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EDITORIAL

The most significant scientific achievements are attained through joint efforts of 
different sciences, mathematics and physics are among them. Therefore publication of 
the Journal, which shows results of current investigations in the field of mathematics 
and physics, will allow wider exhibition of scientific problems, tasks and discoveries.

One of the basic goals of the Journal is to promote extensive exchange of 
information between scientists from all over the world. We propose publishing 
service for original papers and materials of Mathematical and Physical Conferences 
(by selection) held in different countries and in the Republic of Kazakhstan.

Creation of the special International Journal of Mathematics and Physics is of 
great importance because a vast amount of scientists are willing to publish their 
articles and it will help to widen the geography of future dissemination. We will also 
be glad to publish papers of scientists from all the continents.

The Journal will publish experimental and theoretical investigations on 
Mathematics, Physical Technology and Physics. Among the subject emphasized 
are modern problems of Applied Mathematics, Algebra, Mathematical Analysis, 
Differential Equations, Mechanics, Informatics, Mathematical Modeling, Astronomy, 
Space Research, Theoretical Physics, Plasma Physics, Chemical Physics, Radio 
Physics, Thermophysics, Nuclear Physics, Nanotechnology, and etc.

The Journal is issued on the base of al-Farabi Kazakh National University. 
Leading scientists from different countries of the world agreed to join the Editorial 
Board of the Journal.

The Journal is published twice a year by al-Farabi Kazakh National University. We 
hope to receive papers from many laboratories which are interested in applications of 
the scientific principles of mathematics and physics and are carrying out researches 
on such subjects as production of new materials or technological problems. 

This issue of the journal is dedicated to the memory of the outstanding scientist, 
teacher, organizer of science and education of the Republic of Kazakhstan, doctor 
of physical and mathematical sciences, professor, academician of the Engineering 
Academy of the Republic of Kazakhstan Shaltai Smagulov. The issue of the journal 
contains selected scientific reports of the expanded city scientific seminar dedicated 
to the 70-th anniversary of Shaltai Smagulov.
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The Problem of Single – Determinability Equations  
of Navier-Stokes  

 
 

Abstract. The Navier-Stokes equations describing a viscous incompressible fluid have for 
many decades attracted the attention of scientists working on the problem of solvability of 
partial differential equations and specialists in the field of numerical analysis due to numerous 
applications. Despite such interest, the question of the existence and uniqueness of the “on the 
whole” solution of the non-stationary Navier-Stokes equations in the case of three spatial 
variables still remains open. S. Smagulov made a great contribution to the development of the 
theory and numerical methods for solving initial-boundary value problems for the Navier-
Stokes equations. The situation with the numerical solution of these equations is more complex. 
The fact is that numerical methods that have proven themselves in solving one class of problems 
are ineffective in solving another class. From the point of view of justification of numerical 
methods, there is no possibility of using a number of results. The theory of the equation of 
mathematical physics, since, as mentioned above, they are open to the Navier-Stokes system. 
Therefore, the young scientist S. Smagulov of the 1970s of the last century, in order to work 
successfully in this field of mathematics, combined in himself a specialist in differential 
equations and also in computational mathematics. 
Key words: Navier-Stokes equations, regularization, E-approximation, initial-boundary 
problem. 

  
 
1.1. Problem statement. The systems of 

Navier-Stokes, which describes motion of viscous 
incompressible fluid, have the following form  

 
������ � �����+�� � ������� = �� 

 
������ = 0� ���(�� 0) = ����(�)� ���|�Ω = 0 

 
Here ��� = (��� ��� ��)-velocity vector, p-function 

of hydrostatic pressure, and ��=(��� ��� ��)-vector-
fucntion of sources, ������ =0, �- viscosity 
coefficient (value inversely proportional to the 
Reynolds number), solution is sought in a limited 

area Ω with Lipshitz border �Ω three-dimensional 
space��. 

S. Smagulov, already studying at the NSU at the 
4th year under the guidance of Ph.D., associate 
professor B.G. Kuznetsova, began to study methods 
for the numerical analysis of problems in 
hydrodynamics. Academician N.N. Yanenko closely 
followed his scientific growth, posed fundamental 
problems for solving boundary value problems for 
the Navier – Stokes system of equations, namely, 
questions of the approximation of the Navier-Stokes 
equations by evolutionary type equations and the 
substantiation of a number of difference methods for 
solving stationary and nonstationary hydrodynamic 
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equations. According to the proposed schemes, 
numerical calculations were carried out, the results 
of which were published and transferred to practical 
application. One of the directions of the study of 
approximate solutions of the Navier-Stokes 
equations is based on the use of difference schemes 
for which the difference energy a priori estimates 
are valid. In this case, estimates are used for the 
equations themselves, as well as for some of their ε-
approximations. 

1.2. The currently known approximations of the 
Navier-Stokes equations can be mainly divided into 
two types: 

 approximations of the continuity equation 
(moreover, for the correctness of the approximating 
problem, it is necessary to make adjustments to the 
equations of motion) 

 approximation (regularization) of only one 
equation of motion 

ε-approximations of the Navier-Stokes equations 
for a viscous incompressible fluid, which were 
derived from physical considerations, were 
proposed in the papers of academician of N.N. 
Yanenko (by the way the author of the method of 
fractional steps), B.G. Kuznecov, N.N. Vladimirov 
[1],[2]. This idea was quickly picked up by 
prominent French mathematicians Jacques-Louis 
Lyons, Roger Themes and others. R. Temam [3],[4] 
proposed a different method of ε-approximation of 
the Navier-Stokes equations. For these equations, he 
studied the behavior of the solution at � � 0, a 
difference scheme was constructed, for which it was 
shown that, under certain conditions on ����� � the 
solution of the difference problem converges to the 
solution of the Navier-Stokes equations. An attempt 
was made in [5] to substantiate difference schemes 
like fractional steps. We also note other 
regularizations of the Navier-Stokes equations. 

We present an ε-approximation of the Navier-
Stokes equations. 

 
���
�� − ���� + ��� ��

�

���
+ �

� �������� = � − ∇�, (1) 
 

� ����� + ����+�������=0.            (2) 
 

At �� = 0 the convergence of difference schemes 
for the two-dimensional case is proved under the 
assumption, that ����� �� ��� → 0 and  

 
��

√��� → 0.                             (3) 
 

This restrictive condition has been removed by 
О.А. Ladyzhenskii [6]. 

We also note other regularizations of the Navier-
Stokes equations, for example, Е.G.Dyakonova, 
D.P.Kaushilayte, V.Ya.Rivkind, А.P.Oskolkov and 
etc. 

Since 1975, a series of papers began to appear, 
then still a young graduate student THE VC SOAN 
SSSR S.Smagulov [7],[8],[9]. Two explicit finite-
difference schemes are proposed that approximate a 
quasilinear parabolic system with a small parameter 
ε, which when ε = 0 degenerates into a non-
stationary non-linear Navier-Stokes system. The 
conditions under which the solutions of these finite-
difference problems converge to the exact (fairly 
smooth) solution of the Navier-Stokes equations are 
clarified. The conditions obtained are less restrictive 
than the similar conditions given in the papers 
[6],[10]. The convergence of difference schemes is 
investigated by the method of energy estimates. 
S.Smagulov in 1975 proposes an approximation of 
the Navier-Stokes equations, which is obtained by 
replacing the continuity equation with another 
equation. The convergence of the approximate 
solution that is obtained by solving the replacing 
system of equations, to solving the Navier-Stokes 
equations with the speed 

 
� �� − � ����(��)

� =� �� − � ��∞��������(Ω)�
� + 

 
+� � �� −�

� � �
 

0
1

2W

� �� � ��                (4) 

 
If the solution of the Navier-Stokes equation has 

the following property 
 

��Ω −� > � > 0,                  (5) 
 

where m- the exact lower bound of the eigenvalues 
of the matrix of the strain rate tensor matrix, then 
the estimate (5) is uniform. 

 Apparently, for the first time the behavior of a 
strong solution of problem (1), (2) with � = 0� ��� >
0 was considered in the works of S.Smagulov [11], 
[12] and at the same time in work P.Е. Sobolevskii 
and V.V. Vasilev [13] 

Sh. Smagulov introduced the following system:  
 

��� + (�� · ∇)�� + 1
2 �

������ = 
= ����-∇�� − ∇��,                    (6) 
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���� + ����� = 0,                      (7) 
 

��|��� = ��(�), ��|��� = ��(�), ��|��=0     (8) 
 

Where �� = ∑ ����(�)
�� ,���� �(�) − a smooth 

characteristic function on (0, -∞), ��(�) =
���
����

���
− is found from the Navier-Stokes equation 

(unperturbed). 
 Using the obtained a priori estimates for the 

higher derivatives and for other structural elements 
of the problem, we proved the following. 

Theorem. Let 
����∞�0, �; ��(Ω)�, ������ �0, �; ����(Ω)�, ����. 
Then there is a strong solution to problem (6) – (8) 
and for this solution the following estimate takes 
place: 

 
∥ ��� ∥��(�,�; ������ ��� (Ω))+

�
� ∥ ������ ∥��(��)≤ � < ∞ 

 
By introducing an auxiliary function ��(�) 

which provides the conditions for matching at the 
initial time the solution of the Navier-Stokes 
equations and the solution of a parabolic system 
degenerate at ε = 0. That is, ensures equality: 

 
����

��� �
���

= ���
����

���
, �

�(�����)
��� �

���
= ���

����
���

 
 

Next, we study the internal smoothness of spatial 
variables. 

Sh. Smagulov in 1976-1977, together with 
Professor Kasimov A.V. the strongest result was 
obtained on the unambiguous generalized and strong 
solvability of the diffusion model of an 
inhomogeneous fluid, which was later called the 
Kazhikhov-Smagulov equation. 

We formulate the initial-boundary problem for 
this system: 

 

� ���
�� + (� � �)� − 

 
−�[(�� � �)� + (� � �)��] = ��� − �� + ��,   (9) 

 
��� �� = 0; ��

�� + (� � �)� = ���           (10) 
 

Let the mixture move in a limited area  
Ω � �� with a fairly smooth border Υ (for 

example, twice continuously differentiable). For 
simplicity, let us assume that the boundary Υ is 

impenetrable and there is no mass transfer between 
the solution and the external medium: 

 
�|Υ= 0; ��

�����Υ=0; ��[0, �],                (11) 
 

where ��� = ��, ��, ��- unit vector of external normal 
Υ. Along with the task of mass flow through the 
boundary Υ, another physically reasonable 
condition can also be considered, when the density 
values are known on Υ: 

 
�|Υ=�Υ(�, �); �� γ;  ��[0, �] 

 
In addition to the boundary conditions, we 

supplement the problem with the given by Cauchy: 
 

�|��� = ��(�); �|��� = ��(�); x� �       (12) 
 

Regarding ��(�) (also �Υ(х, �)) we will assume 
that this is a positive bounded function:  

 
0 < ������� ��(�) = 

= � ≤ ��(�) ≤ � = ������� ��(�) < ∞  (13) 
� � 

 
We formulate the main results for this problem 

obtained by Sh. Smagulov 
Theorem 1. Let ��(�)�Н;  ��(х)����(Ω), � ≤

��(х) ≤ �; 
 

�(�) = �(�, �) � ���0, �; ��(Ω)�, где  
 

��[1,2]; q � ��
� , 2� ;  �

� + �
�� ≤ �

� 
 
Then there is at least one weak solution to 

problem (9) – (13) if the constants M, m, � ��� � 
satisfy  

 
� ≤ 2�(� − �)��                       (14) 

 
Theorem 2.  
If ��(�)��; ��(�)����(Ω), �(�)���(��) and 

flow is plane-parallel, i.е. � = (��, ��), � = (��, ��) 
then, if condition (14) is fulfilled on any finite time 
interval (0, T), there is a unique strong solution to 
problem (9) – (13). 

And this task is brought by Shaltay Smagulovich 
to practical results, i.е an approximation of the 
problem (9) – (13) is proposed, the theorems of 
convergence, the stability of difference schemes are 
proved. 
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1.3. The important step in the scientific career of 
Sh.Smagulov is an adoptation of ideas of fictitious 
area method for the first time for nonlinear 
equations of mathematical physics, namely for the 
Navier-Stokes system of equations during 1978-
1979 in papers [14]-[15]. Fictitious areas method 
(briefly f.a.m.) are pioneers for simple models 
(Saulev1963 г; lebedev 1964 y, and etc.) reduces the 
solution of the boundary in regions of complex 
shape to the solution of boundary-value problems in 
regions of simple shape (for example, a rectangle or 
parallelepiped). The reduction is due to the fact that 
in the domains of simple form, boundary value 
problems and / or their grid analogues can be solved 
by efficient, cost-effective methods. There are 
several fundamentally different approaches for such 
information. The method of fictitious areas for the 
nonlinear Navier-Stokes system. Consider a 
boundary value problem for a nonlinear 
equation.(�� · ∇)�� = ���� − ∇�� + � в Ω� 

 
 ��� �� = 0                              (15) 

 
(�� · ∇)�� = ���� − �

� ����� �� − �
�  �� в Ω� 

 
��|�� = ��|��, ��|� = 0,  

 
� ���

����  � �������|��=� ���

����  �
��. 

 
The behavior of the solution of problem (15) is 

investigated as ε → 0. An a priori estimate of the 
solution to the problem (15) was obtained :  

 
�‖��� ‖Ω � + �

�  ||��‖Ω�
� � ��‖����(Ω)         (16) 

 
Further, the existence of at least one generalized 

solution of problem (15) and its weak convergence 
in ���(Ω) to a generalized solution of the stationary 
Navier – Stokes equation is proved. The rationale 
for the method of fictitious domains for the Navier-
Stokes equations and equations for the current 
function and velocity vortex with inhomogeneous 
boundary conditions is carried out for the first time. 
The obtained estimates of the convergence of the 
solution of the auxiliary problem to the solution of 
the original problem. 

 Professor Sh. Smagulov and his students for 
the first time used the method of fictitious areas to 
describe incompressible fluid flows in multiply 
connected areas based on the equations for the 
current function and velocity vortex, which is a 

fundamentally new approach to solving the problem 
of setting boundary conditions for the current 
function. For the first time carried out the 
substantiation mf. for problems of flow of a viscous 
incompressible fluid with inhomogeneous boundary 
conditions in regions with curvilinear boundaries 
and complex geometry. 

Numerical algorithms based on the method of 
fictitious areas were developed, which allow 
studying the flow characteristics of a viscous 
incompressible fluid around an obstacle in a channel 
with curvilinear boundaries, characteristics of a 
convective motion of a viscous incompressible fluid 
in areas of complex geometry [16-18]. 

1.4 The next stage of scientific research of 
Smagulov Shaltay is the problem of the existence of 
global solutions of the Navier-Stokes equation of 
compressible continuous media. 

The first theorem on the existence of a solution 
for the Navier-Stokes equations of compressible 
viscous fluid was obtained by John Nash [19] in 
1962, the future winner of the Nobel Prize in 
economics. He proved the existence theorem for the 
classical solution of the Cauchy problem “in the 
small” in time. Somewhat different methods his 
result was repeated and summarized in the works  
N. Itay [20], А.I. Wolpert, S.I. Hudyaev [21] 

Significant development of non-local theory 
received in the works А.V. Kozhihov [22-23] and 
his students V.V. Sheluhin [24], V.А. Vaigant [25] 
и др. 

The first theorems of solvability “on the whole” 
with respect to time for the model of magnetic gas 
dynamics were obtained in the work of Sh. 
Smagulov [26] in the case of a barotropic motion of 
a viscous gas. In the work of his student 
А.А.Durmagambetov [27], [28], [29], essential 
results on the solvability of boundary value 
problems and the Cauchy problem for degenerate 
equations of a viscous heat-conducting gas have 
been obtained. Also, another talented student of 
Smagulova, Sh. Z.E. Konysbaev, proved the 
correctness of the initial-boundary value problem 
for a system of equations of a viscous barotropic gas 
with an initial density that has degeneracy and takes 
the magnetic field into account [30–32]. 

1.4.1 Formulation of the problem. The equations 
of magnetic gas dynamics in Lagrangian coordinates 
are: 

 
��
�� − ��

�� = 0, � = ��

� , 
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�� ��
�� = � �

�� �1
�  ��

��� − ��
�� − ��� ��

�� ,  
 

� = ��� �
�, 

 
 

�� ��
�� = � �

�� �1
�

��
��� − 

 
−� ��

�� + �
� (��

��)�+����
� (��

��)�                  (17) 
 

�
��(vH)=��

�
��(�

�  ��
��). 

 
Initially, Cauchy data is known: 
 

�|��� = ��(�); �|��� = ��(�); �|��� = 
 

= ��(�); �|��� = 1; x� [0,1],               (18) 
 

where (��, ��, ��, ��) – continuous, (��, �)- 
limited, non-negative and �� has degeneration when 
х=1, i.е. ��(1) = 0 

 
0 � ��(х) � � < ∞, 0 < �� � ��(x)� �� < ∞ 
 
The required functions satisfy the boundary 

conditions: 
 

�|��� = �|���= ��
���

���
= ��

���
���

= 
 

= �|��� = �|���= 0                   (19) 
 

and the conditions of approval are met. 
Theorem. Let the initial data (18) has the 

following properties of smootheness: 
 

(��(�), ��(�), ��(�))����(Ω),  
 

���(�)
(��)

�
�(�)

� ��(Ω), 

 
��(�)

��� ��(�) < 

 
�, �������

���
, ������

���
� � ��(Ω), ��(�)����(Ω).  
 

0� � � � 
 

Then there is a unique generalized solution to the 
problem (17)-(19), where �(�, �) strictly positive, 
bounded function, ��(�) �(�, �)-limited function. 

The proof of the theorem is carried out by the 
method of regularizations. An interesting issue is the 
study of the correctness of difference schemes of the 
model of magnetic gas dynamics in Euler variables. 
In the one-dimensional case, the correctness of 
difference schemes in Lagrange variables is well 
studied in the work of Sh. Smagulov and B. 
Rysbayev [33]. 

 
Conclusion 
 
Scientific works of Sh.S.Smagulova are devoted 

to the creation and study of efficient algorithms of 
computational mathematics, the development of 
numerical methods for the Navier-Stokes equations 
of great practical and theoretical value, a rigorous 
mathematical analysis of the solvability of initial-
boundary value problems for nonlinear equations of 
composite, non-classical, degenerate types 
mathematical physics. Sh.S.Smagulov paid much 
attention to the problems of mathematical modeling 
and computer technologies in oil production, 
information technologies for solving practical 
problems of science and technology. 

In the field of computational mathematics, 
Sh.S.Smagulov made a significant contribution to 
the development of difference schemes. He 
constructed and investigated difference schemes for 
classes of equations:Для стационарных и 
нестационарных уравнений навье-Стокса 

 For heat convection system 
 For equations of gas dynamics and magnetic 

gas dynamics. 
Sh. Smagulov is the author of the method of 

fictitious domains for the non-linear Navier-Stokes 
equation. For the first time, the method of fictitious 
regions was applied to describe incompressible fluid 
flows in one or multiply connected domains, and the 
method of fictitious domains with non-uniform 
boundary in regions with curvilinear boundaries was 
substantiated. 

Developed numerical algorithms based on the 
method of fictitious areas. 

 Sh. Smagulov made a great contribution to 
the development of the theory of solvability of the 
non-linear Navier-Stokes equations, the equations of 
thermal convection, magnetic gas dynamicsю 

 The correctness of the problems of degenerate 
equations of magnetic gas dynamics 
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 The correctness of the problems of degenerate 
equations of a reacting mixture of gases 

Solvability and convergence of the ε-
approximation of the Navier-Stokes equations, the 
temperature model of homogeneous and 
inhomogeneous liquids; and taking into account the 
dissipation of energy. 
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Construction of a solution for optimal control problem  
with phase and integral constraints 

 
 

Abstract. A method for solving the Lagrange problem with phase restrictions for processes described by 
ordinary differential equations without involvement of the Lagrange principle is supposed. Necessary and 
sufficient conditions for existence of a solution of the variation problem are obtained, feasible control is 
found and optimal solution is constructed by narrowing the field of feasible controls. The basis of the 
proposed method for solving the variation problem is an immersion principle. The essence of the 
immersion principle is that the original variation problem with the boundary conditions with phase and 
integral constraints is replaced by equivalent optimal control problem with a free right end of the 
trajectory. This approach is made possible by finding the general solution of a class of Fredholm integral 
equations of the first order. The scientific novelty of the results is that: there is no need to introduce 
additional variables in the form of Lagrange multipliers; proof of the existence of a saddle point of the 
Lagrange functional; the existence and construction of a solution to the Lagrange problem are solved 
together.  
Key words: immersion principle, feasible control, integral equations, optimal control, optimal solution, 
minimizing sequence.  

