverse 
problem of solving the control parameter with 
known moving boundaries [7]. According to one of 
the four inverse problems proposed by Xu [6], then 
Liu established the uniqueness theorem for 
determining the inverse problem with unknown 
parameters, deduced an optimization problem, and 
proposed an effective algorithm to solve the 
problem [8]. 

Due to the difficulties caused by the time 
varying boundary, numerical simulations are very 

limited. Especially, the effective numerical 
approaches for the inverse problems are 
indispensably and urgently needed. 

In this paper, we shall present a novel efficient 
PSO method for solving the inverse free boundary 
problem. In section 2, a brief introduction of direct 
problem of DCIS would be exhibited. The novel 
PSO method would be proposed in section 3. And 
in section 4, a numerical example are demonstrated 
to show the effectiveness and robustness of our 
novel method.  

 
2. A Brief Introduction of Direct Problem for 

DCIS 
 
In this section, the forward problem of DCIS 

model would be stated. The DCIS problem of the 
one-dimensional case in Figure 1 is modeled by the 
following parabolic equation 

 
2

2 ( ) ( , ) ( , )   

0 ( ), 0,

v vc x v x t F x t
t x

x t t





 
  

 

  



(2.1)  

where 0 c= / 1diffusion growthT T  (normally, 

diffusion 1T  minute gr 1owthT  day) is the ratio of 
the nutrient diffusion time scale to the tumor 
growth time scale, v denotes the tumor growth 
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pattern which is using dimensionless nutrient 
concentration, ( ) ( , )x v x t means the nutrient 
consumption rate, ( , )F x t  represents the transfer 
of nutrient from/to the neighborhood and ( )t are 
the growing boundary of the tumor. Moreover, 

( , )v x t should satisfy the following initial and free 
boundary conditions, 
 

1

2

( , 0) ( ), 0 (0),

0, ( ), 0 ,

( ), ( ), 0 ,

( )

( )

v x f x x

v t g t t T

v t t g t t T





  

  

  
      

(2.3) 

 

Where the final time T    is a constant. 
Furthermore, the mass conservation consideration 
indicates the following equality 

 
( )

0 0
( ) ( , ) ,( )td t v x t s dx
dt

         (2.3) 

 
where both   and 0s  are positive constants. The 
term 0( )v s   in (2.3)  represents the cell 
proliferation rate inside the tumor, and the cell birth 
rate is denoted as v  while the death rate is 
provided by 0s . The direct problem of this 
model is to determine { ( , ), (t)}v x t   for given 

1 2 0{ ( ), ( ,t), (t),g (t), (0), , }x F x g s   . The direct 
problem can be solved by the finite difference 
method, we refer to the literature [8]. 

 

  
Figure 1 – The demonstration of the free     

boundary problem DCIS in the one dimension 
Figure 2 – The demonstration of pathological  

sections at time t = T 
 

 
3. Inverse Problem of DCIS 
 
In this section, the inverse problem of DCIS 

model would be investigated. In a routine physical 
examination, a possible breast tumor would be 
noticed, and it may be benign. The tumor would be 
growing bigger and bigger in the following days. 

Therefore, the patient have to do an incisional 
biopsy to determine the DCIS pattern along with 
the changing rate at a fixed period (e.g. a couple of 
weeks). In this case, the initial data is not available, 
and only the information of set { ( , ), (t),W}v x t   
is provided by the incisional biopsy at the examine 
time t T , see Figure 2 for the demonstration. 

The inverse problem of our interest is to 
determine the rate ( )x  for 0 ( )x T   from 

the examined data set { ( , ), (t),W}v x t   and the 
given data set 0 1 2{c, , ( , ), ( ),g ( )},s F x T g T T  
where the illustration of W( )  is provided in 
(3.1) . With the recovered ( )x  for 
0 ( )x T   and the given data set, the process to 
approximate  ( )

t T
t


 and ( , )

t T
v x t


 becomes 

the direct problem. Finally, we are able to diagnose 
the breast tumor is benign or not from the 
information of estimate { ( ), ( ) , ( , ) }

t T t T
x t v x t 

 
. 

Consequently, the inverse problem comes down to 
determine λ(х) from the examined and given data. 
Moreover, the uniqueness of inverse problem is 
equivalent to the uniqueness of λ(х). 

We consider the DCIS model as follows 
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where D is a parameter set, and { ( , ) }D     

is assumed to be complete in 2 ([0,1])L . In a 
clinical aspect, the function represents the obtained 
data for the growth rate of tumor cells. 

By the variables substitutions[8], the above 
problem (3.1)  is equivalent to determine ( )   
such that
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(3.2)
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



 

 
 
where ( )   and ( , )H t  are respectively 
presented as follows 

( ) ( ) ,( ( ))t             (3.3) 
( ( ,, ) ) ,( ( ) )H t F t t          (3.4) 

 
We now consider the set 

={ ( , ) [0,1], }D        which forms a 

base of 2 ([0,1])L . Without loss of generality, the 
set is selected as 

={sin( ) [0,1], 0,1, }      . 
 
4. PSO method for the Inverse Problem of 

DCIS 
 
In this section, we convert the inverse problem 

of estimating ( )   into a minimization problem 

and obtain the solution for the optimization 
problem by a stochastic search method which is 
known as particle swarm optimization algorithm.  

The inverse problem of estimating ( )  is 
expressed as follows similar to the literature [8], 

 

([0,1])

min ( )
L

J



             

(4.1) 

where 
 

2

21

0 ( )
( ) ( ) ( , ) ( , )d ) .(

L D
J u T           (4.1) 

 
There are many approaches are existing to 

solve the above optimization model, we refer to 
[8-13]. In the reference [8], the optimization 
problem is transformed into a solution of linear 
algebraic equations by direct discrete method, and 
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then the linear algebraic equations are solved by 
regularization method. In this paper, we would like 
to apply the PSO method which is knowns as an 
effective method to solve the optimization 
problems. 

The PSO method [14-18] is an efficient 
technique for solving many nonlinear, nondifferen-
tiable and multi-modal complex optimization 
problems. It has become very popular because its 
implementation is very simple and can be quickly 
aggregated into a good solution. It does not require 
any gradient information of the optimization 
function, and only uses the original mathematical 
operator. The PSO method is a stochastic algorithm, 
which does not depend on the initial value select, 
and can converge to the global optimal solution.  

This group of particles is called a swarm in 
PSO. A swarm consists of M particles moving 
around in a D-dimensional search space. The 
position of the i-th particle can be represented 

 1 2
, , ,

Di i i iz z z z  . The velocity of the i-th 
particle can be written as 

 1 2
, , ,

Di i i iz z z z      . The optimal position 
so far found by particle i-th is denoted as 

 1 2
, , ,

D

p p p p
i i i iz z z z  called 

t
i
besp  . The best 

value of the all individual
t

i
besp values is denoted as 

the global best position  1 2
, , ,

D

g g g g
i i i iz z z z   and 

called g .i
best In each iteration, the particle updates 

its speed and position according to the following 
formula: 

 

 
 

new old best old 
1 1

best old 
2 2

i i i i

i i

z w z c r p z

c r g z

     

 
   

(4.2) 

 
new old new .i i iz zz             (4.2) 

 
where 1r and 2r  are random numbers between 
[0,1]，1c  and 2c  are acceleration constants which 
control how far particles move in a single 
generation. Velocities new

iz  and old
iz denote the 

velocities of the new and old particle respectively. 
old
iz is the current particle position, and new

iz is 
updated particle position. The Inertial factor w  
controls the impact of the previous velocity of a 
particle on its current one. 

The algorithm only requires the fitness 
function of each particle, without continuity, 
differentiability and other assumptions, which is 
very useful for discontinuous functions. 

 
5. Numerical Simulations 
 
In this section, we would like to state a 

numerical example to exhibit the feasibility and 
effectiveness of our methods. And we would 
compare the reconstructions of PSO method and 
Liu’s method of the literature [8] in the following 
numerical experiments. 

We investigate the above DSCI model 
(2.1) (2.3)  w i t h  ( ) ,x x  2( ) (1 )e ,xf x x   

2 (2 )( , ) (1 )(2 ) 2 4 e t xF x t x t t        ，

21
1 / 2  1( ) ( ) e

4 2
,11,g t g t

t
     

1)
4 2

 ( ,t
t

 


 

then the solution can be represented as 
(2 ) , ) (1 )e .( t xv x t x    And the parameters c=1,

1/2 1/2
0s =e e , 1/2 1/21 31 ( )e/

2 2
e   . The mesh sizes 

of x  and t  variables are respectively selected as 
0.01h  and 0.001  , and the time interval is 

chosen to be [0,1]. 
The parameters in PSO are set as 

1 2300, 1.4962, 0.7298.M c c w     
In order to compare the results involving 

random measurement noise, we add a uniform 
distribution uncorrelated errors. The simulated 
inexact measurement data can be expressed as     

                       

 (5.1) 

 
where =1% or =3%  means the noise level 
and ( )K   is a random number  which varies 
from -1 to 1 and is uniformly distributed.  