 
 
Introduction 
 
One of the methods for solving the variational 

calculus problem is the Lagrange principle. The 
Lagrange principle makes it possible to reduce the 
solution of the original problem to the search for the 
extremum of the Lagrange functional obtained by 
introducing auxiliary variables (Lagrange 
multipliers). 

The Lagrange principle is the statement about the 
existence of Lagrange multipliers, satisfying a set of 
conditions when the original problem has a weak 
local minimum. The Lagrange principle gives the 
necessary condition for a weak local minimum and 
it does not exclude the existence of other methods 
for solving variational calculus problems unrelated 
to the Lagrange functional. 

The Lagrange principle is devoted to the works 
[1-3]. A unified approach to different extremum 

problems based on the Lagrange principle is 
described in [4]. 

In the classical variational calculus, it is assumed 
that the solution of the differential equation  belongs 
to the space С1(I,Rn), and the control ),(tu  It  is 
from the space С1(I,Rm), in optimal control problems 
[5] the solution ),,()( 1 nRIKCtx   and the control 

).,()( mRIKCtu   In this work, the control ),(tu  
It  is chosen from L2(I,Rm) and the solution ),(tx  
It  is an absolutely continuous function on the 

interval ].,[= 10 ttI  For this case solvability and 
uniqueness of the initial problem for differential 
equation are given in [4, 6-8]. 

The purpose of this work is to create a method 
for solving the variational calculus problem for the 
processes described by ordinary differential 
equations with phase and integral constraints that 
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differ from the known methods based on the 
Lagrange principle. It is a continuation of the 
research outlined [9-10]. 

 
Problem statement  
 
We consider the following problem: minimize 

the functional       
 

0 1

1

0 0 1

0

( ( ), , ) =

( ( ), ( ), , , )
t

t

J u x x

F x t u t x x t dt inf



 
         (1.1) 

 
at conditions  

 
],[=),,,()()(= 10 ttIttuxftBxtAx    (1.2) 

 
with boundary conditions 

 
nRSSSxtxxtx 2

101100 =)=)(,=))((    (1.3) 
 

in the presence of phase constraints 
 

( ) ( ) : ( ) =
{ / ( ) ( , ) ( ), },n

x t G t G t
x R t Q x t t t I 



    
 

   
and integral constraints 

 
0 1

1 0 1

1 2

( ( ), , ) 0,

= 1, ; ( ( ), , ) = 0,

= 1, ,

j

j

g u x x

j m g u x x

j m m

 





           (1.4) 

 
0 1

1

0 0 1

0

2

( ( ), , ) =

( ( ), ( ), , , ) ,

= 1, .

j
t

j
t

g u x x

f x t u t x x t dt

j m



                (1.5) 

where the control  
 

).,()( 2
mRILu                       (1.6) 

 
Here ),(tA  )(tB  are matrices with piecewise-

continuous elements of orders ,nn   ,rn   
respectively, a vector function 

)),,(,),,,((=),,( 1 tuxftuxftuxf r  is 

continuous with respect to the variables 
,),,( IRRtux mn   satisfies the Lipschitz 

condition by x, i.e. 
 

IRRtuytux
yxtltuyftuxf

mn 


),,(),,,(
|,|)(|),,(),,(|

   (1.7) 

 
and the condition 

 
2

0 1| ( , , ) | (| | | | ) ( ),
( , , ),

f x u t c x u c t
x u t

  


        (1.8) 

 
where 0,)( tl  ),,()( 1

1 RILtl   0,>=0 constc  

0,)(1 tc  ).,()( 1
11 RILtc   

The vector function 
)),(,),,((=),( 1 txFtxFtxF s  is continuous with 

respect to the variables .),( IRtx n   Function 
),,,,,((=),,,,( 1001100 txxuxftxxuxf  

)),,,,(, 1020 txxuxf m  satisfies the condition 

 
2

0 0 1 2 0 1

3

| ( , , , , ) | (| | | | | | | |)
( ),

f x u x x t c x u x x
c t

    


 

 
0 1 0 1( , , , , ), ( , , , , )

,

n

m n n

x u x x t y u x x t R
R R R I

  

   
 

 
).,()(0,)(0,= 1

1332 RILtctcconstc   
 
Scalar function ),,,,( 100 txxuxF  is defined and 

continuous with respect to the variables together 
with partial derivatives by variables ),,,,( 10 xxux  

),(t  ),(t  It – are given s– dimensional 
functions. S is given bounded convex closed set of 

,2nR  the time moments  10,tt  are fixed. 
In particular, the set  

0,),(/),{(= 10
2

10  xxHRxxS j
n  ;1,= 1pj  

0,>=),(,< 10 xxa j  },1,= 21 ppj   where

),,( 10 xxH j  11,= pj  are convex functions,

,2n
j Ra   21 1,= ppj   are given vectors.  
Note, that if the conditions (1.7), (1.8) are 

satisfied for any control ),()( 2
mRILu   and the 

initial condition 00 =)( xtx  of the differential 
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equation (1.2) has a unique solution. ),(tx  .It  
This solution has derivative ),(2

nRILx  and 
satisfies equation (1.2) for almost all .It  

It should be noted that integral constraints 
 

1

0 1 0 0 1

0

1

( ( ), , ) = ( ( ), ( ), , , ) 0,

= 1, ,

t

j j
t

g u x x f x t u t x x t dt

j m

   (1.9) 

 
by introducing additional variables 0,jd  

,1,= 1mj  can be written in the form 
 

.1,=,=),),(( 110 mjdxxug jj   
 
Let the vector be 

,,0),0,0,,,(= 2
11

m
m Rddc    where 0,jd  

.1,= 1mj  Let a set be

},1,=0,/{= 1
2 mjdRcQ j

m   where 0,jd  

11,= mj  are unknown numbers. 
Definition 1.1. The triple 

10
*
1

*
0* ),),(( SSUxxtu   is called by admissible 

control for the problem (1.1) – (1.6), if the boundary 
problem (1.2) – (1.6) has a solution. A set of all 
admissible controls is denote by ,  

.10 SSU    
From this definition it follows that for each 

element of the set Σ the following properties are 
satisfied: 1) the solutions ),(* tx  It  of the 
differential equation (1.2), issuing from the point 

,0
*
0 Sx   satisfy the condition ,=)( 1

*
11* Sxtx   and 

also ;=),( 10
*
1

*
0 SSSxx   2) the inclusion 

),()(* tGtx    It  holds;  3) for each element of 

the set Σ we have the equality ,=),),(( 10 cxxug   
where 

* * * *
0 1 1 0 1* *

* *
0 1*2

( ( ), , ) = ( ( ( ), , ), ,
( ( ), , )).m

g u x x g u x x
g u x x

 




 

 
The following problems are set:  
Problem 1.2. Find the necessary and sufficient 

conditions for the existence of a solution of the 
boundary value problem (1.2) – (1.6).  

Note, that the optimal control problem (1.1) – 
(1.6) has a solution if and only if the boundary value 
problem (1.2) – (1.6) has a solution.  

Problem 1.3. Find an admissible control 
* *

* 0 1 0 1( ( ), , ) .u t x x U S S     
If problem 1.2. has a solution, then there exists 

an admissible control.  
Problem 1.4. Find the optimal control 

** ( ) ( ),u t U t  the point ,(
*
0x  SSSx =) 10

*
1   

and the optimal trajectory 
*
0* 0( ; , ),x t t x  ,It  

where *( ) ( ),x t G t  ,It  
*
1* 1 1( ) = ,x t x S  

* *
0 1*( ( ), , ) 0,jg u x x   ,1,= 1mj  

* *
0 1*( ( ), , ) =0,jg u x x  

,1,= 21 mmj   
* *
0 1*( ( ), , )J u x x ),,),((inf= 10 xxuJ   

.),(),),(( 10210 SSRILxxu m    
One of the methods for solving the problem of 

variation calculus is the Lagrange principle. The 
Lagrange principle allows to reduce the solution of 
the original problem to the search for an extremum 
of the Lagrange functional obtained by introducing 
auxiliary variables (Lagrange multipliers). 

 In the classical variation calculus, it is assumed 
that the solution of the differential equation (1.2) 
belongs to the space ����� ��) and the control u(t), t 
∈ I of the space ���� ��) in the optimal control 
problems [5], the solution x ∈ KC1(I, Rn) and control 
u(t) ∈ KC1(I, Rm). In this paper, the control u(t), t ∈ I 
is chosen from L2(I, ��), and the solution x(t), t ∈ I 
is an absolutely continuous function on the interval I 
= [t0, t1]. For this case, the existence and uniqueness 
of the solutions of the initial problem for equation 
(1.2) are presented in the references [4, 6, 7, 8].  

The purpose of this paper is to create a method 
for solving the problem of the variation calculus for 
processes described by ordinary differential 
equations with phase and integral constraints that 
differ from the known methods based on the 
Lagrange principle. It is a continuation of the 
scientific research presented in [9-16]. 

 
Existence of a solution  
We consider the following optimal control 

problem: minimize the functional 
 

1 1 2 0 1

1

1

0

( ( ), ( ), ( ), ( ), , , ) =

( ( ), ) inf
t

t

I u p v v x x d

F q t t

   

 
          (2.1) 
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1 1 1 2 2 0= ( ) ( ) ( ) ( ), ( ) = 0,z A t z B t v t B v t z t
t I

 


   (2.2) 
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2221
mr RILvRILv       (2.3) 

 
2
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( , ) = , .

mp t V t u L I R
x x S S S d
  

  
      (2.4) 

 
We introduce the following notations:

2 2 2
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2
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m s r

m mn n

H L I R L I R L I R
L I R R R R

  
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, 

2 2

2
2 0 1

= ( , ) ( , )

( , )

m r

m

X L I R V L I R
L I R S S H

  

     
, vector function

HXdxxtvtvtptut ),,),(),(),(),((=)( 1021 , 

))(),(),((=)( 1 ttztztq  . 
The optimization problem (2.3) – (2.6) can be 

represented in the form: 

.)(,inf)),((=))(( 1

1

0

1 HXttqFI
t

t

    

Let the set be 
))}.((inf=))((|)({= 1*1** 





IIXX

X
 

Lemma 2.1. Let the matrix be positive definite 
0>),( 10 ttT . In order to the boundary value 

problem (1.2) – (1.6) have a solution, it is necessary 
and sufficient that 0=)(inf==)(lim 1*11 


III

X
n

n 
, 

where Xn )}({  is a minimizing sequence in the 
problem (2.1) – (2.4). 

Proof of the lemma follows from Theorem 2.3. 
and Lemmas 2.4. and 2.5. [9].  

Theorem 2.2. Let the matrix be 0>),( 10 ttT , the 

function  ),(1 tqF  be defined and continuous in the 
set of variables ),( tq  together with the partial 
derivatives with respect to q  and satisfies the 
Lipschitz conditions  

 
,|,||),(),(| 11 ItqltqFtqqF qq      (2.5) 

 
where 
 

1 1 1 11 ( )1
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q z u pz t

v v x x d

F q t F q t F q t F q t F q t

F q t F q t F q t F q t F q t
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),,,,,,),(,(= 10211 dxxvvputzzq  , 

0>= constl . 
 
Then the functional (2.1) under the conditions 

(2.2) – (2.4) is continuously Frechet differentiable, 

the gradient 1 1 1 1 11 2
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( ) = ( ( ), ( ), ( ), ( ),
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any point X  is calculated by the formula 
 

1 1 1 1 1 1

*
1 11

1
*

1 1 2 1 12 2 0 0
0

1 1

1 1 1 11 1
0 0

( ) = ( ( ), ), ( ) = ( ( ), ), ( ) =

( ( ), ) ( ) ( ),

( ) = ( ( ), ) ( ), ( ) = ( ( ), ) ,

( ) = ( ( ), ) , ( ) = ( ( ), ) ,

u u p p v

v

t

v v x x
t

t t

x x d d
t t

I F q t t I F q t t I

F q t t B t t

I F q t t B t I F q t t dt

I F q t t dt I F q t t dt

  



  

 

  

 

 

 



 
 

 (2.6) 
 

where )(tz , It  is the solution of the differential 
equation (2.2), and the function )(t , It   is the 
solution of the conjugate system  
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In addition, the gradient )(1 I  , X  satisfies 

the Lipschitz condition 
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where 0>= constK .  

Proof. Let Xttt  )()(),(  , ),,( 21 vvtz , 
),,( 2211 vvvvtz  , It  be a solution of the 

system (2.2), (2.3). Let
)(),,(=),,( 212211 tzvvtzvvvvtz  , It . 

Then  
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.|||||)(| 2211 |||| vCvCtz     (2.9) 
 
The increment of the functional (see (2.5)) 
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condition (2.5). We note that (see (2.7), (2.9))  
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From (2.10) and (2.11) we get 
 

1
* *

1 1 1

0
* *
1 1 11

= { ( ) ( ( ), ) ( ) ( ( ), )

( )[ ( ( ), ) ( ) ( )]

t

u p
t

v

I u t F q t t p t F q t t

v t F q t t B t t

    

  

  

 
* *
2 1 22

* *
0 1 1 10 1

( )[ ( ( ), ) ( )]

( ( ), ) ( ( ), )

v

x x

v t F q t t B t

x F q t t x F q t t

  

   

 

,>),(=<)}),(( 1

9

1=
1

* RIRdtttqFd Hi
i

d   

 

where i
i

RR 
9

1=

= , 2
3 ||||||  CR , 0

||||
||



R

, 

at 0||||  . 
This implies the relation (2.6). Let 
 

1 1 1 2

2 0 0 1 1

= ( , , ,

, , , )

u u p p v v v

v x x x x d d

       

      
,  

 
Xdxxvvpu ),,,,,,(= 10212 . Since 

 
,|||)(||)(||)()(| 2
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2
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2

10
2

2111   ltltqlII
 

,|||||)(|,|||||)(| 1413   ltltq  
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2
1 1 1 2

1
2 2

1 1 1 2 15

0

|| ( ) ( ) || =

| ( ) ( ) | || || ,
t

t

I I

I I dt l

 

  

 

    
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where 0>= constli , 10,15=i . This implies the 

estimation (2.8), where 15= lK . The theorem is 
proved. 

Lemma 2.3. Let the matrix be 0>),( 10 ttT , the 

function ),(1 tqF  be convex, with respect to the 
variable NRq , 14= mrsmnN  , i.e.  

 
1 1 2 1 1 1 2

1 2

( (1 ) ) ( , ) (1 ) ( , ),
, , , [0,1].N

F q q F q t F q t
q q R

   
 

    

   
(2.12) 

 
Then the functional (2.1) under the conditions 

(2.2) – (2.4) is convex. 
Proof. Let X21, , [0,1] . It can be 

shown, that 
 

1 21 2

1 21 2

( , (1 ) , (1 ) ) =
( , , ) (1 ) ( , , ),

z t v v v v
z t v v z t v v

   
 

   

  
 

 
).,(),(),,( 2

22121
mrRILvvvv   

Then  
1

1 1 2 1 1

0

2 1 1 1 2

( (1 ) ) = ( ( )

(1 ) ( )) ( ) (1 ) ( ),

t

t
I F q t

q t dt I I

   

    

  

    

  

 
1 2 1 1 1 1 2 0 1

1 1 2 0 12 1

, , = ( , , , , , , ),
= ( , , , , , , ).
X u p v v x x d

u p v v x x d
  


 

 

 
The lemma is proved.  
The initial optimal control problem (2.1) – (2.4) 

can be solved by numerical methods for solving 
extremal problems [9,10]. We introduce the 
following sets },||||)/,()({= 2  uRILuU m  

 
},||||/),()({=),( 1211  vRILvRIV rr  

 
}),||||),()({=),( 2

2
22

2
2  vRILvRIV mm /  

 
},||0,/{= 1

1  ddRd m  
 

0>  is a sufficiently large number. We 
construct sequences 

11021 },,,,,,{=}{ Xdxxvvpu n
nnnn

nnn  , 
0,1,2,=n  by the algorithm 

1 1 1 1

1 1
1 1 1 2 2 11 1 2 2

1 1
0 0 1 1 1 10 0 1 1

1 11

0

= [ ( )], = [ ( )],

= [ ( )], = [ ( )],

= [ ( )], = [ ( )],

= [ ( )], = 0,1, 2, ,

20 <
2

n U n n u n n V n n p n

n n n n
V n v n V n v n

n n n n
S n x n S n x n

n n n d n

n

u P u I p P p I

v P v I v P v I

x P x I x P x I

d P d I n

K

   

   

   

 

 

 

 

 

 

  

  

  



 




, > 0,


 

(2.13) 
 
where ][P  is the projection of the point on the set 
 , 0>= constK  from  (2.8). 

Theorem 2.4. Let the conditions of Theorem 2.2. 
be satisfied, in addition, the function ),(1 tqF  be 
convex with respect to the variable NRq   and the 
sequence 1}{ Xn   be determined by formula 
(2.13). Then:  

1) the lower bound of the functional (2.1) is 
reached under the conditions (2.2) – (2.4) 

 
;),(min=)(=)(inf 1*1

1
*11

1

XIII
XX







 

 
2) the sequence 1}{ Xn   is minimizing 

)(inf==)(lim 1
1

*11 


III
X

n
n 

; 

3) the sequence 1}{ Xn   weakly converges to 

the point 1* X , *,nu u  *np p , 
*

1 1
nv v , *

2 2
nv v , *

00 xx n  , *
11 xxn  , 

*ddn   at n , where ,,,,(= *
2

*
1*** vvpu  

1*
*
1

*
0 ),, Xdxx  ; 

4) in order to the problem (1.2) – (1.6) have a 
solution, it is necessary and sufficient that 

0==)(lim *11 II n
n




; 

5) the following estimation of the rate of 
convergence holds 

 
0

1 1*

0

0 ( ) , = 1,2, ,

= > 0.
n

CI I n
n

C const

         (2.14) 

 
Proof. Since the function ),(1 tqF , It  is 

convex, it follows from Lemma 3.3. that the 



17S. Aisagaliev et al.

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 10, №1, 11 (2019)

functional )(1 I , 1X  is convex on a weekly 
bicompact set 1X . Consequently, )()( 1

1
1 XCI   

is weakly lower semicontinuous on a weakly 
bicompact set and reaches the lower bound on 1X . 
This implies the first statement of the theorem.  

Using the properties of the projection of a point 
on a convex closed set 1X  and taking into account 
that  )()( 1

1,1
1 XCI   it can be shown that

2
1111 ||||)()(   nnnn II  , 0,1,2,=n , 

0> . It follows that: 1) the numerical sequence 
)}({ 1 nI   strictly decreases; 2) 0|||| 1  nn   at 

n . 
Since the functional is convex and the set 1X  is 

bounded, the inequality holds 
 

1 1 1 1*

1

0 ( ) ( ) || ||,
= > 0, = 0,1,2, .

n n nI I C
C const n
       


     (2.15) 

 
Hence, taking into account that 

0|||| 1  nn   at n ,, we have: the 
sequence }{ n  is minimizing. 

)(inf=)(=)(lim 1
1

*11 


III
X

n
n 

. 

Since 1}{ Xn  , 1X  is weakly bicompact, that,  

*
weakly

n   at n . 
As it follows from Lemma 3.1., if the value

0=)( *1 I , then the problem of optimal control 
(1.1) – (1.6) has a solution.  

The estimation (2.14) follows directly from the 
inequalities (2.15),  

2
1111 ||||)()(   nnnn II  . 

We briefly outlined above, the main steps in 
proof of the theorem. Detailed proof of an 
analogous theorem is given in [16]. The theorem is 
proved.  

For the case when the function ),(1 tqF  is not 
convex with respect to the variable ,q  the following 
theorem is true. 

Theorem 2.5. It is supposed, that the conditions 
of Theorem 2.2. are satisfied, the sequence 

1}{ Xn   is determined by formula (2.13). Then: 
1) the value of the functional )(1 nI   strictly 
decreases for 0,1,2,=n ; 2) 0|||| 1  nn   at 

n .  

Proof of the theorem follows from Theorem 2.4. 
From the results it follows that 1) if 

1*
*
1

*
0

*
2

*
1*** ),,,,,,(= Xdxxvvpu   is the solution of 

optimal control problem (2.1) – (2.4),  
for which 0=)( *1 I , then 

10
*
1

*
0** ),),(=( SSUxxtuu   is admissible 

control; 2) the function ),;( *
00* xttx , It is the 

solution of differential equation (1.2), satisfies the 
conditions:  *

1
*
001 =),;( xxttx , )(),;( *

00* tGxttx  , 

It , the functionals 0),),(( *
1

*
0*  xxug j , 

11,= mj , 0=),),(( *
1

*
0* xxug j  , 21 1,= mmj  ; 3) 

the necessary and sufficient condition for the 
existence of a solution of the boundary value 
problem (1.2) – (1.6) is 0=)( *1 I  where 1* X  
is the solution of problem (2.1) – (2.4); 4) for the 
admissible control, the value of the functional (1.1) 
equals to  

* *
* 0 1

1
* *

0 * * 0 1 *

0

( ( ), , ) =

( ( ), ( ), , , ) = ,
t

t

J u x x

F x t u t x x t dt 



 
 (2.16) 

where ),;(=)( *
00** xttxtx , It . In the general 

case, the value  
* ** *

* 0 1* 0 1( ( ), , ) ( , , ) =J u x x J u x x   

0 1inf ( ( ), , ),J u x x  
.),(),),(( 10210 SSRILxxu m   

 
Construction of an optimal solution  
 
We consider the optimal control problem (1.1) – 

(1.6). We define a scalar function )(t , It  as:  

.,),,),(),((=)( 100

0

ItdxxuxFt
t

t

   

 
Then ),,),(),((=)( 100 txxtutxFt , 0=)( 0t , 

,),),((==)( 101  xxuIt   /{ 1R   

0 0 0 1 0, }, inf ( ( ), , ) ,where I u x x          
 the value 0  is bounded from below, in particular 

0 = 0, if 0F  0. 
Now the problem of optimal control (1.1) – (1.6) 

can be written in the form (see (2.1)) 
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inf),),((==)( 101  xxuIt            (3.1) 
 

at conditions 
 

0 0 1

0 1

( ) = ( ( ), ( ), , , ),
( ) = 0, ( ) = ,

t F x t u t x x t
t t


  


               (3.2) 

 
0 0

1 1 0 1

= ( ) ( ) ( , , ), ( ( ) = ,
( ) = ) ,

x A t x B t f x u t x t x
x t x S S


 


        (3.3) 

 
0 0 1

0 1

= ( ( ), ( ), , , ),
( ) = 0, ( ) = ,

f x t u t x x t
t t c Q


  


                (3.4) 

 
.),,()(),()( 2 ItRILutGtx m            (3.5) 

 
We introduce the notations 

 

1,1 1, 1, 2

,2 ,1 2

, ,,1 2 2 22
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,12
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1
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m

t
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t
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O






 
 
 
 
 

 
 
 
 
 
 

 
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 
  
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   
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( ) = ( ) , ( ) = ,
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O I

P O O P O I O

     
  
  
    

 

 
where )(=)( 110 ttP  , xP =1 . 

Then the optimal control problem (3.1) – (3.5) 
has the form:  

            
,inf),),((==)( 1010  xxuItP      (3.6) 

 
at conditions   
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0 1 0 0 1 0 1
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  
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 
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 
 
 
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


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 
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                 (3.9) 

 
,),,()(),()( 21  dRILutGtP m   (3.10) 

 
where ),(=)( 1 tPtx   ),(=)( 0 tPt   ,It    is 
determined by formula (3.6). 

The immersion principle. We consider the 
boundary value problem (3.7) – (3.10). The 
corresponding linear controlled system has the form  

 
1 22 0 0

30

= ( ) ( ) ( ) ( )
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A t B w t C t w t
D w t t I

    

 
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r
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* *
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Theorem 3.1. Let the matrix be .0>),( 10 ttR  

Then the control 
),())(),(),((=)( 21

2321
mrRILtwtwtwtw   

transforms the trajectory of the system (3.11) – 
(3.13) from any initial point 21

0
mnR   to any 
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1
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where  
Itvtztztvtvtvtv ),,(=)()),(),(),((=)( 321  is 

the solution of the differential equation 
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  (3.17) 

 
1
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( ) ( , ), ( ) ( , ),

( ) ( , ).

r

m

v L I R v L I R
v L I R

   

 
       (3.18) 

 
Solution of the system (3.11) – (3.13) has the 

form 
 

2 0 1

2 1

( ) = ( , ) ( , , )
( ) ( , ), .

t z t v t
K t z t v t I

    

 
    (3.19) 

 
The proof of the analogous theorem is presented 

in the work [10].  
Lemma 3.2. Let the matrix be 0>),( 10 ttR . Then 

the boundary value problem (3.7) – (3.10) is 
equivalent to the following problem  

 
1 1 1 0 1 0 1( ) , ( ) = ( , , , , ),

,
w t W w t F P u x x t

t I



 (3.20) 

 
,),,,(=)(,)( 1222 IttuPftwWtw     (3.21) 

 
3 3 3 0 1 0 1( ) , ( ) = ( , , , , ),

,
w t W w t f P u x x t

t I



 (3.22) 

 
2

1

( ) ( ) = { ( ) ( , ) / ( ) =
( , ), ( ) ( ) ( ), },

sp t V t p L I R p t
F P t t p t t t I  
  

   
  (3.23) 

 

1 22 0 0

30 0

= ( ) ( ) ( ) ( )

( ), ( ) = 0, ,

z A t z B v t C t v t

D v t z t t I

  

 


 (3.24) 

 
1
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23 2

( ) ( , ), ( ) ( , ),

( ) ( , ),

r

m

v L I R v L I R

v L I R

   

 
  (3.25) 

 
0 1 0 1 2( , ) , ( ) ( , ),

, ,

mx x S S u L I R
d

   
 

       (3.26) 

 
where ),(t  It  is determined by formula (3.19), 

),( vtz  is the solution of system (3.17), (3.18).  
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We consider the following optimal control 
problem: minimize the functional  

 
1

2 0 1 2

0

1
2

1 0 1 0 1

0

( , , , , , , ) = ( ( ), ) =

[| ( ) ( ( ), ( ), , , ) |

t

t

t

t

J v u p x x d F q t t dt

w t F P t u t x x t



  




2

2 1

2
3 0 1 0 1

| ( ) ( ( ), ( ), ) |

| ( ) ( ( ), ( ), , , ) |

w t f P t u t t

w t f P t u t x x t





  

  

 

 
inf]|)),(()(| 2

1  dtttPFtp      (3.27) 
 

under the conditions (3.24) – (3.26), where 
,)( 11 Wtw   ,)( 22 Wtw   ,)( 33 Wtw   

),,,(= 321 vvvv  

1 2 3 0 1 1( ) = ( , , , , , , , , , ( ), ( )).q t v v v u p x x d z t z t   
Note, that the optimization problem (3.27), 

(3.24) – (3.26) is obtained on the basis of relations 
(3.20) – (3.23).  

Theorem 3.3. Let the matrix be, the derivative 

q
tqF


 ),(2  satisfies the Lipschitz condition.  

Then:  
1. The functional (3.27) under conditions 

(3.24) – (3.26) is continuously differentiable by 
Frechet, gradient of the functional 
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1 2 1, ( )X H J H   

for any point X  is calculated by the formulas 
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where ),(t  It  is the solution of the adjoint 
system 
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2. gradient XJ   ),(2  satisfies the 

Lipchitz condition 
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The proof of the analogous theorem can be found 
in the work [16]. We construct the following 
sequences ,,,,,{=}{ 321 nn

nnn
n puvvv

210 },,, Xdxx nn
nn   by the algorithm 
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where  },||||)/,()({= 1

1
211  vRILvV  

},||||)/,()({= 2222  vRILvV r  

},||||)/,()({= 32
233  vRILvV m  

},||||)/,()({= 2  uRILuU m  

},||0,/{= 1  ddRd m  
1

*= { / },R a       

,= 1103212 HSSVUVVVX 

 /),()({= 2
mRILuU   },|||| u  0>  is a 

sufficiently large number. 
Theorem 3.4. Let the conditions of Theorem 3.3. 

be satisfied  1X  is a bounded convex closed set, the 
sequence 2}{ Xn   is determined by the formula 
(3.29). Then:  

1. the numerical sequence )}({ 2 nJ   is strictly 
decreasing 0|||| 1  nn  , at n . 

If, in addition,, ),(2 tqF  is a convex function with 
respect to a variable q , then:  

2.  the lower bound of the functional (3.27) is 
obtained under the conditions (3.24) – (3.26) 
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6. The following estimation of the rate of 
convergence holds 
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Proof of the analogous theorem is given above.  
A more obvious method for solving problem 

(1.1) – (1.6) is the method of narrowing the domain 
of admissible controls. 

Theorem 3.5. Let the conditions of Theorem 3.3. 
be satisfied,  

3 1 2 3 0 1=X V V V U V S S        be a 
bounded convex closed set, the sequence  

2}{ Xn   be defined by (3.28) with the exception 
of the sequence  .}{ n  Then:  

    1.  the numerical sequence )},({ 2 nJ   

3}{ Xn   is strictly decreasing;  
    2.  0|||| 1  nn   at ,n  ;}{ 3Xn   
If, in addition, the function ),(2 tqF  is convex 

with respect to a variable q  for fixed ,  then:  
    3.  the sequence ,}{ 3Xn   for a fixed 
 =  is minimizing;  

    4.  3*n X    at ,n  ;=  

    5.  );(=)(=)( 2
3

2
3

*2 n
Xn

n
Xn

JminJinfJ 
 

  

    6.  the following estimation holds 
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The proof of the analogous theorem is presented 
in the work [10] for a fixed ,  .=  

Let the solution of the problem be 2* X  
(3.27), (3.24) – (3.26) with *=   . There are 
the possible cases:   

    1.  the value 0;>)( *2 J   
    2.  the value  0=)( *2 J . 

Note, that 0,)(2 J  .3X  
If  0>)( *2 J , then a new value of   is 

selected as *= 2  , and if 0=)( *2 J , then a new 

value *=
2
 . According to this scheme, by 

dividing the uncertainty segment in half, the 
smallest value of the functional (1.1), under the 
conditions (1.2) – (1.6) can be found. 

 
Conclusion  
 
The Lagrange problem of the variation calculus 

is investigated in the presence of phase and integral 

constraints for processes described by ordinary 
differential equations. The particular cases of which 
are the simplest problem, the Bolz problem, the 
isoperimetric problem, the conditional extremum 
problem.  

In contrast to the well-known method for solving 
the problem of the variation calculus on the basis of 
the Lagrange principle, an entirely new approach an 
"immersion principle" is proposed. The immersion 
principle is based on the investigation of the 
Fredholm integral equation of the first kind. For the 
Fredholm integral equation of the first kind, the 
existence theorem for the solution as well as the 
theorem on its general solution are proved. 

 The main scientific results are:  
- reduction of the boundary value problem 

connected to the conditions in the Lagrange problem 
to the initial optimal control problem with a specific 
functional;  

- necessary and sufficient conditions for the 
existence of the admissible control;  

- method of constructing an admissible control 
on the limit point of the minimizing sequence;  

- necessary and sufficient conditions for the 
existence of a solution of the Lagrange problem;  

- method for constructing the solution of the 
Lagrange problem.  
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An inverse problem for the pseudo-parabolic equation 
for Laplace operator 

Abstract. A class of inverse problems for restoring the right-hand side of the pseudo-parabolic equation 
for 1D Laplace operator is considered. The inverse problem is to be well-posed in the sense of Hadamard 
whenever an overdetermination condition of the nal temperature is given. Mathematical statements 
involve inverse problems for the pseudo-parabolic equation in which, solving the equation, we have to 
find the unknown right-hand side depending only on the space variable. We prove the existence and 
uniqueness of the classical solutions. The proof of the existence and uniqueness results of the solutions is 
carried out by using L-Fourier analysis. The mentioned results are presented as well as for the fractional 
time pseudo–parabolic equation. Inverse problems of identifying the coefficients of right hand side of the 
pseudo-parabolic equation from the local overdetermination condition have important applications in 
various areas of applied science and engineering, also such problems can be modeled using common 
homogeneous left-invariant hypoelliptic operators on common graded Lie groups. 
Key words: Pseudo-parabolic equation, 1D Laplace operator, fractional Caputo derivative, 
inverse problem, well-posedness. 

Introduction 

In this paper we study inverse problem for the 
time-fractional pseudo-parabolic equation for one 
dimensional Laplace operator. We consider 
following equation 

���[�(�, �) − ���(�, �)] − ���(�, �) = �(�),   (1) 

for (�, �) � Ω = �(�, �)�� � � � � � ∞, � � � �
�� , where ���  is the Caputo derivative which is 
defined in the next section. The operator − ��

���
which is participating in the equation(1) is the well 
known 1D Laplace operator and we will denote it 
further by ℒ. We know the second order differential 
operator in ��(�, �)  generated by the differential 
expression 

ℒ�(�) = −���(�), � � (�, �)   (2) 

and boundary conditions 

�(�) = �, �(�) = �,    (3) 

is self-adjoint in ��(�, �). The problem (2)-(3) has 
the following eigenvalues 

�� = ���� �
�
, � � �, 

and the corresponding system of eigenfunctions 

��(�) = �2� sin
��
� (�), � � �� 

It is known that the self-adjoint problem has real 
eigenvalues and their eigenfunctions form a 
complete orthonormal basis in ��(�, �). 

The study of inverse problems for pseudo 
parabolic equations began in the 1980s. The first 
result obtained by Rundell  [2]  refers to the inverse 
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identification problems for an unknown sourse 
function � in a following equation 

 
�
�� [�(�, �) � ℒ�(�, �)] � ℒ�(�, �) = �.    (4) 

 
Where ℒ  is even order linear differential 

operator. Rundell proved global existence and 
uniqueness theorems for cases when � depends only 
� or only �. In a series of articles [6], [7], [8], [9], 
[10], [12], [13], [14], [15],[16],[17] some recent 
work has been done on inverse problems and spectral 
problems for the diffusion and anomalous diffusion 
equations. 

 
Definitions of fractional operators 
 
We begin this paper with a brief introduction of 

several concepts that are important for the further 
studies. 

Definition 1. [5] The Riemann-Liouville 
fractional integral I�  of order α > 0  for an 
integrable function is defined by 

 

��[�](�) = 1
Γ(�)�

�

�
(� � �)����(�)��, � ∈ [�, �], 

 
where Γ denotes the Euler gamma function. 

 
Definition 2. [5] The Riemann-Liouville 

fractional derivative D�  of order α ∈ (0,1)  of a 
continuous function is defined by 

 

��[�](�) = �
�� �

�[�](�), � ∈ [�, �]. 
 
Definition 3. [5] The Caputo fractional 

derivative of order 0 < α < 1  of a differentiable 
function is defined by 

 
�∗�[�](�) = ��[�′(�)], � ∈ [�, �]. 

 
Definition 4.[5] (Caputo derivative). Let � ∈

��[�, �], �∞ � � < � < � � �∞and � ∗ ����(�) ∈
��,�[�, �],� = [�], � > 0.The Caputo fractional  
 
 

derivative���� of order� ∈ � (� � 1 < � < �,� ∈
ℕ) is defined as 

���� �(�) = 

= ���� ��(�) � �(�)

� �′(�) (� � �)
1! �. . . ��(���)(�) (� � �)���

(� � 1)! �. 
 
If � ∈ ��[�, �]  then, the Caputo fractional 

derivative ����  of order � ∈ �  ( � � 1 < � <
�,� ∈ ℕ) is defined as 

 
���� [�](�) = �������(�)(�) = 

= 1
Γ(� � �)�

�

�
(� � �)������(�)(�)��. 

 
Formulation of the problem 
 
Problem 1.We aim to find a couple of functions 

(u(t, x), f(x)) satisfying the equation(1), under the 
conditions 

�(0, �) = �(�), � ∈ [0, �]          (5) 
 

�(�, �) = �(�), � ∈ [0, �].          (6) 
 

and the homogeneous Dirichlet boundary conditions 
 

�(�, 0) = �(�, �) = 0, � ∈ [0, �].       (7) 
 
By using ℒ–Fourier analysis we obtain existence 

and uniqueness results for this problem. 
We say a solution of Problem 1 is a pair of 

functions (�(�, �), �(�)) such that they satisfy 
equation(1) and conditions(5)-(7) where �(�, �) ∈
��([0, �]� ��([0, �])) and �(�) ∈ �([0, �]). 

 
Main results 
 
For Problem 3.1, the following theorem holds.  
Theorem 1.Assume that�(�), �(�) ∈ ���[0, �]. 

Then the solution �(�, �) ∈ ���[0, �], ��([0, �])�,
�(�) ∈ �([0, �]) of the Problem 3.1 exists, is unique, 
and can be written in the form 
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�(�, �) = ��(�) +�
∞

���

���(�) − ��(�)��1 − ��,� �−
���� �

�

������ �
� ����

���� �
� �1 − ��,� �−

���� �
�

������ �
� ����

sin ��� (�),
 

   (8) 
 

�(�) = −�′′(�) + ∑∞���
��
(�)���

(�)

����,���
���� �

�

������ �
����

sin ��� (�),                            (9) 

 
 

where ��(�) = (�′′, ��)��(�,�), ��(�) = (�′′, ��)��(�,�) 
and ��,�(��) is the Mittag-Leffler type function (see 
[4]): 

 

��,�(�) = �
∞

���

��
Γ(�� + �). 

 
First of all, we start by proving an existence 

result. 
Proof. Let us seek functions �(�, �) and �(�) 

in the forms: 
 

�(�, �) = ∑∞��� ��(�)sin ��
� (�), � � �,     

(10) 
and 

 
�(�) = ∑∞��� ��sin ��� (�), � � �,      (11) 

 
where ��(�)  and ��  are unknown. Substituting 
Equations (10) and (11) into Equation (1), we obtain 
the following equation for the functions ��(�) and 
the constants ��: 

 

�����(�) +
���� �

�

1 + ���� �
� ��(�) =

��
1 + ���� �

�. 

 
Solving these equation,we obtain 
 

��(�) =
��

���� �
� + ����,� �−

���� �
�

1 + ���� �
� ���, 

 

where the constants ��  and ��  are unknown. To 
find these constants, we use conditions(5), (6). Let 
�� and �� be the coefficients of the expansions of 
�(�) and �(�): 

�� = �2� �
�

�
�(�)sin ��� (�)��, � � �,

�� = �2� �
�

�
�(�)sin ��� (�)��, � � �.

 

 
We first find ��: 
 

��(0) =
��

���� �
� + �� = ��,

��(�) =
��

���� �
� + ����,� �−

���� �
�

1 + ���� �
� ��� = ��.

 

 
Then 
 

�� =
��� − ���

1 − ��,� �−
���� �

�

������ �
� ���

.
 

 
The constant �� is represented as 
 

�� = �� �
��
� �

�
− �� �

��
� �

�
. 

 
Substituting ��(�) and ��  into expansion (10), 

we find  

 



26 An inverse problem for the pseudo-parabolic equation for Laplace operator

Int. j. math. phys. (Online)International Journal of Mathematics and Physics 10, №1, 23 (2019)

�(�, �) = �(�) + ∑∞��� �� ���,� �−
���� �

�

������ �
� ��� − �� sin ��

� (�).                      (12) 

 
By the supposition of the theorem we know 
 

�(�)(�) = �, �(�)(�) = �, � = �,�,�,
�(�)(�) = �, �(�)(�) = �, � = �,�,�. 

then using they we have 
 

�� =
�� − ��

� − ��,� �−
���� �

�

������ �
� ���

= − ��(�) − ��(�)

���� �
� �� − ��,� �−

���� �
�

������ �
� ����

.
 

 
Putting this into equations (10) and (11) we obtain 

�(�, �) = ��(�) + ∑∞���
���

(�)���
(�)������,���

���� �
�

������ �
�����

���� �
�
�����,���

���� �
�

������ �
�����

sin ��
� (�).

                    (13) 

Similarly, 
 

�(�) = −�′′(�) + ∑∞���
��
(�)���

(�)

����,���
���� �

�

������ �
����

sin ��
� (�).                           (14) 

 
 
The following Mittag-Leffler function’s estimate 

is known by [11]: 
 

���,�(�)� � �
����� , ���(�) = �, ��� � ∞.     

(15) 
 

Now, we show that �(�, �) �
��(��, ��� ��(��, ��)), �(�) � �(��, ��), that is 

� � ���(��,�����(��,��))= max����,��
� �(�,�) ���(��,��)+ max����,��
� ����(�,�) ���(��,��)< ∞, 

 
and 

� � ��(��,��)< ∞. 
 
By using (15), we get following estimates 

 
 

��(�, �)� � ��(�)� + ∑∞���
���

(�)�����
(�)�

���� �
�
�����,���

���� �
�

������ �
�����

� ��(�)� + ∑∞���
���

(�)�����
(�)�

���� �
� ,

                               (16) 
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������ � ��′′���� + ∑∞���
���

��������
����

����,���
���� �

�

������ �
����

� ��′′���� + ∑∞��� ������� + ������� .
                                (17) 

 
 
Where, � � �  $L denotes � � C�  for some 

positive constant C independent of � and �. 
By supposition of the theorem we know ���� 

and ���� are continuous on ��, ��.  
 
Then by the Bessel inequality for the 

trigonometric series (see [1]) and by the Weierstrass 
M-test (see [3]), series (16) and (17) converge 
absolutely and uniformly in the region Ω. Now we 
show. 