Given that the accurate measured data, the 
inversion results of the two methods are close to 
each other and the relative errors are not much 
different in Figure 3. If the measurements contain 
perturbations, PSO method gives better results than 
the method in [8] from Figures 4 and 5. 
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Bayesian inference approach to inverse problem  
in a fractional option pricing model 

 
	

Abstract. As is well known to us, the Black-Scholes (B-S) model is an important and useful 
mathematical model for pricing a European options contract. However, because some strict 
assumptions in this model are not consistent with the real financial market, there are many limitations 
in practical applications. This paper investigates the inverse option problems (IOP) in a fractional 
option pricing model, which is derived from the finite moment log-stable (FMLS) model. We identify 
the model coefficients such as tail index � and the implied volatility � from the measured data by 
using three statistical inversionschemeswhich are well known asMarkov Chain Monte Carlo (MCMC) 
algorithm, slice sampling algorithm and Hamiltonian/hybrid Monte Carlo (HMC) algorithm. Our 
numerical tests indicate that these Bayesian inference approaches can recover the unknown 
coefficients well. 
Key words: FMLS model, statistical inversion, implied volatility, tail index, Bayesian Inference. 

	
	
Introduction 
 
As is well known to us, the Black-Scholes (B-

S) model is an important and useful mathematical 
model for pricing a European options contract (cf. 
[1]). However, because some strict assumptions in 
this model are not consistent with the real financial 
market, there are many limitations in practical 
applications. In particular, the implied volatility of 
options derived from the B-S model is a constant 
and cannot fit to the actual "volatility smile" 
pattern. Recently, the fractional B-S option pricing 
model has begun to be widely concerned by 
assuming the price of the original asset is subject to 
the fractional Brownian motion, or even more 
general Lévy processes. Among these generalized 
B–S model, the finite moment log-stable (FMLS) 
model can effectively capture the leptokurtic 

feature observed in many financial markets (cf.[3, 
4, 6 and 13]). 

The stochastic differential equation 
corresponding to the FMLS model is as follows: 
	

���
�� � ��� � �����,��, (1)

 
where � is native asset price, �  is expected return 
time, � and � are expected rate of return and asset 
volatility, respectively. ���,��  here denotes the 
maximally skewed Lévy stable process with a tail 
index � � ��,2�. 

By assume �� � ln��  and according to the 
argument in [4], SDE(1)can be derived into the 
following fractional parabolic partial differential 
equations with the spatial-fractional derivatives: 

	
�
��
�� � �� � 1

2�
�sec

��
2 �

��
�� � �12�

�sec
��
2 � ������ � �� � �,

���, �� �� � ����� � max��� � �, ��,
 (2)

	
where � is option price, � is risk free rate, ���� is 
payoff function with a given strike price �. Here 

��������is the Weyl fractional operator defined as 
follows: 

 

��������� � 1
��� � ��

��
��� �

����
�� � �������

�

��
���� � 1 � Re��� � �� 
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Similar withthe inverse option problem basing 
on the B-S model pioneered by Dupire [7], we 
come to our inverse option problem basing on the 
FMSL model as follows: 

Inverse Problem: Recover the tail index � and 
the implied volatility � from the measured option 
price ���� at a given �  such that � � �  is a fixed 
constant. 

However, because of the nonlinear dependency 
of �  on the coefficients �  and � , the uniqueness 
and stability issues of this inverse problem are 
quite difficult. Thus, we only desire to have a fast 
and stable numerical inversion algorithm for 
solving this inverse problem. Usually, for this 
purpose, a regularized iterative algorithm such as 
the Levenberg-Marquardt (L-M) algorithm will be 

the first choice ([10]). Unfortunately, without a 
good enough initial guess, iterations in L-M 
algorithm will not converge. On the other hand, a 
statistical inversion algorithm such as Metropolis-
Hastings Markov Chain Monte Carlo (MH-
MCMC) algorithm is now widely used with great 
success for solving a variety of inverse problems 
([11]). Here in this paper we will discuss how to 
apply the MH-MCMC algorithm to recover the 
unknown � and �. 

Moreover, both L-M algorithm and MH-
MCMC algorithm require for a fast forward solver, 
which can quickly get the accuracy numerical 
solution to our PDE model(2). Here we use the 
closed-form analytical solution given by Chen et 
al. [5] as follows: 

���, �� � ����� � ��,�
��

��
������� � �� � ���������

��

��
��,��������. ���

where 

�� � � � ln� � �1 � ���
���

,

� � ��
��� � ��
2 sec

��
2 ,

� � �2� ���sec
��
2 �

��
,

 

 
and 

 

��,���� � 1
��

��1 � ����
��

�

���
sin���2 �����

���. 
 
This solution will reduce to B-S formula by 

setting � � 2. 
The rest of this paper is organized as follows. 

In Section 2, three statistical inversion schemes for 
our inverse option problem are described and 
Section 3 is devoted to the numerical studies of our 
inversion schemes. 

 
Statistical Inversion Schemes  

	
In practices, the option price �  is generally 

obtained on the different asset price	���, �� , �����, 
and we denote: 

� �� ���, �� , ����� � ������, �� , ��������. 
Now our inverse problem comes to the 

following nonlinear inverse problem: 

	
� � ����,	

	
with respect to unknown coefficients we intend to 
recover: 

� �� ��, ���. 
 
Here we denote the mapping �: �� � ��. 
We can assume the noise �  contained in 

observation 
	

�� � � � �, 
 

to be Gaussian type white noise, i.e. components of 
the random noise �  are independent identically 
distributed (i.i.d.) such that � � ���, �����, where 
�� is known noise level and � is an identity matrix. 
Thus, the posterior distribution is usually 
formulated as follows according to the knowledge 
of Bayesian inference (cf. [11]): 
	

������ � exp�� 1
2��� � �

� � ���� ���� ����. 
 
The prior distribution here is simply assumed to 

be uniform, i.e. 
	

���� �� �1, � � �,
�, � � �.  



30 Bayesian Inference Approach to Inverse Problem in a Fractional Option Pricing Model

Int. j. math. phys. (Online)International Journal of Mathematics and Physics 10, №2, 28 (2019)

with a large enough admissible set �  of � . The 
above posterior distribution can be written into 
following form: 
	

������ � exp�� 1
���� � �

� � ���� ����. 
 
One can get the maximum a posterior (MAP) 

estimator ���� of � such that: 
	

���� � argma�
�

������. 
 
However, MAP estimate is point estimate, 

different measured data � will come to different �. 
To avoid this, one can compute the posterior 
conditional mean (CM) estimator from various 
point estimators: 

��� �� � �
��

��������. 
 
Furthermore, it is hard to know the explicit 

form of ������  in practice. Some sampling 
algorithm can be applied to obtain a set of samples 
�� (� � 1�� �� ) drawn independently from the 
distribution ������  (cf. [2, 11]), and thus ��� 
comes to a finite sum approximately 
	

��� � 1
����

�

���
. 

 
This is exactly the desired solution of our 

related inverse problem in the sense of Bayesian 
inference. 

MH-MCMC Algorithm: in this paper, we first 
apply the most famous and popular sampling 
algorithm: Metropolis-Hastings algorithm ([8, 12]) 
shown as follows: 

1. Generate ��  from �������� � ����� ��  for 
given ��. 

2. Calculate the choice 
 

����� ��� � min �1� ���������������. 
 
3. Update ��  as ���� � ��  with probability 

����� ���, otherwise set ���� � ��. 
4. Here the proposal distribution ������  is 

given as 
	

������ � exp �� 1
�� � � � � ����. 

 
with given step sizes ��  and ��  such that � �
diag����� ����. For more details about MH-MCMC 
algorithm, we can refer to [2, 11]. 

However, the performance of MH-MCMC 
algorithm highly dependents on the specific choice 
of proposal distribution ������. Without a carefully 
tuning of the step sizes ��  and �� , this algorithm 
will not lead to efficient samples. Therefore, we 
desire to have some sampling algorithm which will 
determine the step sizes “automatically”. The 
following two well-known sampling algorithms 
introduced in [2] can be applied. 

Slice Sampling Algorithm: the basic idea of 
this algorithm is to generate samples from the joint 
��� �� space with an additional variable � � ���� 
where ���� is just the sampling distribution where 
we set it to the posterior distribution ������. The 
procedure for finding the next sampling point �� 
from the current sampling point �  is shown by 
following algorithm (see also Figure 1): 

1. Generate a real value �  from the uniform 
distribution ���� ����� , and define the slice 
� � �� � � ����. 

2. Find a hyper rectangle ��� ���� ��� � ��
���� ��� around �, which contains the slice �  as 
much as possible. 

3. Generate the new sample �� uniformly in this 
hyperrectangle �. 

Due to the existence of computational error, it 
is difficult to locate the hyper rectangle �	exactly. 
A detailed numerical procedure about it can be 
found in [2]. Unfortunately, this numerical 
procedure always slows down the sampling.		
	

	
Figure	1 – Slice	sampling	algorithm.
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Hamiltonian Monte Carlo Algorithm: this 
sampling algorithm is also known as Hybrid Monte 
Carlo (HMC) algorithm. In this algorithm, the 
transition of sampling points is not through the 
proposed distribution ������ , but by solving the 
following Hamiltoniansystem: 

 

��
�
��
���
�� �

��
��� �

�����
��� ,

���
�� �

��
��� � ��������� .