������, ��� � ��′′���� +�
∞

���

������� + �������

1 � ��,� ��
���� �

�

������ �
� ���

� ��′′���� +�
∞

���
������� + ������� < ∞,

 

 

�������, ��� � �
∞

���

������� + �������

�1 + ���� �
���1 � ��,� ��

���� �
�

������ �
� ����

� �
∞

���

������� + �������
1 + ���� �

� < ∞,

 

 

���������, ��� � �
∞

���

���� �
� �������� + ��������

�1 + ���� �
���1 � ��,� ��

���� �
�

������ �
� ����

� �
∞

���
������� + ������� +�

∞

���

������� + �������
1 + ���� �

� < ∞.

 

 
 
Finally, we obtain 
 
� � ������,��,����,���� � < ∞, � � �����, 

and 
� � �����,���< ∞. 

 
Existence of the solution is proved. 

Now, we start proving uniqness of the 
solution.Let us suppose that �����, ��, ������  and 
�����, ��, ������ are solution of the Problem 1. Then 
���, �� � ����, �� � ����, ��  and ���� � ����� �
����� are solution of following problem: 

 
�������, �� � �����, ��� � �����, �� � ����,   (18) 
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                (19) 
 

              (20) 
 

By using (13) and (14) for (18)-(20) we easily see 
. Uniqness of the solution of 

the Problem 1.  
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Mathematical problems of gravimetry and its applications 
 
 

Abstract. Gravimetry is associated with analysis of the gravitational field. The gravitational field is 
characterized by its potential. This is described by the Poisson equation, the right side of which includes 
the density of the environment. There exists direct and inverse problems of gravimetry. Direct gravimetry 
problems involve the determination of the potential of the gravitational field in a given region. The 
inverse problems of gravimetry imply the restoration of the structure of a given area from the results of 
measuring the characteristics of the gravitational field. Such studies are needed to assess on the basis of 
gravimetric geodynamic events occurring in oil and gas fields. The relevance of such research is 
necessary, because with prolonged development of the oil and gas fields, negative consequences may 
occur. This paper discusses some of the features of direct and inverse gravimetry problems. A description 
of the mathematical model of the processes under consideration is given. Different direct and inverse 
gravimetry problems are posed. Describes the methods of its solving. Based on the analysis of the results 
of a computer experiment, appropriate conclusions are made. 
Key words: gravimetry, inverse problems, mathematical model. 

 
 
Introduction 
 
Gravimetry is a science related to the study of 

gravitational fields. The gravitational field is 
potential, i.e. the work expended on movement in 
this field along a closed curve is zero. The main 
function characterizing a potential field is the 
potential. The potential of the gravitational field is 
described by the Poisson equation, the right-hand 
side of which includes the density distribution in a 
given region [1, 2]. 

Mathematical problems of gravimetry are 
divided into direct and inverse. Direct gravimetry 
problems involve finding the distribution of the 
potential of a gravitational field over a known 
density distribution in a given region. This is 
achieved by solving the corresponding boundary 
value problem for the Poisson equation. In the 
inverse problems of gravimetry, on the contrary, it 
is necessary to reconstruct the structure of the 
considered set by measuring the gravitational 
field. 

The relevance of the inverse problems of 
gravimetry is due to the fact that in the process of 
long-term operation of deposits of different minerals 
(in particular, oil and gas), significant changes occur 
that have undesirable consequences [3–5]. In this 
regard, monitoring of existing fields is regularly 
conducted. In this case, we are interested in 
gravimetric monitoring. With the help of 
gravimeters, measurement of the acceleration of 
gravity, corresponding to the gradient of the 
potential of the gravitational field, is carried out [6, 
7]. This experimental information can be used as a 
basis for the formulation of inverse problems of 
gravimetry. 

It is known that the inverse problems are ill-
posed, in principle [8]. However, the inverse 
problems of gravity are essentially ill-posed. In 
particular, the values of the acceleration of gravity 
determined during the measurement process may be 
due to various gravity anomalies. Thus, the solution 
of the inverse problem of gravimetry in the full 
formulation is not the only solution. Naturally, in 



30 Mathematical problems of gravimetry and its applications 

Int. j. math. phys. (Online)International Journal of Mathematics and Physics 10, №1, 29 (2019)

the numerical solution of such a problem, the 
algorithm outputs to one of these solutions. 
However, this result may not correspond to reality. 
Mathematically correct, it will have no practical 
meaning. In this connection, in practice, only partial 
inverse gravimetry problems are actually solved 
(see, for example, [9–18]). These works differ, 
firstly, in the volume of measured information, 
secondly, in the amount of identifiable information 
and, thirdly, in research methods. 

In this paper, we discuss some peculiar 
properties of the formulation of direct and inverse 
gravimetry problems based on the available 
experimental information, as well as methods for 
solving these problems. We characterize some of the 
difficulties encountered in solving direct and inverse 
gravimetry problems and discuss ways to overcome. 

 
Statement of the problem 
 
At first, give the general direct gravimetry 

problem (see, for example, [1,2]). The gravitational 
field in the given volume is described by the 
Poisson equation 

 
(x,y,z) = –4 G(x,y,z),               (1) 

 
where  is the gravitational potential,  is the 
density, G is the gravitational constant. 

It is necessary to add the boundary conditions. In 
principle, we can have some results of measuring on 
the ground surface. Unfortunately, we do not, as a 
rule, any information about the gravitational field 
underground. However, it is known that the 
influence of the object to the gravitational field 
decreases with distance from the object and tends to 
zero with unlimited distance from it. Then we can 
extend the given set such that the gravitational 
potential on the boundary of the extended set will be 
zero. Thus, the general direct gravimetry problem is 
finding the gravitational potential  = (x,y,z) from 
the homogeneous Dirichlet problem for the Poisson 
equation (1), using known density distribution  = 
(x,y,z). 

For formulating inverse problems of gravimetry, 
it is necessary to determine what specific 
information we can directly get into the process of 
gravimetric monitoring and what exactly we would 
like to find on the basis of this information. Note 
that when analyzing deposits, we have some 
territory S in the x, y plane. The terrain in this area is 
known. In addition, the maximum depth that is of 
interest to the research is usually specified. It is 

natural to choose it as a reference, i.e. the zero value 
of the vertical coordinate z. Then we can assume 
that the given function is h = h(x, y), which 
characterizes the height of the terrain at the point x, 
y of the surface S with respect to the chosen system. 
Thus, the system is considered in three-dimensional 
volume 

 
V = {(x,y,z) | 0 < z < h(x,y), (x,y)S}. 

 
In practice, using gravimeters, the gravitational 

acceleration is measured, which, up to a sign, 
coincides with the vertical derivative of the potential 
of the gravitational field. Thus, the following 
condition holds 

                      
 , , ( , )

( , ),  ( , ) ,
x y h x y

g x y x y S
z


  


   (2) 

 
where g is the experimentally measured value of the 
gravitational acceleration. This information, which 
is the result of gravimetric monitoring, can be used 
as the basis for the formulation of inverse 
gravimetry problems. 

The purpose of the gravimetric monitoring of the 
existing field is largely to clarify the geological and 
tectonic structure and geological field information 
of the study area in order to highlight the risk of 
geodynamic processes. Such information can be 
obtained by knowing the density distribution in a 
given region. Thus, the object of the search in the 
process of solving the inverse problem of 
gravimetry is the density function, which is in the 
right-hand side of the considered equation (1). 
Therefore, the general gravimetry problem is finding 
the density distribution  = (x,y,z) in the volume V 
such that the solution of the homogeneous Dirichlet 
problem for the Poisson equation (1) in the extended 
set satisfies the additional condition (2). 

As is known, the most natural way to solve 
inverse is to reduce them to optimization problems. 
In particular, the stated inverse problem can be 
reduced to the problem of minimizing the functional 

                                        

  2
, , ( , )

( ) ( , ) ,
S

x y h x y
I I g x y dS

z



 

    
 (3) 

 
where  is a solution of the considered direct 
problem corresponding to the given function . 
Naturally, the solution of the inverse problem also 
turns out to be the solution of the optimization 
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the numerical solution of such a problem, the 
algorithm outputs to one of these solutions. 
However, this result may not correspond to reality. 
Mathematically correct, it will have no practical 
meaning. In this connection, in practice, only partial 
inverse gravimetry problems are actually solved 
(see, for example, [9–18]). These works differ, 
firstly, in the volume of measured information, 
secondly, in the amount of identifiable information 
and, thirdly, in research methods. 

In this paper, we discuss some peculiar 
properties of the formulation of direct and inverse 
gravimetry problems based on the available 
experimental information, as well as methods for 
solving these problems. We characterize some of the 
difficulties encountered in solving direct and inverse 
gravimetry problems and discuss ways to overcome. 

 
Statement of the problem 
 
At first, give the general direct gravimetry 

problem (see, for example, [1,2]). The gravitational 
field in the given volume is described by the 
Poisson equation 

 
(x,y,z) = –4 G(x,y,z),               (1) 

 
where  is the gravitational potential,  is the 
density, G is the gravitational constant. 

It is necessary to add the boundary conditions. In 
principle, we can have some results of measuring on 
the ground surface. Unfortunately, we do not, as a 
rule, any information about the gravitational field 
underground. However, it is known that the 
influence of the object to the gravitational field 
decreases with distance from the object and tends to 
zero with unlimited distance from it. Then we can 
extend the given set such that the gravitational 
potential on the boundary of the extended set will be 
zero. Thus, the general direct gravimetry problem is 
finding the gravitational potential  = (x,y,z) from 
the homogeneous Dirichlet problem for the Poisson 
equation (1), using known density distribution  = 
(x,y,z). 

For formulating inverse problems of gravimetry, 
it is necessary to determine what specific 
information we can directly get into the process of 
gravimetric monitoring and what exactly we would 
like to find on the basis of this information. Note 
that when analyzing deposits, we have some 
territory S in the x, y plane. The terrain in this area is 
known. In addition, the maximum depth that is of 
interest to the research is usually specified. It is 

natural to choose it as a reference, i.e. the zero value 
of the vertical coordinate z. Then we can assume 
that the given function is h = h(x, y), which 
characterizes the height of the terrain at the point x, 
y of the surface S with respect to the chosen system. 
Thus, the system is considered in three-dimensional 
volume 

 
V = {(x,y,z) | 0 < z < h(x,y), (x,y)S}. 

 
In practice, using gravimeters, the gravitational 

acceleration is measured, which, up to a sign, 
coincides with the vertical derivative of the potential 
of the gravitational field. Thus, the following 
condition holds 

                      
 , , ( , )

( , ),  ( , ) ,
x y h x y

g x y x y S
z


  


   (2) 

 
where g is the experimentally measured value of the 
gravitational acceleration. This information, which 
is the result of gravimetric monitoring, can be used 
as the basis for the formulation of inverse 
gravimetry problems. 

The purpose of the gravimetric monitoring of the 
existing field is largely to clarify the geological and 
tectonic structure and geological field information 
of the study area in order to highlight the risk of 
geodynamic processes. Such information can be 
obtained by knowing the density distribution in a 
given region. Thus, the object of the search in the 
process of solving the inverse problem of 
gravimetry is the density function, which is in the 
right-hand side of the considered equation (1). 
Therefore, the general gravimetry problem is finding 
the density distribution  = (x,y,z) in the volume V 
such that the solution of the homogeneous Dirichlet 
problem for the Poisson equation (1) in the extended 
set satisfies the additional condition (2). 

As is known, the most natural way to solve 
inverse is to reduce them to optimization problems. 
In particular, the stated inverse problem can be 
reduced to the problem of minimizing the functional 

                                        

  2
, , ( , )

( ) ( , ) ,
S

x y h x y
I I g x y dS

z



 

    
 (3) 

 
where  is a solution of the considered direct 
problem corresponding to the given function . 
Naturally, the solution of the inverse problem also 
turns out to be the solution of the optimization 

problem, and the solution of the optimization 
problem under the condition of its existence will be 
the solution of this inverse problem. The practical 
solution of the obtained optimization problem is 
carried out using numerical optimization methods, 
for example, the gradient method [19–21]. 

Note that in reality the measurement of the 
gravitational acceleration is carried out not 
everywhere in a given area S, but only at certain 
points (xi,yi), i = 1,2,…,M, where gravimeters are 
located. Thus, in fact, instead of (2), we have the 
condition                      

 , , ( , )
,  1,...,i i i i

i

x y h x y
g i M

z


  


    (4) 

with known values gi. Thus, in practice, either by 
interpolation, the transition to condition (2) is 
performed, followed by minimization of the 
functional (3), or we solve the minimization 
problem for the functional. 

  2

1

, , ( , )
( ) .

M
i i i i

i
i

x y h x y
I I g

z





 
    

    (5) 

 
Results and discussion 
 
For simplicity, we perform the analysis for the 

two-dimensional case, considering the horizontal 
coordinate x and the vertical coordinate z. For the 
direct problem in the simplest case, we consider a 
rectangular area in which the gravitational anomaly 
is located, i.e. an object significantly different in 
density from the environment. Figure 1 shows the 
density distribution over a given area, as well as the 
calculated distribution of the gravitational potential 
and its derivative in the upper part of the region 
corresponding to the earth's surface if the anomaly is 
located in the center of the considered set (Figure 
1a) and near its boundary (Figure 1b). 

 
 

 

 

 
a) anomaly is in the center          b) anomaly is near the boundary 

 
Figure 1 – Density distribution, potential, and its vertical derivative  

for the case of rectangular anomaly 
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As can be seen from Figure 1a, at the location of 
the anomaly (point x), the potential and its vertical 
derivative have their maximum value. As one moves 
away from the anomaly, these values decreases to 
zero equally in both directions, which is the 
corollary to zero boundary conditions. However, 
when the anomaly is located near the boundary of 
the region under consideration (Figure 1b), the 
potential distribution and its derivative are no longer 
symmetrical, which is not satisfactory. The results 
suggest that, in order to eliminate the influence of 
the boundaries, the area under consideration should 
be significantly extended. 

At the next stage of the study, we are already 
repelling ourselves from the geological and 
lithographic section of the real field. Figure 2 
depicts the density distribution in the considered 
area, with the yellow color indicating the area filled 
with clay – the predominant environmental material 
and relatively high density, blue – the air that inside 
the field corresponds to the existing voids with 
significantly lower density, and green – oil, more 
lighter than clay, but heavier than air. When 
extending a given area, it is assumed that air is 
located above the surface of the earth, and clay is 
located outside the initial area.  

 

 

 
Figure 2 – Density distribution, potential, and its vertical derivative  

for the extended set with real parameters and usial density outside the initial set 
 
 
As can be seen from the results obtained, the 

potential on the surface of the earth over the zone of 
predominance of oil and voids is lower compared to 
the neighboring zones where clay is predominant. 
This is due to the fact that the clay has a greater 
density. In this case, the vertical derivative of the 
potential is negative, since as the distance from the 
object increases, the potential value decreases, and 
the larger, the larger the potential value itself. We 
draw attention to the fact that outside the initial 
region, the potential value turns out to be rather 
large and decreases sharply to zero in the vicinity of 

the boundaries. This is explained by the fact that 
there is heavy clay outside the initial region, and 
zero potential values are rigidly set at the boundary. 
Besides, the potential derivative greatly increases in 
the neighborhood of the boundaries. Such a result 
cannot be considered satisfactory, and suggests that 
the density in the extended part of the region should 
be continued to zero. Indeed, we consider the 
gravitational field created by objects located in a 
given area. 

At the next stage of the analysis, we carried 
out calculations with the extension of the set so 
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that the density outside the initial region is 
assumed to be zero. In this case, the distribution 
of the potential gradually decreases to zero as the 

boundaries approach. The value of the vertical 
derivative potential also tends to zero, see 
Figure 3. 

Figure 3 – Density distribution and vertical derivative of the potential 
for the extended set with real parameters and usial density outside the initial set 

The question arises, how we can determine the 
size of the extended set. First, some extension is 
selected, and the value of the derivative potential on 
the earth's surface in the given region is calculated. 
Then the area extends again and calculations are 
carried out. If the newly found value of the 
derivative potential practically does not differ from 
that found earlier, then the calculations are 
terminated. Otherwise, a new extension is carried 
out. 

Now consider the inverse problem. At first, we 
try to solve the general inverse problem for the two-
dimensional case. We determine the gravitational 
anomaly as the square with a higher density than the 

density of the environment (see Figure 4a). Then we 
solve the Poisson equation with given boundary 
condition and calculate the vertical derivative of the 
potential at the ground surface. Now we put the 
result to the minimizing functional and solve the 
minimization problems by means of the gradient 
method. The iterative method converged, and the 
sequence of functional tends to zero. Thus, we 
found the solution of the optimization problem that 
is the solution of inverse problem too. The obtained 
result is shown in the Figure 4b). Unfortunately, this 
result is significantly different from the real. This is 
the corollary of the non-uniqueness of the 
considered inverse problem. 

a) real position b) obtained position

Figure 4 – Position of the gravitational anomaly of the inverse problem 
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Its is clear that the general inverse problem of 

gravimetry is not very interesting because of its 
significantly non-uniqueness. We had a few data 
(boundary value of potential derivative) for finding 
the many information (density as a function of 
spatial variables). Then we consider two partial 
cases. For the first case, we suppose that we know 
the position of the homogeneous anomaly, its form 
and size, but its density is unknown. For the second 
case, we consider inverse situation. The density of 
the anomaly with given form and size is known, and 
its position is unknown. The first problem was be 
solved by gradient methods [19–21] with good 
enough exactness. The second (geometric) inverse 
problem has the peculiarity. The minimizing 
functional is not Gateaux differentiable. It is 
subdifferentiable only. Then we use the methods of 
non-smooth optimization, particularly, the 
subgradient method [22], the Nelder – Mead method 
[23], and genetic algorithms [24]. The exactness of 
the results was be good enough too. This is clear, 
because for both partial inverse problems, we 
determine one (constant density) or two (coordinates 
of the anomaly) parameters, using the knowledge of 
the function (vertical derivative of the potential at 
the ground surface).   

  
Conclusion 
 
Based on the obtained results, the following 

conclusions can be drawn: 
1. The direct problem of gravimetry is based on 

the Poisson equation with respect to the potential of 
the gravitational field with a density included in the 
right-hand side of the equation. 

2. To find the potential distribution in a given 
region, the given region should be extended by 
setting uniform Dirichlet boundary conditions on the 
extended set. 

3. The density value outside the source region is 
assumed to be zero. 

4. Experimentally measured the acceleration of 
gravity, which corresponds to the vertical derivative 
of the gravitational potential. 

5. The method of choosing the size of the 
extended set is proposed.   

6. The general inverse problem of gravimetry is 
to find the density distribution in a given area, using 
the measure of the potential derivative on the outer 
surface. 

7. The general inverse problem of gravimetry has 
essentially not the only solution, as a result of which 
the value of the density distribution found using 
standard optimization methods may differ from its 
real value. 

8. Some particular inverse problems of 
gravimetry have been solved, in particular, the 
restoration of constant density and coordinates of 
the location of the gravitational anomaly. 

9. Optimization problems corresponding to 
inverse gravimetry can be characterized by a non-
differentiable functional. In this case, non-smooth 
optimization methods can be used, in particular, the 
subgradient method, the Nelder – Mead method, and 
genetic algorithms. 

10. The obtained results can be used in 
monitoring oil and gas fields. 
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Determination of the coefficients  
of nonlinear ordinary differential equations systems  

using additional statistical information 
 
 

Abstract. The study of the clinical and epidemiological features of tuberculosis combined with HIV 
infection (TB + HIV) is one of the priorities in the prevention of infectious diseases and is necessary to 
improve the quality of medical care for patients. So this article is devoted to the mathematical model of 
epidemiology, its’ investigation and analysis. The previous works showed what identifiability analysis is 
and considered methods of performing them, such as orthogonal method, eigenvalue method and etc., for 
more precise clarification of model parameters. However, the choice of solving the inverse problem to 
restore unknown parameters is playing a huge role. So here was showed the combination of two 
numerical algorithms, as stochastic method of simulating annealing to determine the region of the global 
minimum and gradient method to determine the inverse problem in a region, of solving the inverse 
problem that will help to create effective treatment plan for the elimination and treatment of the disease. 
Key words: epidemiology, inverse problems, ODE, optimization. 

 
 
Introduction 
 
Systems of nonlinear ordinary differential 

equations (ODE) describe processes in biology and 
medicine, namely, immunology, epidemiology, 
pharmacokinetics, sociology, economics and etc. 
The equations are built on the basis of the law of 
mass balance and operate in a closed system. The 
coefficients of ODE systems characterize important 
parameters of the immune response, the spread rate 
of the disease in the region, the absorption rate of 
drugs, etc., which cannot be determined from 
statistical data and need to be clarified. Specified 
individual parameters will allow you to create the 
most effective treatment plan and action plan for the 
elimination and treatment of the disease. One way to 
identify the extent of damage to the immune system, 
namely the parameters of the disease, the immune 

response, as well as determining the optimal 
treatment, is mathematical modeling. 