 

 
where �  is a statevariable, ����  is the potential 
energy of the dynamical system when in state �, � 
is the momentumvariable, and ���� is the kinetic 
energy. When one state ��, �� changes to another 
state ���, ��� , the value of the following 
Hamiltonianisalways constant: 
	

���, �� � ���� � ���� 
� ����� � ����� � ����, ���. 

 
Based on this, we have the following HMC 

algorithm: 
1. Calculate the potential energy ���� �

������ of the current state � � �. 
2. Generate the momentum �  from a given 

simply normal distribution ������. 

3. Update the sample �� � �� by solving the 
above Hamiltonian system. 

However, in practice, we can only solve the 
Hamiltonian equations numerically by applying the 
leapfrog scheme. Therefore, to ensure the samples 
are all in the same stable Markovchain, we use the 
“accept-reject" criterion to accept the candidate 
sample ��or not: 
	

� � min��, ������,�������,���. 
 
This indeed is similar to the one used in above 

MH-MCMC algorithm. 
Numerical Test 
In this section, we will test the performance of 

three algorithms for solving our inverse option 
price numerically. 

Simulated Data: we firstly generate the noise 
free simulated data and the noisy simulated data 
which contains 20% relative Gaussian noise by 
using the closed-form analytical solution (3) (see). 
Here, the parameters in (3) are the same as the ones 
in Chen et al.: � � ��, � � �.�, � � � � � (year) 
and � � ��, ��� � ��.��,�.������. 

Therefore, we test the sampling algorithms 
shown above under these simulated data one by 
one.The initial value of ��  is always set to 
���, ���� � ��,�.���. 

	

Figure 2 - Simulated data
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Figure 3 – Samples by applying MH-MCMC algorithm from noise free data: (up) α; (down) σ 
 

 
Figure 4 – Samples by applying MH-MCMC algorithm from noisy data (5%): (up) �; (down)σ 

 
 

 

Figure 5 – Samples by applying slice sampling algorithm from noise free data: (up) �; (down) �. 

 
MH-MCMC Algorithm: the other hyper 

parameters used in MH-MCMC algorithm are set 
to be � � diag�0.25�, 0.025���  and �� � �0�� . 
The total sampling time is 1000. Samples from 

noise free data are shown in, while samples from 
noisy data are shown in. We always set up some 
"burn-in" time, which is thought as the start point 
of stable Markov Chain. The mean value of 
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samples among this "burn-in" time (=101) and the 
ending point (=1000) is computed and set to be our 
recovered result shown in Table 1. It is clear the 
MH-MCMC algorithm works well and does not 
trap in the any local minimums. Theoretically, a 
large number of samplings will final derive to a 
stable Markov chain, but in practice the computing 
cost will be very expansive, and thus we always 
need to manually choose the hyper parameters �� 
and 	�  in MH-MCMC algorithm such that the 
Markov chain “converge” fast and stable. This is a 
big disadvantage of this MH-MCMC algorithm, 
and it will be quite interesting for us to try the other 
two sampling algorithms. 

Slice Sampling Algorithm: the only hyper 
parameter needs to be set is�� � 10��. The total 
sampling time is also 1000. Samples from noise 
free data are shown in, while samples from noisy 
data are shown in. The mean value of samples 
among this "burn-in" time (=101) and the ending 

point (=1000) is computed and set to be our 
recovered result shown in Table 1. 

 
Table 1 – Recovered results by applying MH-MCMC 
algorithm. 

 � � 
Initial value 2 0.5 

Noise free data 1.7536 0.2453 
Noisy data (5%) 1.8215 0.2493 

True value 1.75 0.244 
 
 

Table 2 – Recovered results by applying slice sampling 
algorithm. 

 � � 
Initial value 2 0.5 

Noise free data 1.7509 0.2429
Noisy data (5%) 2.0617	 0.2529

True value 1.75 0.244 

 

Figure 6 – Samples by applying slice sampling algorithmfrom noisy data (5%): (up) �; (down)	� 
 

 

Figure 7 – Samples by applying HMC algorithm from noise free data: (up) �; (down) � 
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It is clear that the samples always transit with 
probability one without stopping. Therefore, these 
samples generated by slice sampling algorithm can 
exhibit the real random characteristics of the 
posterior distribution  we desire to recover 
in every statistical inverse problem.  

Hamiltonian Monte Carlo Algorithm: similar 
to slice sampling algorithm, the only hyper 
parameter needs to be set is . The total 
sampling time is again 1000. Samples from noise 
free data are shown in, while samples from noisy 
data are shown in. The mean value of samples 
among this "burn-in" time (=101) and the ending 
point (=1000) is computed and set to be our 
recovered result shown in Table 1.  

Similar to slice sampling algorithm, the 
samples draw by HMC algorithm usually transit  
 

stalely without stopping. These samples generated 
can also exhibit the real random characteristics of 
the posterior distribution  we desire to 
recover. However, the numerical computation of 
Hamiltonian system in each sampling is quite time 
consuming, and thus HMC algorithm is much 
slower than the other two in this paper. 

 

Table 3 – Recovered results by applying HMC 
algorithm 

   
Initial value 2 0.5 

Noise free data 1.7588 0.2446 
Noisy data (5%) 1.9255 0.2539 

True value 1.75 0.244 
 

 

 

Figure 8 – Samples by applying HMC algorithm from noisy data (5%): (up) ; (down)  

 
 
Conclusion: all of these three sampling 

algorithms can solve our invers option problem 
well. The recovery of the implied volatility  is 
much better than the recovery of the tail index 

because of the high nonlinearity of the problem 
corresponding to . 

Also, here isa short summary of the main 
advantage and disadvantage of inversion 
algorithms involved in this paper: 

L-M algorithm 
Disadvantage: good initial value  is required, 

otherwise it is easy to fall into local minimum. 
Advantage: if the initial value is properly 

selected, the convergence speed is fast and the 
result is accuracy. 

 
 

MH-MCMC algorithm 
Disadvantage: need to carefully choose a 

proposal distribution, otherwise the rejected rate 
will be quite high and need to have a large number 
of samples to draw/recover the posterior 
distribution . 

Advantage: if the proposal distribution is 
properly chosen, the recovered posterior 
distribution is good. 

Slice sampling algorithm 
Disadvantage: finding a proper slice in each 

sampling is time consuming.  
Advantage: no need of the proposal distribution 

and the recovered posterior distribution is 
good. 
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HMC algorithm 
Disadvantage: numerical computation of 

Hamiltonian system in each sampling is quite time 
consuming. 

Advantage: no need of the proposal distribution 
and the recovered posterior distribution ������	is 
good. 
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Stuart number effect on 3-d mhd  
convection in a cubic area 

 
 

Abstract. In this paper mathematical modeling of magnetohydrodynamics natural convection in three 
dimensional area at different Stuart numbers has been considered. The magnetic field is considered 
vertically and results have been shown at different planes of 3-D enclosure. The modeling of natural 
convection is based on the solution of a filtered unsteady three - dimensional Navier- Stokes equation 
and the equation for temperature. The problem is solved numerically: the equations of motion and 
temperature – by a finite-difference method in combination with penta-diagonal matrix using the 
Adams-Bashfort scheme, the equation for pressure – by spectral Fourier method with combination of 
matrix factorization. Change the dynamic of natural convection is gained over the time depending on 
the different values of Stuart numbers. As result of modelling, isothermal surfaces, velocity and 
temerature contoures, also profiles for different Sturart numbers are obtained.  
Key words. Natural convection, magnetohydrodynamics, finite difference method, spectral method. 

 
 
Introduction 
 
Natural convection is a phenomenon that occurs 

in many engineering applications, resulting in 
airflow near surfaces of solid particles or liquids, 
such as airflow in double-glazed windows, airflow 
in double-glazed doors of refrigerated display cases 
and airflow in gaps or cavities building walls. To 
clearly understand, many researchers have devoted 
themselves to the study of this phenomenon in order 
to enhance or reduce this heat transfer mode. 
Natural convection of the flow is one of the most 
important problems in fluid mechanics and [1,2]. 

Magnetic field convection has been developed 
and has been used in recent decades [3-7]. In [8], 
two-dimensional mixed convection in a chamber 
was solved using the finite volume method. They 
examined the sinusoidal boundary condition and the 
effect of the ratio of amplitudes, phase deviation, 
Richardson number and Hartmann number on the 
heat transfer rate. Their results show that the Nusselt 
number increases in amplitude ratio. In addition, the 
Nusselt number increases with the phase deviation 
to 2/  , and then decreases. In [9], the results 
for a laminar mixed convection flow in the presence 
of a magnetic field in the upper cavity controlled by 
a cover with a set of Graskoff and Hartmann 
numbers are presented. They used the finite volume 
method to model the equations and concluded that 

the transfer rate decreases with the Hartmann 
number. 

In [10], the Boltzmann MRT double lattice 
method was applied to simulate three-dimensional 
MHD of natural convection flow in a cubic cavity. 
Two different populations with models D3Q19 and 
D3Q7 were used to determine the flow field and 
temperature, respectively. The effect of the 
Hartmann and Grashof numbers on the projection of 
the flow trace and the heat transfer rate on various 
surfaces of the cavity, where the flow structure and 
isotherms in different planes of the casing change 
sharply due to an increase in the Hartmann and 
Grashof numbers, since the magnetic field is strong, 
the rates are suppressed. 

Three-dimensional nanofluidic non-Darsian 
natural convection is presented in the presence of 
Lorentz forces [11]. The lattice Boltzmann method 
is selected for mesoscopic analysis. The simulation 
results are presented for various amounts of Darcy, 
Rayleigh, and Hartmann numbers, and the volume 
fraction of Al2O3. The results show that convection 
dominates at large Darcy and Rayleigh numbers; 
therefore, distorted isotherms are observed at high 
Darcy and Rayleigh numbers. The motion of the 
nanofluid increases with increasing volume fraction, 
the Rayleigh and Darcy numbers, but decreases with 
increasing Hartmann number. The temperature 
gradient on a hot surface decreases with increasing 
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Hartmann number, while it increases with 
increasing Darcy number, Rayleigh number. The 
influence of the use of nanoparticles reaches a 
maximum degree for the maximum Hartmann value 
and the minimum value of the Darcy and Rayleigh 
numbers. 

In [12], convective flows and heat transfer in a 
magnetic field were studied. They also use the finite 
volume method and report that the heat transfer rate 
is increasing. In [13], the LBM method was used to 
solve a two-dimensional MHD flow in an inclined 
cavity with four heat sources. They thought that the 
double model of multiple time relaxation models the 
equations of momentum and energy, and explores 
the effect of the Hartmann number on fluid flow and 
heat transfer. They show that the average Nusselt 
number decreases due to an increase in the 
Hartmann number for all Rayleigh numbers. 

 In [14], MHD natural convection in a 
three-dimensional square cavity with a sinusoidal 
temperature distribution on one side wall was 
investigated using the new Boltzmann lattice 
method with a double relaxation time model using 
nano-liquid copper-water. The influence of various 
parameters, such as the Rayleigh and Hartmann 
numbers, the volume fraction of nanoparticles, and 
the phase deviation on heat transfer, was considered. 
Concerning the present results, the following 
conclusions are drawn: Convection heat transfer 
decreases with increasing Hartmann number, and 
the average Nusselt number decreases for both the 
left and right walls, but the decrease for the right 
wall is greater than for the left. When the Hartmann 
number increases from 0 to 50, the average Nusentt 

number decreases by 64% and 70% for the left and 
right walls, respectively. 

In this paper, we consider a mathematical model 
of the problem of natural convection under the 
influence of a vertical magnetic field, where the 
effect of the Start number on convection of the 
MHD flow was obtained. 

The applied magnetic field jHB


0  effect 
in the Navier-Stokes equations is the inclusion of 
the Lorentz force to the momentum equations 

BJFl  , where )( BVEJ  -is electric 
current density, E - is electric field strength, which 
we set equal to zero, and   is electric 
conductivity, kujuiuV


321   velocity of 

fluid, and all of these in combination we obtain 
BBVFl  )( – Lorentz force, where 

  )()()( 00321 jHjHkujuiuFl


   is 
in detail, after using the properties of the 
multiplication of unit vectors, we obtain 

),()( 00301 jHiHukHuFl


   or 

)( 2
03

2
01 kHuiHuFl


 ,  and 

321 FFFFl  , where 

.,0, 2
0332

2
011 HuFFHuF    

The problem is based on solving non-stationary 
equations of magnetohydrodynamics with filtration 
in combination with the continuity equation, 
equations for temperature, equations of motion of 
charged particles, taking into account the continuity 
equation in a Cartesian coordinate system in 
dimensionless form
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where )3,2,1( iui  are the velocity components, 

33211 ,0, uNFFuNF   -non-dimensional 

Lorentz force [10], 
2 2
0

0 Re
LH Ha

N



   is the 

Stuart number, where  /0LHHa   – 
Hartmann number, H - magnetic field strength,   
is the conductivity of the medium, which is 
determinedfrom plasma physics. 
 


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3010 )( LTTDU   – characteristically velocity, 
 is the full pressure, is the time, 

– non-dimensional 

temperature in ionosphere, where  and   are 
the respective temperatures  of the minimum and 

maximum of the area,  

-Rayleigh, where  is volumetric thermal 
expansion coefficient, – acceleration due to 

gravity,  is the Reynolds number, 

– Prandtl number, – diffusion 

coefficient, is the typical length, is the 
kinematic viscosity coefficient, is the density of 
the flow. 

A schematic picture of the computational 
domain is shown in Figure 1, where the left wall - 
indicated by the blue color, corresponds to the low 
temperature of flow. The right wall layer - 
highlighted in red, corresponds to high temperature 
of the flow.  

Initial conditions for temperature, velocity 
components are set zero in  all  directions  of  the  
 

domain. The boundary conditions imposed for 
temperature is Dirichlet on the right and left 
boundary, and Neumann on the other directions of 
the domain. The velocity components are equal to 0 
in all directions. 

 

 
Figure 1 – Illustration of the problem statement 
 
 
Numerical method 

To solve the problem of homogeneous 
incompressible MHD turbulence, a scheme of 
splitting by physical parameters is used:
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  where PrRePe – Peclet 
number. 

During the first stage, the full magneto 
hydrodynamic equation system is solved without 
the pressure consideration. For approximation of the 

convective and diffusion terms of the intermediate 
velocity field a finite-difference method in 
combination with penta-diagonal matrix is 
used,which allowed to increase the order of 
accuracy in space. The numerical algorithm for the 
solution of incompressible MHD turbulence is 
considered at [15]. 

At the second step, the pressure Poisson 
equation is solved, which ensures that the continuity 
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equation is satisfied. The Poisson equation is 
transformed from the physical space into the 
spectral space by using a Fourier transform. To 
solve the three-dimensional Poisson equation, the 
spectral conversion in combination with matrix 
sweeping algorithm is developed [15]. The resulting 
pressure field in the third stage is used to recalculate 
the final velocity field [16].  

At the fourth stage, the equation for temperature 
is solved by using Adams-Bashforth scheme.  

Consider the temperature distribution in the 
horizontal direction at the point kji ,, : 
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scheme for convective terms and the implicit 
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Discretization of diffusion conditions looks like this: 
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Then the left side of equation (3) is denoted by 
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Equation (5) is converted to 
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Assuming that equation (6) has second-order accuracy in time, we can instead solve the following 

equation: 
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We can show that equation (7) is an 
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At the first stage, the kjiA ,, search is carried out 

in the direction of the 1x  coordinates: 
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This equation (11) is solved by the method of 
the penta-diagonal matrix, which determines kjiA ,, . 

The same procedure is repeated further for 
directions 2x in the second stage, namely, kjiB ,,  is 
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The other components of temperature 1n

ijk  are 
solved in a similar way. 

 

Simulation results 

The results of modeling the imposition of a 
vertical magnetic field is obtained,where the lateral 
distribution of the temperature field is pronounced. 
The Grashof number is chosen 20000Gr , the 
Prandtl number Pr =0.09, the Stuart number has the  
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following values: 1) N = 0; 2) N = 0.09; 3) N = 2.16, 
kinematic viscosity 013.0  diffusion 
coefficient equal to 14.0D  For calculations, the 
mesh size is 343434  . The size of the 
computational domain is equal to

 2,2,2 321  LLL , which corresponds to 
the directions 21, xx and 3x . 

In this paper effect of Stuart number on 
isothermal surfaces for differentStuart numbers is  
 

shown at Figure 2. It is seen that isothermal surfaces 
changeconsiderably and gradient of the boundary 
layer declines with increasing of Stuartnumber, so 
heat transfer rate, which depends on the temperature 
gradient, graduallydecreases with increasing 
magnetic field, which indicates a weakening of the 
overallheat transfer effect. These trends were also 
discovered [17–19], who also studiednatural 
convection or Rayleigh Bernard convection under 
the influence of a magneticfield.

 

 
а)     b)     c) 

 
Figure 2 – Isothermal surfaces for various Stuart coefficients 
а) 0N ; b) 09.0N ;c) 16.2N  at 20000Gr  

 
 
The contours of vertical velocity 

components, and temperature contours on the 
different planes of the enclosure are very 
important for understanding the trend offlow, so 
present results for the different locations of the 
cavity have been shown infigures 4 and 5. It is 
shown at figures 4-5 that, increasing Stuart 
number isothermallines become parallel to the 
walls and temperature gradient on the wall 
declines, therefore heat transfer rate decreases.  

As for the physics of the influence of MHD on 
the structure of natural convection flows and heat 
transfer, this is due to the fact that in MHD flows the 
motion of vortex structures perpendicular to 
magnetic fields, i.e. horizontally oriented vortex 
cells, strongly suppressed due to  the  anisotropic   

effect  of  the magnetic field. This is recognized by 
the universal effect of magnetic fields, which is 
theoretically interpreted in [20]. Moreover, another 
important characteristic of the effect of the vertical 
magnetic field is that when the magnetic fields are 
stronger, the vortex structures will be more regular 
and will be shown parallel to each other.  

Consequently, thermal convection caused by the 
movement of the vortex cells will decrease due to 
the amplification of magnetic fields.  