According to the characteristics of the immune 
response, it is already possible to numerically 
analyze the optimal control programs for treating a 
disease. Example of mathematical model of 
epidemiology (co-infection of HIV and 
tuberculosis) shows studies on the identifiability of 
mathematical models for ODE systems, stability of 
inverse problems and methods for their numerical 
solution and computational optimization, which are 
necessary to develop an algorithm for regularizing 
the solution of inverse problems.  

In [1] the deterministic model of TB dynamics 
was observed, they also conducted identifiability 
analysis by constructing sensitivity matrix to restore 
the identifiable parameters. The identification of 
parameters was conducted by solving the linear least 
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squares problem using the QR factorization with 
column pivoting. 

 
Model 
 
The cause of tuberculosis (TB) is a bacterium 

called Mycobacterium tuberculosis, which usually 
affects the lungs, and TB is spread by airborne 
droplets (coughing, sneezing, etc.). People living 
with HIV (PLHIV) are at much greater risk of 
contracting TB than HIV-negative people. If TB is 
not treated properly, death is possible. Tuberculosis 
is one of the leading causes of death among PLHIV 
in the world. It can manifest itself in two ways: 
latently infected with TB and active way of TB.  

Latently infected with TB means that not all 
people infected with the bacteria become ill with 
TB. When a person is infected with TB, but has no 
symptoms and does not feel sick, it is considered 
that he has a “latent infection of TB”. Such a person 
is not infectious and is not able to infect other 
people. In about 5–10% of cases, a latent infection 

leads to tuberculosis. This happens if an infected 
person does not have sufficiently strong immunity 
to protect against bacteria. A person with active 
tuberculosis feels sick; he may have the following 
symptoms: cough for several weeks, chest pain, 
blood or sputum when coughing, weakness, fatigue, 
weight loss, lack of appetite, chills, fever and night 
sweats. 

Co-infection of TB and HIV is a situation where 
a person lives with HIV and latent or active TB at 
the same time. Worldwide, TB is the leading cause 
of death among PLHIV, as it accounts for 25% of 
all deaths among PLHIV. Given the detrimental 
effects of HIV infection on the immune system, 
PLHIV with TB co-infection are 20 times more 
likely to develop active TB [2]. In addition, it has 
been proven that tuberculosis increases viral 
replication in PLHIV and accelerates the 
progression of HIV, being unhealed. 

A mathematical model of the epidemiology of 
co-infection with tuberculosis (TB) and HIV is 
considered [3]: 
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�
�
�
�
�
�
�
�
�
�
�
� �� � � − ��� (� � ��) �� − ��� (�

∗)
�� − ��,

�� � ��(� � �) (� � ��) �� − ��� (�∗) �� − (� � � � ��)�,
�� � �� − (� � � � ��)�,

�� � ��� � ��� − ��� (� � ��) �� − ��� (�∗) �� − ��,
��� � −���� (� � ��) �� � ��(� � �) (�∗) �� − (�� � �)�� � �∗��,
��� � ���� (� � ��) �� � ��� (�∗) �� − (�� � � � �∗ � �∗)��,

��� � �∗�� − (�� � � � �∗)��,
�� � ���� � ���� � ���� − (� � �)�,

�(0) � ��, �(0) � ��, �(0) � ��, �(0) � ��,
��(0) � ���, ��(0) � ���, ��(0) � ���, �(0) � ��.

                           (1) 

 
 
Here S(t) – number of non-infected individuals, 

L(t) – number of individuals latently infected with 
TB (without HIV), I(t) – number of individuals with 
active TB (without HIV), T(t) – number of 
individuals cured of TB (without HIV), J1(t) – the 
number of individuals infected with HIV (without 
TB), J2(t) – the number of individuals infected with 
HIV and latently infected with TB, J3(t) – number of 
individuals infected with HIV and active TB, A(t) – 

number of individuals with AIDS. � � � � � � � �
� � �� � �� � �� � �  – total population, � � � �
� � � � �� � ��- active population, �∗ � �� � �� � �� 
– people infected with HIV [4]. 

This model contains many parameters, 6 of 
which are individual in each specific case and need 
to be clarified � � (k, k∗, r�, α�, α�, α�)� . The 
values of the parameters � are given in Table 1. 
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Table 1 – Definitions of parameters used in the model (1) 

Parameter Definition Units Value
� the rate of development of active TB (without HIV) year 0,05 
�∗ the rate of development of active TB (with HIV) year 0,25 
�� TB treatment rate (without HIV) human/ year 1 
�� group HIV transition rate J1(t) year 0,1
�� group HIV transition rate J2(t) year 0,2
�� group HIV transition rate J3(t) year 0,5

Let additional information about system (1) be 
known at time points ��  of only three groups of 
individuals: 

�(��) � ��, ��(��) � ���, 

�(��) � ��, � � �, � , � 

The mathematical model of co-infection of 
tuberculosis and HIV consists of 8 equations, but 
measurement data are known only about 3 of them 
once a year during the 5 years. That is, we have M = 
3, K = 5. This model contains many parameters, 6 of 
which are individual in each specific case and need 
to be refined. Based on the analysis of identifiability 
carried out by one of the methods such as the 
orthogonal method [5], condition numbers, etc. [6], 
more precisely, in this work, by the method of 

eigenvalues [7-8], we will determine only 4 
identifiable parameters � �  (�, ��, ��, ��)�  from 
additional statistical information. 

In the case of matrices of large dimensions or 
non-uniformly filled matrices, the eigenvalue 
method is unstable [9]. In such cases, it is 
recommended to use the method based on singular 
numbers [10], since it is known [11] that the 
condition number of the sensitivity matrix 
determines the convention (incorrectness) of system 
(2). The greater the condition number, the higher the 
incorrectness of the inverse problem (for the 
inversion of the sensitivity matrix, the use of 
regularization methods is required). 

The values of the parameters, depending on the 
population, and the initial data are known are given 
in Table 2. 

Table 2– Values of parameters and known initial data used in the model (1) 

Parameter Value Unit
S(0) 430 in thousands of people
�(0) 3854.5 in thousands of people 
�(0) 16.875 in thousands of people 
�(0) 3.412 in thousands of people 
�1(0) 3.2757 in thousands of people 
�2(0) 27.7 in thousands of people 
�3(0) 1.4 in thousands of people 
�(0) 0.357 in thousands of people 
Λ 43 in thousands of people
� 4315.76 in thousands of people 
� 0.0143 in thousands of people 

�*� 0.529 Nondimensionalized 
�* 0.222 Nondimensionalized 
� 0.997 Nondimensionalized 

� *� 0.99927 Nondimensionalized
� 0.06685 Nondimensionalized
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In vector form, the inverse problem is written as 
follows: 

 

��� = �(�(�), �), �(0) = ��,
��(��) = Ф�

� .                (2) 

 
Here is the vector-function – � =

(�, �, �, �, ��, ��, ��, �), data – Ф�� = (��, ���, ��). 
The inverse problem was reduced to the problem 

of minimizing the objective functional in the form: 
 

�(�) = ∑ ∑ ��(��� �) −Ф�
� �������

���          (3) 
 

Due to the fact that the task of minimizing the 
objective functional is a multiparameter, then the 
determination of the global minimum requires the 
use of combined numerical methods – method of 
simulated annealing and gradient method.  

 
Methods 
 
Simulated annealing  – general algorithmic 

method for solving the global optimization problem, 
especially discrete and combinatorial optimization. 
Is the one examples of Monte Carlo methods. The 
algorithm is created by N. Metropolis and it is based 
on the imitation of the physical process that occurs 
during the crystallization of a substance, including 
during annealing of metals. It is assumed that atoms 
are already lined up in the crystal lattice, but 

transitions of individual atoms from one cell to 
another are still permissible. It is assumed that the 
process proceeds at a gradually decreasing 
temperature. The transition of an atom from one cell 
to another occurs with a certain probability, and the 
probability decreases with decreasing temperature. 
A stable crystal lattice corresponds to the minimum 
energy of the atoms, so the atom either enters a state 
with a lower energy level or remains in place.  

By simulating such a process, one finds a point 
or a set of points at which the minimum of some 
numerical function �(�)  is reached, where � =
(��, ��, … , ��) � �. The solution is figured out by 
sequential calculation of points ��, ��, …, in space �; 
each point, starting with ��, “pretends” to better the 
solution than the previous ones. Algorithm takes 
point �� as the raw data. At each step, the algorithm 
(which is described below) calculates a new point 
and lowers the value of the “temperature” value 
(initially positive). The algorithm stops when it 
reaches a point that turns out to be at a temperature 
of zero. 

According to the algorithm the point ����  is 
obtained on the basis of the current point ��  as 
follows. The � operator that randomly modifies the 
point is applied to point���, in result we obtain new 
point��∗. 

The point ��∗  becomes a point ����  with the 
probability �(�∗, ����) , which is calculated 
according to the Gibbs distribution: 

 
 

�(�∗ � ����|��) = �
�, �(�∗) − �(��) < 0

��� �−�(�
∗) − �(��)
�� � , �(�∗) − �(��) ≥ 0 

 
 
Here �� > 0 – elements of arbitrary decreasing, 

converging to zero positive sequence, which sets the 
analogue of the falling temperature in the crystal. 
The rate of decrease and the law of decrease can be 
set at the request of the creator of the algorithm. 

The simulated annealing algorithm is similar to a 
gradient descent, but due to the randomness of the 
choice of an intermediate point, it should fall into 
local minima less often than gradient descent. The 
simulated annealing algorithm does not guarantee 
finding the minimum of the function; however, with 
the correct policy of generating a random point in 
the space � , usually, the initial approximation 
improves. 

Gradient descent – method for finding a local 
extremum (minimum or maximum) of a function 
using motion along a gradient. To minimize the 
function in the direction of the gradient, one-
dimensional optimization methods are used, for 
example, the golden section method. You can also 
look for not the best point in the direction of the 
gradient, but some better than the current one. 

The easiest to implement of all local 
optimization methods. It has rather weak 
convergence conditions, but at the same time the 
rate of convergence is rather small (linear). The 
gradient method step is often used as part of other 
optimization methods. 
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The description of the method is as follows: let 
the objective function is �(�)� � � � . So the 
optimization problem is set as: 

 
�(�) � ������ �(��) 

 
In case when maximum is needed to be find, then 

instead of �(�) we use � �(�).  
The basic idea of method is to go in the direction 

of the fastest descent, and this direction is given by 
anti-gradient −�� 

 
���� = �� − ����(��) 

 
where �� set the velocity of gradient descent and can 
be chosen as 

 Constant (in this case method may diverge), 
 Decreasing in the process of gradient descent, 
 Guaranteeing the fastest descent: 
 To find minimum �(�) we obtain 
�� = ��������������

= ����������� − ����(��)� 
1. To find maximum �(�) we obtain 
�� = ��������������

= ����������� − ����(��)� 
And the algorithm of the gradient method is look 

as follows: 

1. Set the initial approximation and accuracy of 
the calculation – ��, �; 

2. Calculate ���� = �� − ����(��) , where �� =
����������� − ����(��)�; 

3. Then check the stopping condition: 
 If ����� − ��� � � , �������� − �(��)� � �  or 

���������� � �  (choose one of conditions), then 
� = � � 1 and go to step 2. 

 Otherwise � = ���� and end. 
The stochastic method of simulated annealing 

determines the region of the global minimum, and to 
determine the inverse problem in this region, the 
gradient method was used, consisting in the iterative 
sequence of determining the solution to the inverse 
problem: 

���� = �� − ���′(��), �� � �           (4) 
 
Here is the descent parameter �� = ��(��)

��′(��)� 
characterizes the method of steepest descent, the 
gradient of the objective functional �(��)  has the 
following form [10]:  

 
�′(��) = − � �(�)���(�(�), �)���

�        (5) 
 
Here the vector-function �(�) is the solution of 

the conjugate problem: 

 
 

�
� = −���(�(�), �)�(�),�  � � ⋃ ���, �����, �� = 0, ���� = �,����

�(�) = 0,
������� = ���(��� �) −Ф�� �, � = 1, � . , �.

                              (6)  

 
 
Jacobi matrices have the following form: 
 

�� = ����
���

�
�,���,������

, �� = ����
���

����,������,
���,������

         (7) 

Results 
 
The result of solving the inverse problem for a 

mathematical model of co-infection with 
tuberculosis and HIV using a combined method of 
simulating annealing with a gradient method is 
presented in Table 3 [13-14]. 

Thus, effective numerical algorithms for solving 
inverse problems for systems of ODE (for problems 
of epidemiology, pharmacokinetics and immune-
logy), based on a combination of stochastic and 
gradient methods, have been created. 

Table 3 – Solution of the inverse problem for the 
mathematical model of co-infection of tuberculosis and 
HIV 

 
Parameter Relative decision error q 

�� 1.0 ∗ 10��

�� 5.7 ∗ 10��

�� 5.3 ∗ 10��

� 4.1 ∗ 10���

 
Note that for each parameter, the relative error is 

less than 0.001%, and the parameters �� ��� �  are 
restored better than the others, as identifiability 
analysis showed. The result of solving the direct 
problem (1) with the found parameters is shown in 
Figure 1a-1c for the three measured functions. Red 
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dots describe statistical data that were not involved in 
solving the inverse problem, but are presented for 
comparison of the forecast using methods for solving 

inverse problems. It is shown that the obtained 
solution (solid line) is in good agreement with the 
real data and serves as a reliable forecast [15]. 

 
 

  

Figure 1a. – Numerical solution of the problem of the 
spread of co-infection of tuberculosis and HIV with 

specified parameters (solid line). Black dots mean data of 
the inverse problem, red dots – statistical data taken into 

account for the prediction. The number of individuals with 
active TB (without HIV). All values are in thousand. 

Figure 1b. – Numerical solution of the problem of the 
spread of co-infection of tuberculosis and HIV with 

specified parameters (solid line). Black dots mean data of 
the inverse problem, red dots – statistical data taken into 

account for the prediction. The number of individuals 
infected with HIV and the active form of TB. All values 

are in thousand. 
 

 

Figure 1c. – Numerical solution of the problem of the spread  
of co-infection of tuberculosis and HIV with specified parameters (solid line).  

Black dots mean data of the inverse problem, red dots –  
statistical data taken into account for the prediction.  

The number of individuals with AIDS. All values are in thousand. 
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Conclusion 
 
The research and analysis of the problem arising 

in bio-medicine has been carried out, the theoretical 
aspects of this task have been built, including 
identifiability analysis, which is an important step in 
the study of the mathematical model, and is 
necessary for the correct solution of the inverse 
problem, since it shows the uniqueness, existence 
and / or stability of the solution . 

New combined numerical algorithms for solving 
the direct and inverse problems of epidemiology 
have been built. Efficient numerical algorithms for 
solving inverse problems for systems of ODE (for 
problems of epidemiology, pharmacokinetics and 
immunology), based on a combination of statistical 
and gradient methods, have been created. 

Numerical algorithms for solving the problems 
of determining the coefficients of nonlinear ODE 
systems using additional statistical information were 
developed and analyzed. 

Thus, the conducted scientific work opens up 
new directions for the development of research in 
science and technology, namely, the refinement of 
mathematical models will improve the prognosis of 
the disease or the development of the epidemic, 
which would entail the need for a plan of measures 
for treating patients and eliminating the 
consequences of the disease / epidemic. 

 This work was supported by the grant of the 
Committee of Science of the Ministry of Education 
and Science of the Republic of Kazakhstan 
(AP05134121 "Numerical methods of identiability 
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Variational method for approximate solution of the Dirichlet problem 
 
 

Abstract. Several numerical methods can be used to approximate the solution of the problem. In order to 
determine the most effective of them, it is necessary to carefully study each method. The most efficient 
approximation method is characterized by properties such as high accuracy of the solution, fewer 
iterations and parameters in the calculation, calculation speed, etc. 
In this paper we consider the Dirichlet problem for the Poisson equation described by the initial-boundary 
value problem for the elliptic type of the second order. As an effective iterative method for its 
approximate solution, variational methods for constructing difference equations and variational methods 
for constructing iterative algorithms were used. The article presents the results of calculations developed 
using the variational method for the selected model problem. Examples of calculations for model 
problems are given. The results of the computational experiment demonstrate the high efficiency of the 
proposed iterative method. 
Key words: Dirichlet problem, difference scheme, Ritz method, conjugate gradient method.  

 
 
Introduction 
 
Finding in an analytical form of the problems 

solution of mathematical physics is fraught with 
considerable mathematical difficulties. Known 
results apply only to the simplest cases. In other 
cases, are used different numerical methods of the 
approximate solution.  

In this paper, is consider an elliptic differential 
equation. At the solution: 

1) To construct difference equations was used 
a variance method, proposed in 1908 by German 
mathematician V. Ritz, which is called Ritz method. 
The solution found by this method un(x), under 
certain conditions, tends to exact solution u(x), 
when n .  

Questions of convergence of solutions obtained 
by the Ritz method are considered in numerous 
papers and monographs.  

2) To construct iterative algorithms, was used 
the method of conjugate gradients, which stands out 
for its efficiency among the known iterative 

methods used to solve systems of linear algebraic 
equations.  

In solving the problem, the Ritz method [1-2] 
was used to construct the difference equations, 
iterative algorithms were constructed by the method 
of conjugate gradients [3-4]. Comparing the results 
obtained by the variational method with the results 
obtained in the literature [4-7], it was found that the 
advantage of the chosen variational method is the 
simplicity and efficiency of memory use. Such 
advantages of this method will certainly be 
acceptable when solving large-scale problems. 

 
Variational methods for constructing 

difference equations. 
 
Consideration of the problem in general shape in 

the operator form  
 

fLu  ,  Lu                           (1) 
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when  L  – is an operator domain L   
This task is equivalent to the corresponding 

variational problem.  
 

 
 

 vJuJ
Lv 

 min ,                     (2) 

 
when      vfvLvvJ ,2,  .  

Consideration of the Ritz method use in solving 
an elliptic differential equation of the form  

 

 xf
x
uxA

x j
ij

ji i





















)(
2

1,

, in D          (3) 

 
with boundary condition  

 
0

D
u                          (4)  

 
where D is a bounded domain with a piecewise 
linear boundary D ,    xAxA jiij   bounded 

functions and for an arbitrary vector  /
21 ,   is 

done inequality  
 

    
 




2

1, 1

2
1

2

1,

2

1

2
0 supinf

ji

n

i
i

ji
jiij

Dx
jiijDxi

i xAxA 

 
with positive constants 10   .  

It can be shown that the operator of problems (3) 
and (4) is symmetric and positive definite, and the 
problem itself reduces to finding a function that 

minimizes in space  DW
1

2



 a quadratic functional  
 

dDufdD
x
u

x
uxAuJ

DD ji ji
ij   




















2)()(
2

1,

  (5) 

 
To find an approximate solution of problem (5), 

is applied the Ritz method with special-type hF  
subspaces that satisfy condition (4).  

After, we construct hF  subspaces. To simplify 
the presentation, it is illustrated by the example of 
piecewise linear approximations, when domain  
 

  1,0:, 2121  xxxxD  is a square. This area 
is covered with a uniform square grid with a pitch 

1
1



N

h  and then divide each of the squares lkD ,  

with diagonal. All the internal vertices of the 
triangles are numbered through N

lklkр 1,, 
, the union 

of all triangles with a point of its vertex lkр ,  mark 

through h
lkD , .  

h
lkD ,  can be represented as a union of six 

triangles  6

1,, m
h

mlkD , the order of numbering is 
indicated in fig.1 

 

 
Figure 1 –  6

1,, m
h

mlkD triangle designation 

 
 
To each internal node ),( lk yx , Nlk ,1,  of 

the grids is assigned a piecewise linear basic 
function  yxlk ,, . We define each of these 

functions  yxlk ,,  for the entered grid.  