Figures 6-7 show a longitudinal dimensionless 
temperature and velocity profile, respectively, for a 
different number of Stuart 1) 0N ; 2) 09.0N
3) 16.2N . It is observed that the solution has a 
linear velocity dependence along the transverse 
direction. 
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а)     b)     c) 

Figure 3 – Contours of 3x  vertical velocity components on 5.02 x plane for different Stuart numbersа) 
0N ; b) 09.0N ;c) 16.2N  at 20000Gr  

 
 

 
а)     b)     c) 

 
Figure 4 – Temperature contours on 5.01 x  plane for different Stuart numbersа) 

0N ; b) 09.0N ;c) 16.2N  at 20000Gr  
 
 

 
а)     b)     c) 

 
Figure 5 – Temperature contours on 5.02 x plane for different Stuart numbersа) 

0N ; b) 09.0N ;c) 16.2N  at 20000Gr  
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Figure 6 – Temperature profile for different values of the Stuart number 

1) 0N ; 2) 09.0N ; 3) 16.2N  at 20000Gr . 
 
 

 
 

Figure 7 – Velocity profile for different Stuart values 
1) 0N ; 2) 09.0N ; 3) 16.2N  at 20000Gr . 
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Conclusion
 
MHD natural convection in a three dimensional 

area at different Stuart numbers  with temperature 
distribution on side wall has been considered by 
finite difference method with spectral method.  

To solve the equations of flow motion and 
temperature, the finite difference method is used in 
combination with a pentadiagonal matrix, and 
solved by using the Adams-Bashfort scheme. The 
Poisson equation is solved by spectral method using 
the fast Fourier transform.  

Thus, the following conclusions are drawn: 
isothermal surfaces change considerably and 
gradient of the boundary layer declines with 
increasing of Stuart number, so heat transfer rate, 
which depends on the temperature gradient, 
gradually decreases with increasing magnetic field, 
which indicates a weakening of the overall heat 
transfer effect. As for the physics of the influence of 
MHD on the structure of natural convection flows 
and heat transfer, this is due to the fact that in MHD 
flows the motion of vortex structures perpendicular 
to magnetic fields, i.e. horizontally oriented vortex 
cells, strongly suppressed due to the anisotropic 
effect of the magnetic field. The effect of the 
vertical magnetic field is that when the magnetic 
fields are stronger, the vortex structures will be 
more regular and will be shown parallel to each 
other. Consequently, thermal convection caused by 
the movement of the vortex cells will decrease due 
to the amplification of magnetic fields. 

As result of modelling, isothermal surfaces, 
velocity and temerature contoures, also profiles for 
different Sturart numbers are obtained. 
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Asymptotic behavior of the solution of a singularly perturbed  
three-point boundary value problem with boundary jumps 

 
 

Abstract. In this paper, the three-point boundary value problem is considered for the third-order linear 
differential equation with a small parameter with at the two highest derivatives when the roots of 
additional characteristic equation have negative signs. The aim of this paper is to bring asymptotic 
estimation of the solution of a singularly perturbed three-point boundary value problem with boundary 
jumps and the asymptotic convergence of the solution of a singularly  perturbed initial value problem to 
the solution of an unperturbed initial value problem. In this paper the fundamental system of solutions, 
initial functions of a singularly perturbed homogeneous di�erential equation are constructed and their 
asymptotic estimates are obtained. An asymptotic behavior of the solution of the three-point boundary 
value problem at the points of initial jumps is established. A degenerate boundary-value problem is 
constructed. It is proved that the solution of the original singularly perturbed boundary value problem 
tends to the solution of the degenerate boundary value problem. 
Key words: singular perturbation, small parameter, asymptotic, initial jumps,asymptotic estimate, 
boundary value problem, boundary functions, fundamental solutions. 

 
 
Introduction 
 
Equations containing a small parameter with 

the highest derivatives are called singularly 
perturbed equations. Such equations are of great 
applied importance. They act as mathematical 
models in the study of various processes in physics, 
chemistry, biology and technology. 

The study of initial problems for singularly 
perturbed equations with unbounded initial data as 
the small parameter tends to zero, which are called 
Cauchy problems with an initial jump, first began 
with the work of M. I. Vishik, L. A. Lyusternik [1] 
and K. A. Kasymov [2]. A feature of such 
problems is that the solution of a singularly 
perturbed problem tends to the solution of the 
degenerate equation with modified initial 
conditions when the small parameter tends to zero. 
In this case, we say that there is a phenomenon of 
an initial jump in the solution. K. A. Kasymov and 
his students in [3-11] continued research on initial 
and two-point boundary value problems with initial 
jumps. Three-point boundary value problems for 
ordinary differential and integro-differential 
equations with a small parameter at only the 

highest derivative, which have the phenomenon of 
initial jumps, were considered in [12,13]. 

The present work is devoted to the study of 
the three-point boundary value problem for linear 
ordinary differential equations of the third order 
with a small parameter for two highest derivatives, 
which has the phenomenon of boundary jumps. 
The scientific novelty of this problem is that the 
fast variable of the solution increases unlimitedly 
not only at the so-called starting point, but also at 
the other end of the considered segment when the 
small parameter tends to zero. 

 
Statement of the problem and 

preliminaries 
 
We consider third-order linear differential 

equation with a small parameter at the two highest 
derivatives 
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with the boundary conditions 
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where  0 small parametr, ,10 0  t and

 ,, known constants. 
Let us assume that: 
I. ]1,0[)(,2,0],1,0[)( 2 CtFiCtAi   
II. The roots of the equation 
 

0)()( 10
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satisfy the conditions 
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We consider the followinghomogeneous 
equation associatedwith (1): 
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Lemma1. If the conditions I, II are satised, 

then the fundamental set of solutionsof the equation 
(3) has the following asymptotic representation as 

0 [6]: 
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and the 

functions 2,1),(0 ityi are solutions of the 
problems 
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We construct auxiliary functions: 
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where ),( sW  is the Wronskianof the fundamental 
set of solutions of the equation (3), and ),,,(0 stP

),,(1 stP  are determinantsobtained from the 
Wronskian ),( sW by replacing its third rows with 
the corresponding rows ),(,0),,( 31  tyty  and

0),,(,0 2 ty . 
In view of(4),for the functions

),,(),,,( 10  stKstK  the following asymptotic 
representations holdas 0 : 
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From (6) for the functions ),,(),,,( 10  stKstK
we obtainasymptotic estimates as 0 : 
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where 2,1,0,0  iC i  areconstants 
independent of . 

 
Main results  
 
Let the functions 3,2,1),,(  iti   be a 

solutions of the problem 
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We call these a boundary functions and determine 
by the formula 
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and ),( tIi  are determinantsobtained from the 

)(I by replacing its i -th rows with the row
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From (9)for the boundary functions 

3,2,1),,(  iti  , we get the following 
asymptotic estimates as 0 : 
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where 2,1,0,0  iC i  areconstants 
independent of . 

We seek a solution of the boundary value 
problem (1), (2) in the form 
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where  3,2,1),,( iti  boundary functions, 
and ),,(   ),,,( 10  stKstK auxiliary functions 
given by the formula (5). Now, by using condition 
(2) we will find the constants 3,2,1 , iCi . Then 
the following theorem is valid.  

Тhеоrеm 1. Under conditions I, II, the 
solution of the problem (1), (2) can be represented 
in the form 
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Тheorem 2. Under conditions I, II, for the 
solution of the problem (1), (2) the following 
asymptotic estimates hold as 0 : 
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where 2,1,0,0  iC i  areconstants 
independentof . 

The proof of the Theorem 1 and Theorem 2 
follow from (11), and in view of the estimates (7), 
(10). 

By the Theorem 2, one can obtain 
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It means that, the solution of the boundary 

value problem (1), (2) has the phenomena of initial 
jumps of zero order at the points 0t  and 1t . 

We consider the following degenerate 
problem 
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Let the initial jump condition be satisfied 
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Тhen following theorem holds true. 
Тheorem 3. Let the conditions I-III are 

satised, then for the difference between the 
solutions ),( ty  and )(ty  of the singularly 
perturbed boundary value problem (1), (2) and the 
degenerate problem (13) following asymptotic 
estimate holds as 0 : 
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where 2,1,0,0  iC i  areconstants 
independentof . 

Proof. We denote by u(tε) = y(t,ε) – y(t). Тhen 
in view of (13), we get the singularly perturbed 
problem for the function ),( tu : 
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The problems (15) and (1), (2) are the same 

type. Therefore, by using the estimates (12) for the 
singularly perturbed boundary value problem (15), 
we obtain estimates (14). 

The estimates (14) imply the following limit 
transitions 
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where )(ty is the solution of the degenerate 
problem (13). 

The values of the initial jumps are determined 
from the following equalities: 
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Conclusion 

In this paper, we consider a three-point 
boundary value problem for a third-order linear 
differential equation with a small parameter at two 
highest derivatives when the roots of the 
“additional characteristic equation” have negative 
signs. An analytical formula and asymptotic 
estimates of the solution are obtained. A degenerate 
boundary value problem is defined.It is shown that 
the solution of the original singularly perturbed 
boundary value problem tends to the solution of the 
degenerate boundary value problem. It is 
established that the solution of this boundary value 
problem has the phenomenon of boundary jumps. 
This means that the points of the initial jump are 
not only the left, but also the right point of the 
segment. Moreover, at both boundary points, the 
orders of the initial jumps coincide. 
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Langmuir probe and optical diagnostics  
of stratified glow discharge in a magnetic field 

 
 

Abstract. The article presents the preliminary results of an experimental study of the characteristics of 
a DC stratified glow discharge plasma in an external magnetic field. Single Langmuir probe and 
emissive spectrometer are used as diagnostic tools for the estimation of various plasma parameters. 
The main plasma parameters, such as electron temperature, density and floating potential were 
determined from the voltage- current (VI) characteristics of the probe in the stratified glow discharge 
plasmas for different magnetic field values. Increasing the value of the magnetic field leads to an 
increase in the concentration of plasma particles and a decrease in the temperature of electrons. Also 
by the optical emission spectroscopic (OES) method it was found that the intensity of spectral lines of 
the stratified glow discharge increases with an increase value of magnetic field. A simple 
interpretation was made to explain our results according to the work of Bickerton&Engel [21]. 
Key words: glow discharge, plasma, magnetic field, Langmuir probe, spectrometer. 

 
 
Introduction 
 
At the moment, it is difficult to overestimate 

the importance of studying plasma physics. A huge 
number of scientific groups around the world are 
engaged in research of plasma processes. In the 
future, these studiescan be widely used in industry in 
the form of technical applicationslike light sources, 
modern plasma nanotechnology; sensitive ion 
cleaning of the surface of materials and etc. [1-6]. 

Low-temperature plasma is the subject of 
numerous studies. Interest in it caused by the 
possibility of wide application in gas lasers, plasma 
chemical reactors, energy converters, voltage 
switches, etc.Successful application of plasma 
technology is impossible without a deep 
understanding and quantitative description of the 
processes occurring in them. The construction of 
physical models fully reflecting the behavior of 
plasma systems is based on the knowledge of the 
corresponding plasma parameters. In this regard, 
the development of plasma diagnostic methods is 
of great interest and practically important [7-10]. 

Of particular interest is the study of plasma 
behavior in a magnetic field. Since plasma is an 
ionized gas consisting of charged particles, the 

presence of a magnetic field has a significant effect 
on all processes occurring in plasma[11-16]. 

Important plasma parameters are density of 
charged particles, electron and ion temperature, and 
plasma potential. Also, the discharge parameters 
include its power and magnetic configuration, the 
pressure of the working gas. To study the dynamics 
of dust particles depending on all the above 
parameters, it is necessary to be able to determine 
them. 

The Langmuir probe diagnostic method is a 
common method for determining the density of 
charged particles, as well as the energy of electrons 
in plasma. An electric probe is an electrode of 
small size placed in plasma and used to determine 
its local characteristics.Usually,VI characteristic 
(voltage-current relationship) of the probe must 
bemeasured. A probe immersed in plasma is 
surrounded by a double electrical layer (volume 
charge layer or ''sheath'') and, in fact, the probe's 
VAC is the VAC of the layers. The reference 
electrode can be either one of the electrodes of the 
gas-discharge system or a metal element of the gas-
discharge chamber, or a specially introduced 
reference probe.The main task of the theory of 
interpretation is to establish a connection between 
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the probe current and plasma parameters. A 
rigorous solution to this problem in general is very 
difficult and has not yet been fully achieved. For 
the correct interpretation of the results of probe 
measurements, it is necessary to construct theories 
corresponding to the given conditions of 
application of the method[17-26]. 

In this work, probe and optical diagnostics of 
a glow discharge in a magnetic field was carried 
out. 

 
Description of Experimental setup& 

Results 
 
The experiment was conducted in the the 

laboratory of Dusty plasma and Plasma technology 
at the IETP. The general scheme of the 
experimental setup is shown in Figure 1. The gas 
pressure was 0.23Torr. The operating discharge 
current was 1.3 mA. This condition was chosen to 
determine the parameters of the glow discharge 
plasma, which manifested an interesting behavior 
of dust structures and not observed in other similar 
experimental works [27]. The magnetic field is 
created by a Helmholtz coil. The magnetic field 
strength depends on the current flowing in the 
solenoid. When the current is set to the 1.9 A the 
maximum magnetic field in the center of the 
solenoid is equal to B=28 mT. Probe and optical 
diagnostics were performed in the center of the 
solenoid (see Figure 1). 

 
 

 
 

Figure 1– Experimental setup for probe diagnostics 
 

The probe is made of tungstenire with a 
diameter of 100 microns. To determine the electron 
temperature and concentration, as well as other 
plasma parameters, the VI characteristic of the 
probe was obtained at different values of the 
magnetic field (Figure 2).Detailed information of 
the probe and the method for determining the 
plasma parameters are described in [28]. 

 

 
 

Figure 2– VI characteristic of the probe under different 
magnetic field conditions.(Experiment parameters: 

Argon, P=0.23torr, I=1.3 mA) 
 
 
As can be seen from the graph, a significant 

difference in probe VI characteristic does not 
appear at different magnetic fields. This suggests 
that the plasma parameters do not change at weak 
magnetic field values. A table of plasma 
parameters was constructed for different magnetic 
field strength, which is shown in Table 1.As can be 
seen from the table, the measurement was carried 
out at five points of magnetic field values 
(0;6;15;19;28 mT).As the magnetic field increases, 
we can see that the plasma concentration increases 
and the electron temperature drops.When the 
magnetic field increases, the ambipolar diffusion 
decreases in the direction perpendicular to the 
magnetic field. The probability of collision 
between electrons and atoms increases; therefore, 
ionization also increases.As a result, electrons lose 
their energy more due to ionizing collisions during 
their drift due to the E×Beffect.This leads to a 
decrease in the value of the electron temperature 
from 4.1 to 3.45 eV.With increasing magnetic field 
floating potential takes less negative values.At 
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relatively high magnetic fields, electrons become 
more and more restricted, and therefore the plasma 
potential becomes more negative to compensate the 
ion loss rate and maintain plasma quasi-neutrality. 

 
 

Table 1 – The parameters of the stratified glow 
discharge for different values of the magnetic field. The 
results were obtained using Langmuir probe diagnostics 
method. (Experiment parameters: Argon, P=0.23torr, 
I=1.3 mA) 

 
Induction of 

magnetic field 
ni, m3 Te, eV Vf, V Isaturation, 

mkA 
0 mT 1.41*1015 4.1 -17.8 2.35 
6 mT 1.48*1015 4.07 -17.6 2.37 

15 mT 1.49*1015 3.57 -15.6 2.59 
19 mT 1.58*1015 3.58 -15.5 2.89 
28 mT 1.74*1015 3.45 -14.9 3.16 
 
 
In [21] the density of the ion current in the 

wall also was measured. As the field increases, the 
ratio of the density on the wall to the density on 
axis decreases with the growth of the magnetic 
field.For the number of electrons per unit length of 
the discharge to remain constant, the concentration 
must increase. It should be mentioned that we use a 
constant current (DC discharge) discharge. 

Also, optical emission spectrawas obtained in 
stratified glow discharge at different magnetic 
fields (Figure 3). 

 

 
 

Figure 3– Optical emission spectra of stratified glow 
discharge at different magnetic fields 

 
 

 

As can be seen from the graph, with 
increasing magnetic field the intensity of the 
spectral linealso increases. As mentioned above 
with increasing magnetic field due to diffusion the 
probability of collision increases, which in turn 
leads to enhance of ionization.Perhaps the number 
of excited atoms increases, leading to an increase in 
the intensity of the discharge. 

 
Conclusion 
 
In order to obtain the information about the 

plasma of stratified glow discharge, probe and 
optical diagnostics were carried out.During the 
experiments it was found that with increasing 
magnetic field plasma parameterscan be also 
changed.The change of these parameters is related 
to the processes of diffusion and collision of 
charged particles in EхB fields.Of course, the work 
requires further research in different conditions of 
the glow discharge. 

The work was done with the support of the 
Ministry Education and Science of Republic 
Kazakhstan in the framework of the grant 
AP05133536. 
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Thermoelastic properties of solids
based on equation of state 

 
 

Abstract.Thermoelastic properties of solids at high pressures are studied using various equations of 
state (EOS) such as Eularian Birch-Murnaghan EOS, Poirier-Tarantola logarithmic EOS and the 
generalized Vinet-Rydberg EOS. We have determined the pressure derivatives of bulk modulus upto 
third order which are useful for predicting the Grüneisen parameter and its volume derivatives. 
Expressions have been obtained for the derivative properties based on different equations of state, and 
extrapolated to the limit of extreme compression. It is found that all the three equations lead to a 
common relationship between second and third pressure derivatives of bulk modulus in the limit of 
extreme compression. 
Keywords: Equations of state, pressure derivatives of bulk modulus, Grüneisen parameter, extreme 
compression behavior. 

 

Introduction

Equations of state at high pressures have been 
extremely useful for studying the thermoelastic 
properties of solids [1-5]. Bulk modulus and its 
pressure derivatives are important physical 
quantities for understanding the thermoelastic 
properties [6, 7] such as the Grüneisen parameter  
and its volume derivatives. is related to the 
thermal and elastic properties of materials by the 
formula [8, 9]. 

 
ST

V P

α K Vα K V
γ  

C C
              (1) 

 
Where  is the coefficient of volume thermal 

expansion, KT and KS are isothermal and adiabatic 
bulk modulus, CV and CP are the specific heats at 
constant pressure and constant volume 
respectively. 