To set  yxlk ,,  analytical, enough for each 

triangle entering the carrier  yxlk ,, , to create an 
equation for the plane passing through the unit in 

lkр , , and in the other two of its vertices through 

zero. Calculating basic functions  yxlk ,,  in each 

of triangles  6

1,, m
h

mlkD  we build a system of basic 
functions 
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h

xx
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To build an approximate )(xuh solution of the 

problem (1) and (2) we apply Ritz method using 
basis   N

lklk x
1,, 

   
 

 xxu lk

N

lk
lk

h
,

1,
,)( 



              (7) 

 
As a result, comes a system of linear equations 
 

gA                                 (8)  
 

where  TN 2,...,, 21   - vector, made up from 

decomposition coefficients   N
lklklkN 1,,1    , 

 TNgggg 2,...,, 21 - vector with components  
 

  NlkdDxfgg
lkD

lklklkN ,1,,)(
,

,,1     (9) 

 
and the elements of matrix A are calculated by the 
formulas  

 

 
,
, 1 , ( 1)

2
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, 1
( ) , , , , 1,

i j
k l N k l N i j

i jk l
st

s t s tD
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A x dD k l i j N
x x
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   



 

 
 

 
  (10) 

 

We consider Dirichlet problem in the area D 
with border D  with variable coefficients ),( yxp  
and ),( yxq   

 

 yxf
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x
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


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




 , in D (11) 

 
with boundary condition  

 
0

D
u                           (12) 

 
The equation (10) is multiplied by the function 

),( yxu  and integrated by D  in parts, given the 
boundary condition (12) we obtain 

 

  udDyxfdD
y
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According to (5) we construct the functional  
 

    udDyxfdD
y
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x
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  (13) 
 
To apply the Ritz method in (13) the function 

),( yxu  replacing by decomposition (7) we get  
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Next, the derivatives are found and equating to zero, we get the following equations  
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Taking lk ,  out from bracket, it is put in the form of  
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Thus, according to (9) and (10) introducing the notation  
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we get a system of linear algebraic equations (8). 
Given the symmetry and block tridiagonal of 

matrix A , it is enough to define  
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x y x y

p x y
x

 

   



     
            

             
                              

 
   



 

3 4

5

2 2 2 2
, , ,

2 2 2 2
, , , ,

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

k l k l k l

D D

k l k l k l k l

D

q x y dxdy p x y q x y dxdy
y x y

p x y q x y dxdy p x y q x y
x y x y

  

   

          
                         
             
                          

 


6

.
D

dxdy




            (15) 
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We calculate the integrals in each of the areas 
h

lkD , , taking into consideration form of basis 

function  yxlk ,,  in considered area. 
Further, all found six values are substituted in 

(15). In this case, we combine integrals with the 
same values and use the notation  

 dxdyyxp
h

P
h

lk
h

lk DD
lk 





,1,

,1~
2,

2
1   (16) 

 

 dxdyyxq
h

Q
h

lk
h

lk DD
lk 





1,,

,1~
2

2
1,

             (17) 

 
It comes,  

 
.~~~~

2
1,,

2
1

2
1,,

2
1

,
,




lklklklk

lk
lk QPQPa       (18) 

 
II. To find element 1,

,
lk

lka  as in the first case we 
use the formula (14), where 1,,  lkji and to 
define the place 1, lkp  we down the vertex lkp ,

lower for one pitch. According to fig.1. it is seen 
that the vertexes lkp ,  and 1, lkp  are in triangle 1D  

and 6D . So, it means, 1,
,
lk

lka  are defined only in this 
area.  

 

1 6

1

6

, , 1 , , 1, 1
,

, , 1 , , 1

, , 1 , , 1

( , ) ( , )

( , ) ( , )

( , ) ( , )

k l k l k l k lk l
k l

D D

k l k l k l k l

D

k l k l k l k l

D

a p x y q x y dxdy
x x y y

p x y q x y dxdy
x x y y

p x y q x y dxdy
x x y y

   

   

   

 



 

 

    
       

    
       

    
      







                       (19) 

 
 
The found values of the integrals, substituting in 

(19) and using the notation (17) we get  
 

1 6

1 6

, 1
, 2 2

12 ,
2

1 1( , ) ( , )

1 ( , )

k l
k l

D D

k l
D D

a q x y dxdy q x y dxdy
h h

q x y dxdy Q
h






   

    

 

 
    (20) 

 

III. To find lk
lka ,1

,
  by formula (14), where 

lkji ,1,   we move vertex lkp ,  for one pitch to 

left and from fig.1. it is seen that lkp ,  and lkp ,1  are 

the vertexes of triangles 1D  and 2D . It means, 
lk

lka ,1
,
 is defined in the triangles of 1D  and 2D .  
 

1 2

1

2

, 1, , 1,1,
,

, 1, , 1,

, 1, , 1,

( , ) ( , )

( , ) ( , )

( , ) ( , ) .

k l k l k l k lk l
k l

D D

k l k l k l k l

D

k l k l k l k l

D

a p x y q x y dxdy
x x y y

p x y q x y dxdy
x x y y

p x y q x y dxdy
x x y y

   

   

   

 



 

 

    
       

    
       

    
      







                          (21) 

 
Found values lk

lka ,1
,
 , in the triangles 1D  and 2D  

substitute in (21) with (16) and get  
 

1 2

1 2

1,
, 2 2

12 ,
2

1 1( , ) ( , )

1 ( , )

k l
k l

D D

k l
D D

a p x y dxdy p x y dxdy
h h

p x y dxdy P
h






     

    

 

 
   (22) 

IV. It remains only to identify the element, 
1,1

,
 lk

lka . For that the vertex lkp , , needs to be moved 
firstly for one pitch to left and then for one pitch up. 
According to fig.1. it is seen that lkp ,  and 1,1  lkp  

are the vertexes of the triangles 2D and 3D . But 
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with the selected shift of lkp , the vertex 1,1  lkp  
would not belong to any of six triangles. Therefore  

 
01,1

,  lk
lka                            (23) 

 
All found values (18), (20), (22), (23) 

substituting in (8), taking into account the symmetry 
of the matrix A we get  

 

1 1 1 1 , 1 , 1, , , , ,
2 2 2 2 2

1 , 1 1 1, 1 1,, , ,
2 2 2

; , 1,

k l k lk l k l k l k l k l

k l k l k lk l k l k l

P Q P Q Q

Q P P k l N

 

  


    

  
  

 
     

 

   

   

  
  (24) 

 
Allowing in (24)  
 

 1 1 1, 1 1 ,, , , ,
2 2 2

1 1,,
2

; , 1,

k l k lk l k l k l k l

k lk l

A P P P

P k l N

  




  




 
     

 

 

  


  (25) 

 

 2 1 , 1 1 1 ,, , , ,
2 2 2

1 , 1,
2

; , 1,

k l k lk l k l k l k l

k lk l

A Q Q Q

Q k l N

  




  




 
     

 

 

  


   (26) 

 
Then, using АAA  21 , we get system (8)  
 
Variational methods for constructing 

iterative algorithms  
 
For numerical solution of system (6), one can 

apply variational type methods, such as, the method 
of rapid descent, the method of minimal corrections, 
the method of conjugate gradients, etc.  

The conjugate gradient method is most 
preferable for systems with a self-adjoint positive 
matrix 0*  AA . With poor conditioning of the 
matrix, this method does not always become 
computationally stable.  

Operator A is self-adjoint and positive definite 
operator in the space of grid functions 0

hH . Into 
0
hH  we insert scalar product  
 

  





1

1,
21,,,

N

ji
jiji hhvuvu  

 

and norm  
 

 uuu , . 
 
To solve an equation of the form gA   we 

use the conjugate gradient method. The iteration 
process is implemented in the following order:  

I.  Preparation before the iterative process   
For given 0

, ji  the residual is calculated 

  jijijiji gArs ,,
00

,
0
,   21 ,...,1,,...,1 njni  ;  

II. k  – integration of the method  

1) Calculate the parameter: 
 
 1

,,

1
,

1
,

,
,





 k
ji

k
ji

k
ji

k
ji

k sAs
rr

 , 

2) k
jik

k
ji

k
ji Asrr ,

1
,,     

3) The following approximation of the solution 
is calculated by the formula: k

jik
k

ji
k

ji s ,
1

,,      

4) Calculate the parameter: 
 
 1

,
1

,

,,

,
,

 k
ji

k
ji

k
ji

k
ji

k rr
rr

   

5) The auxiliary value is calculated by the 
formula: k

jin
k
ji

k
ji srs ,,
1

,    
where  

 

     

   

1 1, , 1 , 1,2, , ,
1 2 2

1 , 1 , 1 , , 12 , ,
2 2 2

1

1 ;

k
i j i j i j i ji j i j i j

i j i j i j i ji j i j

As P s s P s s
h

Q s s Q s s
h

 
 

 
 

 
     

 
 

    
 

 

 

 

Nji ,1,   
 
\This process continues until the criterion for 

stopping the iterations   kk 1  is satisfied.  
 
Calculation examples   
 
To illustrate the proposed method, we consider 

an example of the problem (11) – (12) in a circle.  
Let in a rectangular area D  is a circle   with 

R radius and center  21 ,сс . It is required to find an 
approximate solution of the Dirichlet problem for 
the Poisson equation.  
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2

2

2
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2

xx
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u
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



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In the circle, under the condition  
 

  0, 21 


xxu  
 
Then  
 

  22121121 ,,, bxbaxaxxD  , 
 

      22
22

2
1121 ,, Rcxcxxx  , 
 

      22
22

2
1121 ,, Rcxcxxx  . 

 
Auxiliary problem of the fictitious domains 

method  
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Were conducted numerical experiments. Below 

is the table 1 for the number of iterations N and 
calculation errors Ch uu   at 10121  nn  and 
various meanings   for Ritz method. 

  
 
Table 1 – Results of numerical experiments 

 

1n  2n  /1  N  Ch uu   

101 101 102 1221 0.003888
101 101 103 3395 0.003820
101 101 104 7920 0.003819
101 101 105 12737 0.003818
101 101 106 20042 0.003817
101 101 107 26592 0.003816

 
 

The results show that with an increase in the 
number of grid nodes, the error in the solution 
decreases. In fig. 2 shown the result of solving the 

problem using an explicit difference scheme with 
4

* 10   on a uniform grid with a size of 101 
× 101. Therefore, the original system of linear 
algebraic equations has 101 × 101 unknowns.  

 

 
Figure 2 –  Solution of the Dirichlet problem for the 

Poisson equation in a circle 
 
 
Conclusion  
 
Today, the task of developing and modifying 

numerical methods remains relevant. However, the 
development process of computing technology 
shifts the emphasis from the creation of new 
numerical methods to the study and classification of 
old ones in order to identify the best. Now for 
modern powerful computers, such characteristics as 
the amount of required memory, and the number of 
arithmetic operations are not necessarily in the 
foreground. More preferred are those methods that 
are distinguished by the ease of implementation on a 
computer, and allow to solve a wider class of 
problems. 

The special advantages of this method are its 
simplicity and low memory costs, which makes it 
effective in solving large-scale problems. 

The results of the computational experiment 
confirm the efficiency of the proposed method for 
solving the Dirichlet problem for the Poisson 
equation and its rather high efficiency.  
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Nonexistence of travelling wave solution  

of the Korteweg-de Vries Benjamin Bona Mahony equation 
 

 
Abstract. This paper is devoted to the Korteweg-de Vries Benjamin Bona Mahony equation in an infinite 
domain. The paper discusses weak solutions of the Korteweg-de Vries Benjamin Bona Mahony equation 
without any conditions at infinity. This particular problem arises from the phenomenon of long breaking 
wave with small amplitude in fluid. In fluid dynamics, a breaking wave is a wave whose amplitude 
reaches a critical level at which some process can suddenly start to occur that causes large amounts of 
wave energy to be transformed into turbulent kinetic energy. 
For the Korteweg-de Vries Benjamin Bona Mahony equation, we obtain the conditions of blowing-up of 
travelling wave solutions in finite time. Moreover, there is an explicit upper bound estimate for the 
wavelength of the corresponding singular traveling wave, depending on the speed of waves. The proof of 
the results is based on the nonlinear capacity method. In closing, we provide the numerical examples. 
Key words: Breaking waves, Korteweg-de Vries-Benjamin-Bona-Mahony equation; blow-up of solution, 
travelling wave solution. 

 
 
1. Introduction  
 
1.1. Breaking waves 
  
In fluid dynamics, a breaking wave is a wave 

whose amplitude reaches a critical level at which 
some process can suddenly start to occur that causes 
large amounts of wave energy to be transformed 
into turbulent kinetic energy. At this point, simple 
physical models that describe wave dynamics often 
become invalid, particularly those that assume linear 
behavior. 

Breaking of water surface waves may occur 
anywhere that the amplitude is sufficient, including 
in mid-ocean. However, it is particularly common 
on beaches because wave heights are amplified in 
the region of shallower water (because the group 
velocity is lower there). There are three basic types 
of breaking water waves [1]. They are spilling, 
plunging and surging:  

 

 
Figure 4 – Types of breaking water waves 

 
 
1.2. Mathematical model 
 
In this section we present the well-known 

mathematical model of the Korteweg de Vries-
Benjamin-Bona-Mahony equation (see. [2]). 

 



52 Nonexistence of travelling wave solution of the Korteweg-de Vries Benjamin Bona Mahony equation

Int. j. math. phys. (Online)International Journal of Mathematics and Physics 10, №1, 51 (2019)

One of the well-known non-linear equations that 
embody both variance and non-linearity and is 
actively used in applications is the Korteweg-de 
Vries equation [3] which models the undirectional 
propagation of weakly nonlinear and weakly 
dispersive waves: 

 
�� + � �1 + ��

� �� �� +
���
� ���� = 0,       (1) 

 
where � is the vertical excursion of the free surface 
above the still water level, ℎis the uniform 
undisturbed water depth and � = ��ℎ is the speed 
of linear gravity waves (� being the gravity 
acceleration). 

The Benjamin-Bona-Mahony equation is an 
alternative to the Korteweg-de Vries equation [4] 
which is described as follows: 

 

�� + � �1 + 3ℎ
2 �� �� −

�ℎ�
6 ���� = 0. 

 
We consider the following scaled dependent and 

independent variables: 
 

� � �
�� , � � �

� , � � ��
� , 

 
where �� is the characteristic wave amplitude and � 
is the characteristic wavelength. In dimensionless 
variables KdV equation (1) reads: 

 

�� + �1 + 3�
2 �� �� +

��
6 ���� = 0, 

 
where parameter � = ��

�  measures the nonlinearity 

and � = �
�  is the dispersion parameter. The relative 

importance of these two effects is measured by the 
so-called Stokes-Ursell number [5]: 

 

� = �
�� ≡

����
ℎ� . 

 
The last equation can be further simplified if we 

perform an additional change of variables: 
 

� � 3��
�� �, � � √6

� (� − �), � � √6
� �, 

 
which yields the following simple equation 
including explicitly the Stokes-Ursell number��:  

�� + ���� + ���� = 0. 
 
The last scaled KdV equation can be further 

generalized by using the low-order asymptotic 
relations in order to alternate higher order terms as it 
was proposed by Bona and Smith [6]. This step is 
rather standard and we do not provide here the 
details of the derivation [7]: 

 
�� + ���� + ���� − ����� = 0,       (2) 

 
where � � �. The equation (2) is so-called 
Korteweg-de Vries-Benjamin-Bona-Mahony 
equation. 

We note that for a particular value of the Stokes-
Ursell number � = 1 another simpler scaling is 
possible when all the lengths (� and �) are scaled by 
the mean water depth ℎ. 

 
1.3. Statement of the problem 
 
We consider one of the mathematical problem of 

the breaking water waves, the Korteweg-de Vries-
Benjamin-Bona-Mahony equation: 

 
�� + ��� + ���� − ���� − �� = 

 
= 0, � � 0, � � �.                         (3) 

 
The Korteweg-de Vries-Benjamin-Bona-Mahony 

equation has important application in different 
physical situations such as waves on shallow water, 
and processes in semiconductors with differential 
conductivity. 

In [8], traveling-wave solutions �(�, �) �=
��(��� ���) are sought for the equation (3) which 
describes wave the processes in semiconductors 
with strong spatial dispersion. In [8-12] the authors 
obtained sufficient conditions for the finite time 
blow-up of solutions of time and space initial 
problems for the Korteweg-de Vries and Benjamin–
Bona–Mahony type equations. 

In this paper, based on the method of nonlinear 
capacity [13-15], the existence of singular travelling 
wave solutions of the equation (3) is proved. 

 
2. Singular travelling wave solutions 
 
 We consider the traveling wave type solutions 

of the Korteweg-de Vries-Benjamin Bona Mahony 
equation (3): 

�(�, �) = �(�), 
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where � = � − �� and � is the wave velocity. Then 
�(�) satisfies 

 
(1 + �)���� + ��� − (1 + �)�� = 0.       (4) 

 
Equation (4) admits the following integrals: 
 

(1 + �)��� + ��
� − (1 + �)� + � = 0,      (5) 

 
where � is an arbitrary constant. 

 
2.1. Nonexistence of travelling wave solution 
 
A weak solution of (5) is a function � �

��(�), � � � that satisfies the integral identity 
 

� ��(�)�(�)��
�

= 

= −2(1 + �)� �(�)����(�) − �(�)���
�

− 

 
−2� � �(�)���                          (6) 

for � � ���(�). 
We multiply equation (5) by a nonnegative test 

function � � ���(�) with compact support. Then 
after integration we obtain (6). Hence, by the Young 
inequality with parameter � � 0, we find that 

 
� ��(�)�(�)��� ≤ (���)

� � ��(�)�(�)��� + 
 

+�(1 + �)� ����(�) − �(�)��
�(�) ��

�
− 

 
−2� � �(�)��.�                           (7) 

 
We now take the test function: 
 

�(�) = ��(�), � =
�
�, 

where � ≥ 2 is a free parameter and the function 
0 ≤ �� � ��(�) such that 

 

��(�) = �1������|�| ≤ 1,
0������|�| ≥ 2. 

 
Let the function �� satisfies the following 

properties 
 

� = � |����(�) − ����(�)|�
��(�)

�

��
�� � �, 

 
and 

� = � ��(�)�� � �.
�

��
 

 
Then, if � = � + 1 the inequality (7) implies 
 

(1 + �)(2 + �) ��� ≥ 2��. 
 
From this it directly follows that if there exist � 

such that the inequality (7) holds, then there is no 
such bounded travelling wave solution of equation 
(5). 

Then the following results are true 
 
Theorem 1. The equation (4) with support � ≥

2, satisfying the inequality  
 

� � (���)(���)�
����                   (8) 

 
does not admit a solution.  

 Thus, a sufficient condition for the existence 
of an unbounded traveling wave with a wavelength 
�∗ is the fulllment of the inequality 

 
2��

(� + 1)(� + 2) � �
�
� 

 
with � � �∗. 

 
2.2. Numerical examples 
 
In this subsection we consider some numerical 

examples for equation (5) with different viscosities. 
We consider some initial data (at � = ��) for a 
traveling wave. In this case, we note that the 
nonexistence of a solution to equation (5) depends 
on the conditions (8). 

First, consider an example where the wave 
velocity is small enough. That is, consider a uid 
with a velocity between zero and one. Then, as seen 
from the Figure 1, the traveling wave breaks 
relatively quickly.  

Let us now study a uid with a velocity between 
50 and 100. In this case, the time of breaking the 
wave slightly increases. It is easy to see from the 
Figure 2. 
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Figure 2 – Singular travelling waves 

 
 

   

 
Figure 3 – Breaking travelling waves 

 
 

Now let the uid velocity be large enough. That 
is, consider a uid with a velocity of about one 

thousand. In this case, as seen from the Figure 3 the 
time of breaks of traveling waves will be quite large.

 
 

 

   
Figure 4 – Breaking travelling waves 
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Analyzing the above examples, we come to the 
conclusion that with an increase of the wave 
velocity, the time of wave break-up increases. 
 

Conclusion 
 
The present paper is devoted to the Korteweg-de 

Vries-Benjamin-Bona-Mahony equation in an 
infinite interval. This particular problem arises from 
the phenomenon of long breaking waves with small 
amplitude in fluid. For the Korteweg-de Vries-
Benjamin-Bona-Mahony equation, we proved the 
nonexistence of the singular travelling wave 
solutions. Moreover, we provide some examples. 
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CFD simulation of pollution dispersion 
 from thermal power plants in the atmosphere 

Abstract. This paper presents CFD simulation of pollution dispersion from a thermal power 
plant. Carbon dioxide was chosen as the scattering gas, as it constitutes the main share of emissions 
from the energy industry. The model was tested using experimental results performed using wind 
tunnel data available in the literature. A comparative analysis of the results of this article with 
experimental and numerical data was performed. It showed that the results of this article were closer 
to the experimental results than the calculations of previous authors. The minimum relative error with the 
experiment was less by 4.11% at the pipe exit and by 2.52% at a distance x/D=3 from the source, than 
other results. Based on this verification, the spread of pollution from thermal power plant (TPP) in real 
physical dimensions was modeled. The k-epsilon turbulence model was used taking into account 
buoyancy. The calculations were performed using the ANSYS Fluent 18.1 software package. As a 
result, the distance from the source was calculated, at which pollution will reach the ground surface 
(~ 2 km). Obtained distance is quite big since this TPP is located in an area which is far from 
residential settlements and there are no natural or architectural obstacles around.  
Key words: Navier-Stokes equations, mass transfer, numerical modeling, air pollution, 
concentration, thermal power plant. 

Introduction 

Air pollution every year becomes an 
increasingly serious large-scale problem. Plants and 
various energy facilities (such as thermal power 
plants, nuclear power plants, etc.) produce a large 
amount of pollutants that dispersed in the 
atmosphere, damage the flora, fauna, buildings and 
harm human health. The European Environment 
Agency (2018) gives the following definition of air 
pollution: “the presence of contaminant or pollutant 
substances in the air that do not disperse properly 
and that interfere with human health or welfare, or 
produce other harmful environmental effects.” [1]. 

According to the final emissions report for 2017, 
published in March 2018, global energy-related   
emissions have increased and reached a historic 
maximum. At the same time, special attention 

should be paid to the energy sector, since the share 
of energy is more than two thirds of total 
greenhouse gas emissions and more than 80% of 

 emissions [2]. Therefore, in this paper,  
was selected as the main test substance of pollution. 
The background annual  concentration on the 
Earth is equal to 400.88 ppm=0.0004 (mass 
fraction) [3]. 

To determine the extent of air pollution impact 
on the environment and people, it is important to 
take into account the physical principles affecting 
the movement and dispersion of pollutants [4].  

Due to the rapid growth of computer 
capabilities, in particular, large-scale parallel 
computing, it becomes advisable to use computer 
simulation to calculate scientific and technical 
engineering problems. Nowadays technologies are 
rapidly developing, as a result of which their 
productivity has increased exponentially over time. 
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According to the data, over the past 60 years, 
computing power has increased in productivity by 1 
trillion times. [5] 

Therefore, people use computational fluid 
dynamics to conduct large-scale computer modeling 
of important scientific and engineering topics [6-7].  

The study of jet behavior in crossflow is 
important for various applications, especially for 
chimneys, because the interaction between the jet 
and crossflow fluids affects the pollution dispersion 
into the atmosphere [8].  

A review and description of the works devoted 
to the study of the nature of jet motion in a 
crossflow is given in [9-14]. Early studies of jets in 
crossflow were devoted to the derivation of 
empirical equations for the flight path and the 
principles of scaling [15-18]. To this end, the 
authors conducted numerous experimental studies. 
Recent research in this area is described in [19, 20]. 
Further, there have been many studies of vortex 
structures (vortex pairs rotating in opposite 
directions, horseshoe vortices); stability and 
destruction of the jet [21-22].  

The purpose of this work was to assess the 
impact of emissions on the environment based on a 
numerical model of the spread of pollutants from 
sources. One of the pipes of Ekibastuz Thermal 
Power Plant-1 (Kazakhstan) was chosen as a real 
physical object of research [23]. Its height is 330 
[m], the pipe diameter is 10 [m]. 

 
Mathematical model 
 
Computational fluid dynamics has proven to be 

an effective tool for modeling the behavior of jets in 
crossflow. Modeling of such problems is based on 
the resolution of the Navier-Stokes equations (the 
equation of continuity and the equation of motion) 
[24-25]. It was found that Reynolds-averaged 
Navier-Stokes equations (RANS) modeling, can 
qualitatively predict the behavior of the total flow 
and concentration [26]. Past studies have revealed 
that non-stationary large eddy simulation (LES) 
models provide good agreement with experimental 
results in pollutant dispersion problems [27]. 
However, the computational cost of this model is 
about 100 times higher than the cost required for the 
RANS model [28]. Important observations 
regarding RANS k-epsilon were noted in [29].  

In present work, RANS k-epsilon model was 
used. Also, a comparative analysis of the obtained 
results with the experimental [30] and numerical 
[31] data was carried out. The SIMPLE method was 

chosen for the calculation. This method has been 
applied in multiple numerical studies and, when 
compared with experimental data, has shown good 
agreement. [29]. 

 
Test problem 
A detailed description of the test problem and 

experiment is given in [30, 31]. The test problem 
domain is a three-dimensional channel with a pipe 
inside it. The pipe diameter (jet width) was D=12.7 
[mm], which was used as a characteristic unit of 
length. The dimensions of the geometry are shown 
in Figure 1.  

 

 
Figure 1 – Configuration of the computational  

domain of the test problem 
 
 
An unstructured grid was constructed, the total 

number of nodes was 533 697 (See Table 1). The 
ratio of the jet velocity to the velocity of the 
crossflow is denoted as crossflowjet VVR / . In the 
present work, R=0.5 was considered: the jet velocity 
was 5.5 �����], the crossflow velocity was 11 
�����].  

 
 

Table 1 – Number of grid points 
 

NI 230 
NJ 100 
NK 21 

Total body sizing 0.0025 [m] 
Total nodes 533 697 

 
Air was chosen as the main fluid material for the 

crossflow and the jet. The Reynolds number has 
been defined as: 
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����� = ������ �⁄ = 4700.                (1) 
 
Five types of boundary conditions were used: 

inlet, outlet, periodic, no slip, no flux (see Figure 1). 
According to experimental data, the thickness of the 
boundary layer is equal to 2D. The wind velocity 
profile was defined by a power law with exponent 
1/7 within the boundary layer and was set as 
constant 11 �����] above it. Since a smooth surface 
was used in the experiment, the roughness height 
was zero. 

 

a)  

b)  
 

Figure 2 – Comparison of the obtained results with 
experiment data and calculations of other authors. (a) 

x/D=0.0, (b) x/D=3.0 
 
 
Figure 2 shows a comparison of the numerical 

results of this study with experimental data and 
numerical solutions of other authors at various 
distances from the jet (R=0.5; x/D=0.0 and 
x/D=3.0). At the Figure 2,b the values of the red line 
(u/Vjet) at y/D=0 approach zero, while the plots of 

other authors in this interval show the values of 
u/Vjet~0.5 – 0.7. A zero value is more reliable from 
a physical point of view, as this is a near-wall field. 
Also, in this region (y/D~0 – 1) the relative errors of 
present simulation are smaller, than others (see 
Table 2). Based on this data, the solutions obtained 
in this work turned out to be more accurate than the 
calculations obtained by other authors [30, 31]. The 
reason is the quality of the grid: in this work, an 
unstructured grid was used (the number of nodes 
was 533 697), while in [31] a structured grid was 
used (the number of nodes was 265 000).  

 
 

Table 2 – Relative errors of numerical simulations for 
R=0.5 

 
Min. relative error Max. relative error

x/D 0.0 3.0 0.0 3.0
k-epsilon 6.78% 7.54% 87.74% 207.23%

k-eps with BC 6.57% 6.2% 85.16% 169.66%
SST 6.57% 7.9% 72.9% 170.1%

Ajersch 9.65% 8.32% 51.37% 279.52%
Present paper 2.46% 3.68% 22.58% 89.13%

 
 
Ekibastuz thermal power plant-1:  
full-scale emission distribution modeling 
 
After verification and validation of the 

numerical algorithm, pollution dispersion from a 
real power plant (TPP) in full scale dimensions was 
modeled. Ekibastuz Thermal Power Plant-1 
(Kazakhstan) was chosen as a real physical object of 
research (Figure 3). The power plant consists of a 
main building and two pipes. The dimensions of the 
main building are: length — 500 m, width — 132 
m, height — 64 m. The height of the chimneys is 
300 meters (built in 1980) and 330 meters (built in 
1982), the exit pipe diameter for each is 10 meters. 
The 3D computational domain has dimensions 
8000×2496×3000 m and the distance between the 
domain inlet and tallest pipe is 2000 m. Also, the 
tallest pipe is located in the origin of the coordinate 
system (Figure 4).  
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Figure 3 – Ekibastuz Thermal Power Station 1 (Kazakhstan, Ekibastuz city) 
 

 
 

Figure 4 – Computational domain and boundary conditions for the Ekibastuz TPP simulation 
 

a)  

b)  
Figure 5 – Computational mesh of Ekibastuz TPP model: (a) cross-section view, (b) scaled view
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The grid was built on the same principle as in 
the test problem, i.e. refined in the area of the 
pollution movement trajectory (Figure 5). 

Before calculations, mesh sensitivity analysis 
was performed. According to the results, the grid 
consisting of 5,193,038 triangular elements was 
chosen as the main grid for further calculations. 

The distance ZP from the center point P of the 
wall-adjacent cells to the ground surface (bottom of 
domain) is 0.49 m, there was set inflation with the 
growth rate coefficient 1.2 since this is exactly the 
size of the first cell (height of first cell <1 m) that 
was recommended previously for an accurate 
simulation of the atmospheric boundary layer [29]. 

Since in this case it was not possible to measure 
experimentally the profile of velocity �, turbulence 
kinetic energy � or dissipation rate �, their initial 
profiles were set according to the [33], which 
describes the profiles of these components that are 
most suitable for modeling wind engineering 
problems. 

 

� = �∗
� �� �� + ��

��
� 

 

� = �∗�

���  
 

� = �∗�

��� + ��� 

 
Where C� = 0.09, y� = 0.2, κ = 0.4, u∗ – 

friction velocity, which is calculated as:  
 

u∗ = κ u���
ln�y��� + y�� 

 
Here ���� was set to 7 m/s, according to the 

meteorological data and the wind rose presented in 
Figure 6. ���� = 10 � since air measurements as a 
rule are made at this height. According to these data, 
the wind most often blows from the southwest 
(more than 288 hours per year), therefore this 
direction was chosen for calculations. 

The temperature of the ground was set to be 
equal to the maximum average temperature for the 
year: 28 degrees. According to the meteorological 
data of Ekibastuz city, this temperature is set in July 
(Figure 7). 

The emission temperature was set to 315oС. 
Emission rate is 31.5 m/s. Thus, the momentum 
ratio is M=WS/UH=4.5, where WS is the vertical 

exhaust velocity and UH – the horizontal wind 
velocity at the reference height (10 m). According to 
the data, the following substances are released into 
the atmosphere from the Ekibastuz TPP per year 
(Table 3).  

 
 

Table 3 – Emissions from Ekibastuz TPP (2016) 
 

Type of pollutants Unit Amount of 
emissions 

NOX tons 54,700
SO2 tons 132,900 
CO tons 2,800 

Particulate matters tons 28,000
Persistent organic 

pollutants tons – 

Volatile organic 
pollutants tons 115.4 

CO2 
thousand 

tons 24 150.7 

 
 
Thus, the share of C�� in emissions is 99.1% 

and therefore the distribution of this gas was chosen 
for calculations.  

 
Results 
 
Figure 8 shows the vertical concentration 

profiles at various distances (x/H=5, 10, 15 and 20, 
where H=300 m) from the pollution sources for the 
default Schmidt number value of 0.7. Due to 
dissipation, the gas concentration decreases with 
increasing distance from the source. For 
comparison, the maximum concentration at the 
distance x/H=20 is almost 13 times less than the 
maximum concentration at the distance x/H=5 from 
the source. One can also notice that with increasing 
distance from source the height of the maximum 
concentration also increases. Thus, if at x/H=5 the 
maximum concentration point was at the height 
y/H=2 (600 m), then at x/H=20 the maximum 
concentration point is at the height y/H=3  
(900 m). 

Figure 9 illustrates the ground-level downstream 
concentration profile along the x-axis. According to 
the plot, the pollution reaches the earth at a distance 
of about x=1.5 km, which is about 1753 m from a 
lower stack and 1500 m from a high stack. The 
maximum concentration reaches about 0.04 ppm, 
which is a fairly optimal level of pollution for 
human health. Figure 10 illustrates the comparison 
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of ground-level lateral concentration profiles for 
different Sc numbers (Sc=0.7, 1.0, 1.2 and 1.4). For 
Sc=0.7, the concentration level is almost 2.5 times 
higher than with Sc=1.2 and almost 2.78 than in the  
 

other cases (Sc=1.4 and 1.0). Figure 11 illustrates 
the iso-surfaces of the pollution spreading. Due to 
dispersion, pollution dissipates with increasing 
distance from the source. 

 
 

 

 
 

Figure 6 – Wind rose of the Ekibastuz city 
 

 

 
 

Figure 7 – Annual temperature of Ekibastuz city 
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Figure 8 – Vertical concentration profiles at various 
distances from the pollution sources at central cross 

section (z/H=0). 
 

Figure 9. Ground-level (y=0)  
downstream concentration profile 

 

Figure 10 – Side concentration profiles at ground level (y=0)  
for different values of the Schmidt number (Sc)

 
 

Conclusions 
 
The purpose of the study was to investigate 

the dynamics of the pollution dispersion. The 
mathematical model and numerical algorithm 
were tested using an experimental test problem. 
The results were closer to the experimental, 
compared with the data of other authors. Using 
the example of a real thermal power plant,  

dispersion was modeled. The k-epsilon model 
was used without any additional dispersion 
models. As a result, it was determined at what 
distance from the source the pollution 
accumulates on the ground surface. 

According to the obtained data, with increasing 
distance from the source, the concentration of 
pollution spreads more widely under the influence 
of diffusion. 
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a)  

b)  

c)  
 

Figure 11 – Iso-surfaces of the mean concentration C/C0=0.01 (Sc=0.7) 
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The farther the distance from the pipe, the lower 
the concentration of the substance. The various Sc 
numbers were tested for gas dispersion modelling, 
Sc=0.7 showed the highest levels of concentration.  

Thus, the obtained numerical data may allow to 
predict the optimal distance from residential areas 
for the construction of thermal power plants, at 
which the concentration of emissions will remain at 
a safe level in the future. 
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Voice verification and identification using i-vector representation 
 
 

Abstract. In the area of voice recognition, many methods have been proposed over time. Automatic 
speaker recognition technology has reached a good level of performance, but still needs to be improved. 
Signature verification (SV) is one of the most common methods of identity verification in the banking 
sector, where for security reasons, it is very important to have an accurate method for automatic signature 
verification (ASV). ASV is usually solved by comparing a test signature with a registration signature(-s) 
signed by the person whose identity is declared in two ways: online and offline. In this study, a new i-
vector based method is proposed for SV online. In the proposed method, a fixed-length vector, called an 
i-vector, is extracted from each signature, and then this vector is used to create a template. Several 
methods, such as the nuisance attribute projection and the within-class covariance normalization, are also 
being investigated to reduce the intra-class variation in the i-vector space. At the stage of evaluation and 
decision-making, they also propose to apply the support vector machine with two classes.  
In this article, a new low-dimensional space, depending on the dynamics and the channel, is determined 
using a simple factor analysis, also known as i-vector. I-vectors have proven to be the most efficient 
functions for text independent speaker verification in recent studies. 
Key words: i-vectors, dimensionality reduction, UBM size, speaker identification 

 
 
Introduction 
 
As time goes, voice processing technology is 

becoming more and more mature. Using advances in 
signal processing and machine learning, ASV is 
implemented in two ways: online and offline. With 
offline verification, also called static verification, 
we have access only to the signature image [1-3]. In 
such methods, we usually normalize the image size 
after some preprocessing, and then extract the 
elements from the image using a sliding window. 
These functions are then used to compare two 
signatures. On the other hand, there are online 
methods, also called dynamic methods, where 
information related to signature dynamics is 
provided, as well as signature image [4-6]. Dynamic 
information includes pressure, velocity, azimuth, 
etc. In these methods, changes in vertical and 
horizontal directions are commonly used as shape-
related elements. These methods have better 
performance than autonomous methods and are 
more reliable because they use more information 
extracted from the signature. In addition to these 

advantages, signature forgery is more difficult in 
these methods because they use dynamic 
characteristics, such as speed and azimuth, which 
are very difficult to simulate. Our focus is on online 
methods. There have been a lot of SV online studies 
that can be grouped into two main categories: 

Methods based on global signature features. 
These methods attempt to extract a fixed-length 
vector from the entire signature so that the 
signatures can be easily compared in vector form. 
These methods can be further divided into two 
subcategories: in the first, we try to extract global 
functions from the entire set of signatures. For 
example, in [7] Jane uses the number of strokes as a 
global feature. The authors use other functions such 
as average speed, average pressure, and the number 
of times the pen is lifted during signature in [8]. As 
a good example of Fierrez-Aguilar, [4] introduced 
100 global attributes sorted by their individual 
discriminatory power. A subset of these functions is 
also used in other studies [5, 9-12]. In the second 
subcategory, a transformation is applied to the 
signature to obtain a fixed-length vector. For 
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example, the wavelet transform is used in [13] to 
extract the feature vector from the entire signature. 
In another study, the discrete cosine transformation 
(DCT) is used to obtain a fixed length feature vector 
[6]. The proposed method in this paper belongs to 
this group. 

Functional methods. Methods in this category are 
more focused on comparing signatures and 
calculating the distance between two signatures. In 
these methods, each signature is represented using a 
sequence of local features extracted from it. This 
category can also be divided into two subcategories: 
the methods in the first do not perform any 
modeling. In fact, in these methods, a set of 
references is stored for each individual, and during 
the test, the input signature is compared to the set of 
references for decision-making. The most common 
method in this subcategory is Dynamic Time-
Warping (DTW), which is used in many studies 
[14–17]. 

The second category includes methods that train 
a probabilistic model for each person, using 
signatures in his/her control set. These methods 
typically use probabilities for evaluation and 
decision making. The most common methods in this 
subcategory are the hidden Markov model (HMM) 
[18–22] and the Gaussian mixture model (GMM) 
[23–25]. 

In the area of voice recognition, the use of 
Gaussian mixture models (GMM) to create 
universal background models (UMM) and 
collaborative factor analysis (JFA), by far the most 
popular i-vector, has increased its accuracy in 
creating a specific dynamics model. However, 
sometimes we do not need to know what language 
the speaker speaks, because in some situations only 
one of them is the most important, while others are 
relatively less critical. Speaker verification is 
becoming increasingly important as a solution to 
secure biometric keys for industrial, forensic and 
government purposes, such as data encryption on 
mobile devices or user verification at contact 
centers. It seems that users are annoyed with the 
persistence of multiple PINs and passwords, that is, 
biometric data that cannot be lost or forgotten, 
provide significant advantages in terms of usability. 

 
i-vector  
 
The i-vector was first proposed for speaker 

recognition application, and then was applied in 
other applications, such as language identification, 
accent identification, gender recognition, age 

assessment, emotion recognition, sound scene 
classification, etc. In the main application of this 
method (i.e. speaker recognition), a vector of fixed 
length, called an i-vector, is extracted from a speech 
signal of arbitrary duration. In this article, we give a 
description of the i-vector problem and a brief 
overview of the initial results. We begin with a very 
brief description of the key components of the i-
vector based on the speaker recognition system. In 
the following steps, this vector is used for scoring 
and recognition. Although i-vector is used mainly in 
many speech applications, it is less well known in 
other areas. In this article, we use the i-vector, 
which is usually used to recognize the speaker in the 
SV. Despite their different areas, speech biometrics 
and signature biometrics are similar in nature, as 
both must extract subject-specific patterns from a 
captured signal contaminated by changes from 
various irrelevant sources. Since the analysis of total 
variability factors is an embedded i-vector learning 
step that helps eliminate distractions in biometric 
analysis and extracts a unique identity 
representation vector, we expect the i-vector to be 
able to provide a promising solution for the 
signature extraction problem. 

There are two reasons for using this method for 
SV. First, online signatures have a variable length, 
similar to speech signals. Using this method, we can 
get a fixed-length vector that facilitates the 
following steps in making a decision. Therefore, 
after extracting the temporal features from each 
signature, we extract the i-vector. Since we get a 
fixed-length vector for each signature, we can put 
this method in the first category above. The second 
reason is that a person's signatures usually differ 
slightly each time. These differences lead to changes 
within the class, which in turn increase the false 
rejection rate (FRR). In various applications of the i-
vector in speech processing, various ways have been 
proposed to reduce intraclass variations, which can 
also be accepted in this application. Similar to the 
case of speaker verification, we also suggest using 
two different methods to reduce the undesirable 
effects of intra-class changes. Since there are several 
signature samples for each person as a reference set 
at the registration stage, we suggested adding them 
to the data used to train variation compensation 
methods within the class. In addition, we proposed 
to apply the 2nd class support vector machine 
(SVM) method to distinguish between i-vectors 
extracted from genuine and fake signatures. The 
experimental results showed the effectiveness of 
these ideas on two different databases. 
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Extract statistics 
 
At this stage, for each sequence of attributes, the 

Baum-Welch statistic of zero and first order is 
calculated using UBM [26,27]. 