The second Grüneisen constant q used in the 
literature is defined as [10]. 
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The third order Grüneisen parameter is defined 

as 
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or 
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2
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In order to emphasize the importance of q and 

 in determining higher order thermoelastic 
properties we refer to the following thermodynamic 
identities [9]. 

 
S = K��  – 1 + q –γ – C��               (5) 
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where 

S is the adiabatic Anderson-Grüneisen 
parameter 

S = S

P

 ln K1
α  T





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T is the isothermal Anderson-Grüneisen 

parameter 

T = T

P

 ln K1
α  T





 
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                   (10) 

 
'

SC = ( ln CV/ ln V)S                  (11) 
and 

'

TC = ( ln CV/ ln V)T                (12) 
 
Thusq and  appearing in esquations [5–8] are 

useful parameters reduced to investigate higher 
order thermoelastic properties. We make use of the 
generalized free-volume formula for determining 
qand . 

 
Generalized free-volume formulation 

According to the generalized free-volume 
formula [8, 11], is related to pressure P, 
isothermal bulk modulus K and its pressure 
derivative as follows: 

 

γ=
K'

2 - 1
6 - t

3 1- P
3K

1-2t P
3K

                (13) 

 
The parameter t takes different values for 

different derivatives of , based on different 
approximation. Thus t = 0 for Slater’s formula [12], 
t = 1 for the formulation developed by Dugdaleand 
MacDonald [13], t = 2 yields the free-volume 
formula [9], ad t = 2.35 resulted in a molecular 
dynamical calculation by Barton and Stacey [14]. 
The assumptions and approximations on which 
Equation [13] is based, have been reviewed in a 
comprehensive manner by Stacey and Davis. 
Equation [13] can be applied to different types of 
metals, solids as well as insulators, because it is 

derives from the fundamental relationship between 
thrmal pressure and thermal energy [8]. The 
pressure dependence or volume dependence of can 
be studied with the help of Eq. [13] using different 
equations of state [10, 15]. Expressions for the 
volume derivatives of , represented by q and  are 
derived from Eq. (13) considering t to be 
independent of pressure, i.e. dt/dpT = 0. It has been 
found by Stacey and Davis [8] that  varies slowly 
with pressure, and constant  might be a good 
approximation. Although there is no fundamental 
reason for believing that  is constant, it is much 
better assumption constant q often assumed in 
mineral physics [16]. 

It is more convenient to rewrite Eq. (13) in an 
equivalent form as follows (13). 
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The following equations are then obtained from 

the differentiation of Eq. (13) 
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Eqs. (16) and (17) yield 

(q+) = –  – 
2 2 2 2[(K K /KK )-(2/KK ) (K d ε/dP )

1-(2/KK )(Kd /dP)

  


       (18) 

 
Values of γ, q and  can be calculate by 

knowing the pressure derivatives of bulk modulus. 
These pressure derivatives can be determined with 
the help of equations of state. 

 
Analysis based on equations of state 

Higher pressure derivatives of bulk modulus 
are determined here using some important 
equations of state given below: 
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Birch-Murnaghan fourth order EOS 

This EOS has been derived from the Eulerian 
strain theory [17]. The expressions for P, K, ��, 
KK�� and K�K��� obtained from this equation of 
state are given below: 

5/3 7/3 3 11/309K
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16
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where x = V/Vo and 

A= 0K K��� + (K��  – 4) (K��  – 5) + 59/9       (24) 
 

B=3 0K K��� + (K��  – 4) (3K��  – 13) + 129/9    (25) 
 

C=3 0K K���+ (K��  – 4) (3K��  – 11) + 105/9    (26) 
 

D= 0K K��� + (K�� – 4) (K��  – 3) + 35/9         (27) 
 
Poirier-Tarantola logarithmic fourth-order 

EOS 

Poirier and Tarantola [18] have obtained 
logarithmic EOS using the Henckystrain which is 
represented by (1/3) ( ln V/Vo). The expressions 
based on this EOS s follows: 
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2
1
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KK��=3K�+ 
P
k
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xk

 ( 0K K��� + K���  -3K��   + 3)           (31) 
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K


– 3��K��� – 

– 0
(K 1)

xK
K  

 ( 0K ���� + ���� -3���  + 3)     (32) 

 
where x = V/Vo and Q = 0K K��� + K��� – 3K��   + 3

 
Generalized Vinet-Rydberg Eos 

Stacey [19, 20] has generalized the Vinet EOS, 
so as to make it compatible with infinite pressure 
value K�� , for the pressure derivative of bulk 
modulus the equation thus formulated by Stacey is 
known is the generalized Rydberg EOS. 
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where x = V/Vo and  = 
3
2
��� – 3��� + 

1
2

=– 3 0K
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3
4
���� + 

1
12

. 

q = 
)1(3 3/1
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x
x
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, for K�� = 2/3, Eq. (33) reduces 

to the original Rydberg EOS. 
The Birch-Murnagham EOS, the logarithmic 

EOS and the generalized Rydberg EOS can be 
written in the following form  

 
K/P = ��� +F(x)                      (38) 

 
Differentiating   Eq (38) with the respect to ‘P’ 

successfully 
 

(K�-K/P)K/P = -x��(x)                  (39) 
 

[(KK′′+K′�) (K/P) - 3K′ (K/P)² + 
+2(K/P)³= xF′(x)+x²F′′ (x)              (40) 
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= -[x ��(x) + 3x²F′′(x)+x³F′′′(x) ]            (41) 

 
Where  x =V/V₀ 
In case of birch murnagham fourth order EOS 

the value of F(x) is 
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�
���
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In case of the logarithmic fourth –order EOS 

the value of F(x) is 
 

���� � � ��������	�	�	��������
�����������������������              (43) 

 
In case of the generalized Rydberg EOS the 

value of F(x) is  
 

F��� � �
�
�

�����
�
��
� � �

�
�
�                  (44)	

 
Results and Discussions 

We can derive expressions for the derivatives 
of F(x) such as F'(x), F''(x) and F'''(x) by using Eqs. 
(42-44). In the limit V0, P, K, but their 
ratio P/K remain finite such that (P/K) = 1/K�� . 
Also (1–K��/K), KK�� and K2K��� tend to zero in 
the limit of infinite pressure, but their ratios 
KK��(1–K�P/K) and K2K���/KK��  remain finite 
[6,22]. At extreme compression x 0, we have 
F(x)0, x F'(x) 0, x2 F''(x) 0 and x3 F'''(x) 
0for all the equations of state based on Eqs. (38-
41) using the calculus, we have 
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In the extreme compression limit Eqs. (39) and 

(40) gives 
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Eqs. (40) and (41) gives 
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Eqs. (45 – 47) then yield 
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The Birch-Murnaghan Fourth Order EOS gives 

using Eqs. (19-23) 
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The logarithmic fourth order EOS using Eqs. 

(28-32) 
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The generalized Vinet-Rydberg EOS using 

Eqs. (33-37) gives 
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                  (54) 

 
All these equations of states satisfies the 

common relation (48). This relationship can be 
useful for investigating further the thermoelastic 
properties of solids at high pressures [6, 8, 23, 24]. 
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Soliton surface associated  
with the oriented associativity equation for n=3 case 

 
 

Abstract. This paper describes the soliton surfaces approach to the Oriented Associativity equation for 
n=3 case. The equation of associativity arose from the 2D topological field theory. We constructed the 
surface associated with the Oriented Associativity equation for n=3 case equations using Sym-Tafel 
formula, which gives a connection between the classical geometry of manifolds immersed in Rm and the 
theory of solitons. The so-called Sym-Tafel formula simplifies the explicit reconstruction of the surface 
from the knowledge of its fundamental forms, unifies various integrable nonlinearities and enables one 
to apply powerful methods of the soliton theory to geometrical problems. The soliton surfaces approach 
is very useful in construction of the so-called integrable geometries. Indeed, any class of soliton 
surfaces is integrable. Geometrical objects associated with soliton surfaces (tangent vectors, normal 
vectors, foliations by curves etc.) usually can be identified with solutions to some nonlinear models 
(spins, chiral models, strings, vortices etc.). We consider the geometry of surfaces immersed in 
Euclidean spaces. The Oriented Associativity equation plays a fundamental role in the theory of 
integrable systems. Such soliton surfaces for the Oriented Associativity equation for n=3 case are 
considered, and first and second fundamental forms of soliton surfaces are found for this case. Also, we 
study an area of surfaces for the Oriented Associativity equation for n=3 case. 
Key words: the Oriented Associativity equation, nonlinear equation, the Lax pair, first and second 
fundamental forms, soliton surfaces, area of surfaces. 

 
 
Introduction 
 
The equation of associativity relation for genus 

0 Gromov-Witten (GW) invariants completely 
solves the classical problem of enumerating 
complex rational curves in the complex projective 
space Pn [1]. For genus-0 GW-theory, the 
associativity of quantum cohomology, which is 
equivalent to equation of associativity, led to 
Kontsevich’s solution to the classical problem of 
counting degree d rational curves passing through 
3d − 1 general points in P2 [2]. A system of PDE, 
called open WDVV, that constrains the 
bulkdeformed superpotential and associated open 
GW invariants of a Lagrangian submanifold L ⊂ X 
with a bounding chain [3]. In this paper we shall 
consider so-called nonlinear partial differential 
equations of associativity in 2D topological field 
theories (see [4-7]) and give their description as 
integrable nondiagonalizable weakly nonlinear 
systems of hydrodynamic type. For systems of this 
type corresponding general differential geometric 
theory of integrability connected with Poisson 
structures of hydrodynamic type can be developed. 

For an arbitrary solution of the open equation of 
associativity, satisfying a certain homogeneity 
condition, constructed a descendent potential in 
genus 0 [8]. For any mechanics, given by the 
metric and the third order Codazzi tensor, it is 
possible to obtain the superfield Lagrangian [9] by 
solving a simple differential equation. Universal 
algebraic structure, closely related with that of the 
equation of associativity, govern quantum 
correlation functions of every quantum field theory 
[10]. Topological approach provides a general 
framework for lifting relations via morphisms 
between not necessarily orientable spaces [11]. For 
isotropic (so(n)-invariant) spaces provided 
admissible prepotentials for any solution to the 
curved equation of associativity [12]. For every 
flat-space equation of associativity solution subject 
to a simple constraint provided a curved-space 
solution on any isotropic space, in terms of the 
rotationally invariant conformal factor of the metric 
[13]. Flat structure was introduced by K. Saito and 
his collaborators at the end of 1970’s. 
Independently the equation of associativity arose 
from the 2D topological field theory. B. Dubrovin 
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unified these two notions as Frobenius manifold 
structure [14]. The concepts of Frobenius manifold 
and Lenard complex must be strictly related. They 
provides two ways of looking at the same object 
from different perspectives and by using different 
geometrical structures [15].  In paper [16]compared 
two different geometrical interpretations of the 
equation of associativity of 2D topological field 
theory. The first is the classical interpretation 
proposed by Boris Dubrovin, based on the concept 
of Frobenius manifold. The second is a novel 
interpretation, based on the concept of Lenard 
complex on a Haantjes manifold. In paper [17]. 
determined correlators of topological quantum field 
theories and provided explicit solutions to the 
equation of associativity. 

The equation of associativity, in general, have 
the following form [4,18]: 

 
3 3

3 3

=

,
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pq
i j p q k r

pq
j k p i q r
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

 
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 

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 

 

 
where F  is a prepotential,   is a metric. 

The Associativity equation, or WDVV 
equation, plays a fundamental role in the geometric 
theory of Integrable Systems. Its solutions define 
Frobenius manifolds, which correspond to 
integrable systems; Frobenius manifolds also play a 
fundamental role in the theory of quantum 
cohomology and Gromov - Witten invariants. 
These connections were shown by B. Dubrovin in 
his seminal paper [19]. 

In this paper we shall consider so-called 
nonlinear partial differential equations of 
associativity. 

The nonlinear partial differential system of 
equations: 
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(1) 

 
on n unknown functions (ci) of n  independent 
variables (aj) was introduced in [19] as a 
generalization of the Associativity equations. Its 
solution define F -manifolds, which are still in 
correspondence with integrable systems. The far-

reaching implication of this generalization are an 
active subject of study: flat and bi-flat F -
manifolds have interesting connections with 
Painlevé equations [20-22]; see also the papers [23-
24] devoted to coisotropic deformations. We call 
the system (1) the Oriented Associativity equation. 

 
Soliton surface associated with the Oriented 

Associativity equation for 3=n  case 
 
The Oriented Associativity equation admits the 

scalar linear spectral problem 
 

mji

m

ji a
h

aa
c

aa
h











 22
=   

 
(see, for instance, [25]) that ensure that the 
equation is integrable as it provides a Lax pair. 

We observe that the Associativity equation [26] 
can be obtained from (1) by the potential reduction 

mimi Fac = , where ks  is a constant 
nondegenerate symmetric matrix. 

The system of quadratic equations [26] 
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is the Oriented Associativity equation in the 

simplest case 3=n . It is endowed by the Lax pair  
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In the following sections we work with the 

system (2). 
 
First fundamental form of a surface 
 
The corresponding Lax pair for the Oriented 

Associativity equation for 3=n  case to the system 
(2) is given by  
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 Ux =                            (3) 
 

 Vt =                            (4) 
 

where AU =  and BV = . Here A  and B  
matrices defined as follows: 
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Geometrical objects associated with soliton 

surfaces  usually can be identified with solutions to 
some nonlinear models [27-28]. The scalar square 
of the total differential dr  of the radius-vector of 
the current point of a surface is called the first 
fundamental form I  of the surface [29]: 

 

,d= 2rI  
In expanded form, it is recorded as  
 

,ddd2d= 2222 trtxrrxrI ttxx              (6) 
 
where x  and t  are the curvatures. 

To construct the surface, we now use the Sym-
Tafel formula [30]. It has the form  

 
,= 1

r  
 

where jjrr =  is the matrix form of the 
position vector of the surface,   is a solution of 
the equations (3)-(4). We have  

 
.=,= 11  

 VrUr tx  
 
In terms of the Lax representation, equation (6) 

will be rewritten as follows:  
 

 2 2 2 21
= t ( ) 2t ( ) t ( ) .

2
I r U dx r U V dxdt r V dt     (7) 

 
We now turn to finding the first fundamental 

form of soliton surface for the Oriented 
Associativity equation for n = 3 case to the system 
(2) 

 
 ,2=)(t 222

xxxtxxxtxx wvuwvUr     (8) 
 

t ( ) = 2
,

xt xt xx

xx tt xt xt xt tt

r U V u v v
w v v w w w

   

  
           (9) 

 
 2 2 2t ( ) = 2 .xt tt tt tt xtr V v w u v w       (10) 

 
Substituting equations (8)-(10) into equation 

(7) we have the first fundamental form of soliton 
surface for the Oriented Associativity equation to 
the system (2) 

 

    

  

2 2 2

2 2 2

1= 2 d 2 d d
2

2 d

xx xt xx xt xx xt xt xx xx tt xt xt xt tt

xt tt tt tt xt

I v w u v w x u v v w v v w w w x t

v w u v w t

         

    

 

 
 
Second fundamental form of a surface 
 
The scalar product of the total differential of 

the second order r2d  of the radius-vector r  of the 
current point of a surface by the orbit of the normal 
n  at this point is called the second quadratic form 
of the surface:  

 
,dd= rnII   

where  

.
||

=
tx

tx
rr
rrn




 

In an expanded form, it is recorded as  
 

,2= 2
2212

2
11 dtbdxdtbdxbII         (11) 

 
where the coefficients 11b , 12b  and 22b  are given 
as  

,=11 nrb xx                       (12) 
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,=12 nrb xt                          (13) 
 

,=22 nrb tt                         (14) 
or  

),(t
2
1=

),(t
2
1=

),(t
2
1=

22

12

11

nrrb

nrrb

nrrb

tt

xt

xx

 

here  













]),[(=

,]),[(=

,]),[(=

1

1

1

VVVr

VUUr

UUUr

ttt

txt

xxx







 

 
The normal vector n  is given by 
 

.
)],([t

2
1

],[=
2

1





VUr

VUn 



 

 
Thus, the equation (12)-(14) is written as 

follows  
 

   ,
)],([t

2
1

],[],[t
2
1=

2
11





VUr

VUUUUrb x 

 

   (15) 

 
   ,

)],([t
2
1

],[],[t
2
1=

2
12





VUr

VUVUUrb t      (16) 

 

   ,
)],([t

2
1

],[],[t
2
1=

2
22





VUr

VUVVVrb t 

 

   (17) 

 
Substituting equations (15)-(17) into equation 

(11) we have the second fundamental form of a 
soliton surface for the Oriented Associativity 
equation to the system (2) 

 
 

 

 

2

2

2

2

2

1=
2

2 2

1
2

xxt xxx xxx xxt

xtt xxt xxt xtt

ttt xtt xtt ttt

w v w v
II dx

w v w v
dxdt

w v w v
dt

  

 

    

 

  

 

  




    




  




 

where 
 
 
 .=

,=

,=

2

2

xxttxtxxxxxtxtxx

ttxtxtttxxttttxt

xxttxtxtxt

wwwvwvwu

wvwvvvuv

wvwvu













 
Area of surfaces for Oriented Associativity 

equation for 3=n  case 
 
In this section we consider the area of surfaces 

for the Oriented Associativity equation for 3=n  
to the system (2). Area of surfaces is evaluated by 

 

    txUUUrS x dd,t
2
1= 2

      (18) 

 
where the matrix A  is defined as in equation (5). 
So, that 0=],[ UU , we have 

 

 



















2

22
000

=

xxtxxxxxtxxtxxtxxtxxxxxtxxtxxtxxx

xxtxxxxxxxxxxxtxxxxxxxxtxxxxxxxxxx
wwvwvvvuwvu

wwwvvwvuwvuU  

 
 
Area of surfaces (18) for the Oriented 

Associativity equation to the system (2) is given by 
 

txwvwvS xxxxxt
xxtxxx dd

2
=

22



  

 
Conclusions 
 
In this work we considered the Oriented 

Associativity equation for 3=n  case. Soliton 
surfaces for the Oriented Associativity equation for 

3=n  case was obtained. Area of surfaces for the 
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Oriented Associativity equation for 3=n  case 
was investigated. 
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