Given that Xi is a complete set of feature vectors 
for learning the i-th signature, the zero and first 
order statistics for the c-th UBM component is 
calculated as follows: 

 
������) = ∑ ������                       (1) 

 
The variability of the speaker or session is the 

variability manifested by a given speaker from one 
recording session to another. This type of variability 
is usually associated with channel effects, although 
this is not strictly accurate, since there are also 
changes within the dynamics and phonetic change. 
In this approach, the speech segment is represented 
by a low-dimensional "identity vector" (ivector – for 
short) extracted by factor analysis. The i-vector 
approach has become state-of-the-art in speaker 
verification, and in this paper we show that it can be 
successfully applied to speaker identification as 
well. The approach provides an elegant way to 
reduce multidimensional sequential input data to a 
low-dimensional vector of features of a fixed length, 
while retaining most of the relevant information 
[28]. The basic idea is that the session-and channel-
dependent supervectors of the Gaussian mixture 
model cascade model (GMM) can be modeled as 

 
��� = � + �w                            (2) 

 
where � is the session-and channel-independent 
component of the average supervector obtained 
from UBM, � is the basis matrix covering the 
subspace encompassing the important (both for the 
dynamics and the session) in the supervector space, 
and � is the standard, normally distributed hidden 

variable. For each observation sequence 
representing the statement, our i-vector is the point 
estimate of the maximum a posteriori (MAP) for the 
hidden variable �. Our i-vector extractor learning 
procedure is based on the efficient implementation 
proposed in [29]. 

The contribution of this study is to evaluate the 
result of factors affecting the i-vector, based on the 
speaker’s sound identification. We study this in 
terms of parameters, where we evaluate and analyze 
how the various parameters of the i-vector extractor, 
such as the size of the Universal Background Model 
(UBM) and the dimension of the i-vector, affect the 
accuracy of speaker detection. The UBM size refers 
to the Gaussian component, which is the 
corresponding adapted component in the dynamics 
model. The I-vector dimension is equal to the "rank" 
of its own matrix. Based on Huang, a greater i-
vector dimension would not give a large 
performance improvement of the classification, but 
significantly increased the computational costs. In 
[30] the literature discussed by reducing 
computations will allow efficient use of the i-vector 
in more applications. In this study, the recorded 
computation time is to investigate whether both 
factors affect the computation or not, and  
and the next direction for the next study is  
determined. 

To record the voice in the present work, a 
complex of technical devices was used, the block 
diagram of which is shown in Fig.1. The block 
diagram of the system includes: microphone 1, low-
frequency amplifier 2, analog-to-digital converter 3, 
software 4, and a computer unit 5, which records the 
amplitude-time and calculation of the frequency 
dependences of the signal. 

To identify an unknown voice recording, a 
database of speakers was compiled and registered. 
Using the above equipment, voice signals were 
recorded, which formed the database. 
 
 
 
 
 
 
 
 

 
Figure1 – A block diagram of the hardware of the voice identification system 

 
 

                                                                  5   2 1 3 4 
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When scaling, or weighing, all experimental data 
are reduced to the same scale. This procedure is 
necessary to reduce the impact on the analysis of 
strongly pronounced variables. There are various 
ways of scaling [28], in this work standardization 
has been applied, since it is the most studied and 
tested. Standardization uses standard deviation – 
Sdev, which is one of the most commonly used 
weighting factors. In addition, each element of the 
matrix X is multiplied by the value 1/Sdev: 

 
��������� = ��� �

����,                      (3) 

 

where Xik is the i-th variable of the k -th sample, 
��������� – is the i-th scaled variable of the k -th 
sample, Sdev – is the standard deviation of the 
sample. 

Figure 2 shows the block diagram of the method 
used in this paper. The i-vector system consists of 
two main parts: the front part and the rear part. The 
first consists of the extraction of cepstral features 
and UBM learning, while the latter includes 
sufficient statistical calculation, T-matrix training, i-
vector extraction, dimension reduction and 
evaluation. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 – Block diagram of the experiment with the speaker's identification system 

 
 
Function extraction 
 
First, simple energy speech activity detection 

(VAD) is performed to discard unnecessary part of 
the voices. Energy-based VAD is used when energy 
values are first calculated at the frame level, 
followed by data normalization and, finally, voice 
activity detection. A class with a higher average is 
considered to be the speaker's sound, and therefore 
the corresponding segments of the sound are 
preserved until smooth. Second, the characteristics 
of MFCC and log energy, together with their first 
and second order derivatives, are computed in 20 ms 
of Hamming window frames every 10 ms. Then the 
determination of the activity of the speaker’s sound 
is applied, and the speaker’s sound is normalized in 
accordance with the standard normal distribution. 

To solve the problem of identification of the 
individual, the analysis of the individual frequency 
spectrum of voice signals is the main one. In this 
setting, the first two factors (the amplitude and 
duration of the signal) are random and need to get 
rid of them. To do this, all signals were reduced to 
one amplitude, that is, the amplitude normalization 
was performed: 

 
                ������ = ��

����                         (4) 
 

where �� is the measured amplitude, ������ is the 
maximum amplitude, normalized amplitude, i = 0,1, 
..., k. 

In order to remove the second factor (speech 
rate), time normalization was performed. The 
second factor was taken into account 
programmatically by using the same number of 
samples. The amplitude-frequency characteristics in 
the form of the recorded audio signal spectrum were 
analyzed directly. The frequency spectra had the 
form of the dependence of the amplitude A from the 
frequency f. 

When recording voice signals in real conditions, 
it is possible to impose random factors, including 
both external mechanical noise and hardware noise. 
Median filtering [31] was used for their suppression, 
which consisted in exclusion from the initial 
emission signal. 

The current lack of a clear systematization of 
voice features, as well as the existence of a large 
number of voice characteristics of various levels, 
such as the basic tone [32], formant frequencies 

Receiving voice 
recordings 

Preprocessing Function extraction 

Microphone 
recording Signal normalization 

Calculation of conversion 
factors 

VAD method, (MFCC) 
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[33,34] and others [35,36], is a certain difficulty in 
choosing most informative features and 
characteristics for a specific identification method 
and requires a separate study. This section provides 
qualitative and quantitative estimates for the 
selection of informative voice characteristics. The 
difference in voice timbres is described by different 
frequency spectra of voice signals. Fourier 
decomposition is a natural mathematical apparatus 
for frequency spectrum analysis. Processing of data 
representing numerical amplitude-time dependences 
can be carried out using discrete Fourier transform: 

 

�(�) = � �(�)����π�
��

���

���
 , 

 
 � = �,1,�, � , � � 1                         (5) 

 

�(�) = 1
� � �(�)����π�

��
���

���
 ,  

 
� = �,1,�, � , � � 1                          (6) 

 
where A(k), a(n) are direct and inverse discrete 
Fourier transforms, respectively, k and n are sample 
numbers, and N is the number of samples. 
Coefficients A (k) can be used precisely as the 
elements of the matrix X, forming rows in this 
matrix. 

 
I-vector extraction 
 
I-Vector based systems. As explained earlier, at 

present, the i-vector in the space of complete 

variability has become a modern approach to voice 
recognition. 

This method, which was introduced after its 
predecessor, the joint factor analysis, can be 
considered as a method of extracting a compact 
representation with a fixed length in the presence of 
an arbitrary length signal. The extracted compact 
unit vector can then be used either to measure 
similarity based on vector distance or as input for 
any further feature transformation or modeling. 
There are certain steps to extract the i-vector from 
the signal. First the features should be extracted 
from the input signal, then the Baum – Welch 
statistics should be extracted from the features, and 
finally the i-vector is calculated using these 
statistics. We will explain these steps in detail 
below. 

For each statement, the corresponding feature 
sequence is eventually transformed into an i-vector 
using a GMM-based i-vector extractor with three 
different UBM-sized components trained from the 
combined features from all the samples included in 
our training data (Fig.3). Three UBM sizes that 
make up 32, 64 and 128 components. 

Assuming that we have calculated the zero and 
first order statistics using (7) and (8), we can 
calculate the a posteriori covariance matrix 
[i.е. ���, ���], average (i.e. ����] and second 
moment (i.e. �����

�] for wi, using the following 
relations: 

 
������, ��� = (� � ∑ ��(��)��� ∑ ������ )��      (7) 

 
����] = �������, ��� ∑ ��� ∑ ��(������ )���

     (8) 
 

����, ��
� � = ������, ��� � ����]����]�     (9) 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3 – Using projection methods 
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Post processing   
 
Since the simulation of i-vectors contains 

information about the dynamics and channel 
variability in the same space at the same time, the 
channel compensation technique in the common 
factor space is required to eliminate undesirable 
effects. Channel-compensated approaches play a 
major role in I-vector speaker recognition systems. 
Therefore, channel compensation is necessary to 
ensure that test data obtained from different 
channels can be properly evaluated by loudspeaker 
models. For channel compensation to be possible, 
channel variability should be modeled explicitly.  

Before calculating the verification estimates, 
channel bleaching, linear discriminant analysis 
(LDA) and within-class covariance normalization 
(WCCN) were performed to compensate for the 
channel. 

We used the same dataset to train the total 
variability matrix to evaluate the LDA and WCCN 
matrices. Since the extracted i-vectors contain 
variations both within and between accents, the goal  
 

of dimension reduction is to project the i-vectors 
into a space where the variability between accents is 
maximal and the variability within the accent is 
minimized. In this study, three different 
measurements were experimented with: 100, 200, 
and 400. Thus, we optimized the parameters of the 
i-vector to experiment and evaluate the result. 

 
Scoring   
 
Finally, the identification result from the system 

is given by calculating the similarity score. The 
simplest and fastest counting function, that is, the 
cosine distance, is calculated between the i-vectors 
from the dynamics model and the i-vector from the 
test segment. The decision-making and evaluation 
process is then computed, and the system 
performance is then represented using accuracy 
91,11%, CMC curves, and detection error tradeoff 
(DET).  

t-SNE for individual signatures using raw i-
vectors (i.e., without applying any transformations) 
(Figure 4)    

 

 
 

Figure 4 – Two-dimensional data representation 
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Figure 5 – Three-dimensional data representation 
 

 
As shown in Fig. 5, for both projection methods, 

all points are combined into compact areas not 
intersecting with each other, each area corresponds 
to the records of one speaker. This indicates that 
both methods have provided a reliable separation of 
speakers by voice data. 

Note that the direct comparison of the above 
graphs of accounts for the methods of main 
components (Fig. 4) and projections on latent 
structures (Fig. 5) does not allow to quantify these 
calculation options. The advantage of one method 
over another can be estimated from the residual 
dispersion graph. 

 
Result and discussion 
 
A series of experiments was conducted to study 

the effect of the number of UBM components, 
vector dimension, and post-processing techniques. 
These experiments were conducted using a set of 
voices – a set of open source toolkit and extensible 
tools for recognition of the modern level. 50 votes 
taken from the database were used for the 
evaluation. 

The adaptation of projection methods of the main 
components and projections on latent structures in 
relation to the analysis of acoustic signals in 
technologies of personal identification by voice has 
been carried out. 

The speech database of voice data intended for 
tasks of voice identification and differing in 
considerable number of repetitions of phrases by the 
same speakers is created. The use of this database 
by increasing the number of repetitions provides a 
more accurate assessment of the identification 
result. 

   Comparison of various informative parameters 
of voice signals used as a feature vector in 
projection analysis methods has been carried out. 
The residual dispersions were calculated that 
showed the preference for the use of voice 
identification of the Mel-cepstral decomposition 
coefficients, which improve the separation of the 
source signals according to their features and reduce 
the contribution of random distortions. 

We found that the accuracy increases as the 
dimension of the i-vector increases. In addition, our 
results showed that the UBM with smaller size 
outperforms larger UBM. In addition, the result of 
the time calculation shows that the processing takes 
longer when the dimension of the i-vector increases 
and the size of UBM is larger. 

 
Conclusion  
 
In this article, we studied how the i-vector 

extractor parameter, such as the UBM size and i-
vector dimension, affects the accuracy of voice 
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identification. As for the parameters, the highest 
accuracy was achieved when using UBM with 
Gaussians and an i-vector dimension. They are 
similar to those reported in the general voice 
recognition literature. As for the data, we found that 
the selection of UBM training data is the most 
important part, followed by the dimension of the i-
vector. This is understandable because the earlier 
components of the system affect the quality of the 
remaining steps. 

For further research, we propose to study the 
effect for a larger i-vector dimension and a larger 
UBM size. For this study, we do not do this because 
of the long computation time, because we use the 
small size of the speaker’s database. In the 
following studies, we can reduce the computation 
time by exploring other factors that influence this, 
and add additional data to further study this effect of 
the experiment. 

This work carried out in the framework of the 
project “Development of technologies for 
multilingual automatic speech recognition using 
deep neural networks”. 
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Lattice Boltzmann method simulation  
of thermal flow dynamics in a channel 

 
 

Abstract. The objective of this paper is the simulation of thermal flow dynamics in a channel. The 
mathematical model in a two-dimensional formulation is described by Navier-Stokes equations, 
continuity and temperature equations. For the numerical simulation of the problem the Lattice Boltzmann 
method applying the D2Q9 model is used. The validity of this method is tested by comparing the 
numerical solution to the analytical solution of the planar channel flow and error rates are calculated for 
various sizes of the computational grid. The test problem of thermal Poiseuille flow in the channel was 
solved to deactivate the correctness of the developed algorithm. Very good agreement between the exact 
and numerical solution of this problem is shown. 
Key words: The lattice Boltzmann method, thermal flow dynamics, Poiseuille flow. 

 
 
Introduction 
 
Thermal flows play an important role in the flow 

dynamics. Recently, there has been an effort to 
increase the capability of the lattice Boltzmann 
method in order to solve for fluid flows including 
heat transfer [1, 2]. A detailed analysis can be found 
in [3]. 

Generally, the thermal lattice Boltzmann model 
(TLBE) can be divided into several categories [4]. 
The first is the multispeed scheme, the second is the 
double distribution function (DDF) scheme and the 
last is the hybrid thermal lattice Boltzmann equation 
(HTLBE) scheme [3]. The multi-speed scheme is a 
plain extension of the Boltzmann isothermal models 
with a lattice, in which only the velocity distribution 
function is affected. In double distribution function 
scheme, different distribution functions are used, 
one for the velocity field and the other for the 
temperature field or internal energy. The main 
advantage of the DDF scheme compared to the 
multi-speed scheme is to increase the numerical 
stability, and therefore it is widely used. The hybrid 
computational scheme combines the LBE and Finite 
difference (FD) or Finite volume (FV) methods [5]. 
In this paper we use DDF scheme.   

The goal of this paper is the numerical 
implementation of thermal flow dynamics in a 
channel in a two-dimensional case. With the help of 
LBE method the profiles of velocities and 
temperature at different values of parameters in the 
system of differential equations and at different time 
instants are investigated. 

 
Statement of the problem 
 
In this paper we considered 2-D thermal flow in 

planar channel. The flow driven by a body force. 
We set cold temperature at the bottom wall and hot 
temperature at the top wall of the channel  
(Figure 1).  

 
Figure 1 – The considered area 
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The governing equations can be written as [6]: 
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Here,   is the linear function of the temperature 
T  and xF  is the body force

),( 000 TT  

2
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where  0  is the average density, 0T  is the average
temperature,   is the coefficient of thermal 
expansion.  

We assume that at the initial time, the velocity 
and temperature in the channel are zero. Periodic 
boundary conditions are used at the channel inlet 
and outlet for pTuu ,,, 21 . And the following
boundary conditions are applied on channel walls 
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Numerical method 

The lattice Boltzmann equation (LBE) method is 
a discrete model of a continuous medium. Currently, 
the LBE method may well compete with traditional 
methods of computational hydrodynamics, and in 
some areas (flows in a porous medium, multiphase 
and multicomponent flows) it has significant 
advantages [7-9]. By this method an intermediate 
scale model is used to simulate fluid flow. It applies 
simulation of the motion of fluid particles in order 
to capture the macroscopic parameters of the fluid. 
The area is discretized by uniform cartesian cells. 

Each cell contains a fixed number of distribution 
functions, which represent the number of fluid 
particles moving in these discrete directions. 
Depending on the dimension and the number of 
directions of velocity, there are various models that 
can be used. In the present study, a two-dimensional 
flow and a two-dimensional square lattice with nine 
discrete velocities (D2Q9 model) are examined. For 
each velocity vector, the value of the distribution 
function is stored. In the D2Q9 model (Figure 2), 
the velocities are calculated using the formulas  
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where txc  /  and k  – lattice velocity 

direction.  

Figure 2 – D2Q9-model 

Distribution functions are calculated by solving 
the lattice Boltzmann equation, which is a special 
discretization of the Boltzmann kinetic equation. 
After introducing the Bhatnagar – Gross – Crook 
approximation, we can formulate the Boltzmann 
equation in the form [10] 

 ,(x,t)f(x,t)f
τ
Δt(x,t)fΔt)Δt,te(xf i

eq
iiii 

where Δt denotes the lattice time step, ei is the 
discrete lattice velocity in the direction i, τ denotes 

the lattice relaxation time, eq
if  is the equilibrium

distribution function. The equilibrium distribution 
functions are calculated by the formula 
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where the values of the weight coefficients i  are 
as follows: 
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and 3/ccs   is the lattice speed of sound. 

The macroscopic variables for the density and 
velocity of a fluid are calculated as the first two 
moments of the distribution functions for each cell: 
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For the temperature field, the distribution g  is 
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The equilibrium distribution functions for the 
temperature field are determined by the formulas: 
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The temperature field is calculated by the 

formula 
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As the no-slip boundary condition in fixed walls 
of channel the mid-link bounce back scheme is used 
[6,11]. According to the scheme, the wall boundary 
is located half lattice away from the boundaries of 
the fluid nodes. At the boundary node, the outward 
post-streaming distribution is equal to the inward 
pre-streaming distribution: 

 
),,(),( txfttxf BiBi   

where Bx  is the coordinates of the boundary node, 

if  is the pre-streaming distribution function with 
discrete velocity ie , which points into the boundary. 

if  is the post-streaming distribution function in the 

direction opposite to ie . For the constant 
temperature boundary, the distribution function can 
be obtained as 

 
,2),(),( BiBiBi Ttxgttxg   

 
where BT  is the temperature of the top or bottom 
wall and i  is the weight coefficients. 

Algorithm for applying the lattice Boltzmann 
method: 

1. Discretization of the physical domain and 
nondimensionalization of the related parameters; 

2. Choice of simulation parameters; 
3. Domain initialization; 
4. Collision step; 
5. Application of the boundary conditions; 
6. Streaming step; 
7. Calculation of the macroscopic parameters; 
8. Verification of convergence criteria. If 

criterion is met, then end of routine, else go to 4. 
 
Analytical solution and numerical results 
 
In order to check the developed algorithm for 

solving the problem of thermal flow, the problem of  
two-dimensional Poiseuille flow in channel is 
solved. 

Table 1 sets the parameters for calculating the 
test problem. The simulation was performed with 
different sizes of the computational domain: 

100200,50100  yx NN . The maximum 
velocity umax in the channel and the sound speed cs 
are 0.1 and 0.5773, respectively. Kinematic 
viscosity v = 9.021 · 10–3. The height of the channel 
H = 1. The Reynolds number Re = umax · H/v ≈ 10. 
In the present study the Prandtl number 

7.0Pr 
k


. Relaxation parameters are defined as 
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


tcs

  and 5.0
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 Along the X  axis the constant pressure 
difference is maintained: 
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where p  is the pressure difference, 

inout ppp  , outp  and inp  are the pressure at
the outlet and at the inlet of the channel, 
respectively,   is the dynamic viscosity, outx  and

inx  are the outlet and the inlet boundaries,

respectively, topy  and boty  are the top and the
bottom walls boundaries, respectively. 

Table 1 – Simulation parameters 

Parameters
scaling factor, scale 1: 2scale   

number of points along the  x axis Nx 100xN scale   

number of points along the y axis, Ny 50yN scale 

relaxation parameter,   3 / 16 0.5    

maximum velocity in a channel, umax max 0.1 /u scale

kinematic viscosity, v (2 1) / 6  

Reynolds number, Re Re 10  
Prandtl number, Pr Pr 0.7

channel outlet pressure, outp 1outp   

The analytical solutions for the velocity and the 
temperature fields are calculated as [12,13]: 











 2

2
max 1)(

L
yuyuexact , 

4
2
max

( )
( )

21 Pr 1 1
3

top bot
exact bot

T T
T y T y

H
yu

H
  
  
   


  

  
. 

The comparison of the exact solution with the 
results of the numerical solution is observed in 
Figures 3 – 5.  

1L  and 2L  norms of error were calculated by 
the following formulas: 
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where the index n means numerical solution and the 
index b means analytical solution. 

Increasing the grid resolution helps to reduce the 
error norms. If we assume that the error norm is 
known for different grid sizes and their ratio of the 
sizes of each grid to the initial one is m, then we can 
determine the order of accuracy using the following 
formula: 



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
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)(log)( 0
t
ttn

m
m 


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In the test problem, the error norms were 
calculated at time 1/ 2  Lt  . The accuracy orders
of the numerical algorithm depending on the grid 
size are presented in table 2. 

Figure 3 shows the predicted cross-sectional 
profile in the force-driven channel flow for velocity 
and comparison between LBM simulation and 
analytical solution. Solid line is the analytical 
solution and the symbol is the numerical result. 

Table 2 –  The accuracy orders of L1 and L2 of the velocity, depending on the grid size at t  ν⋅/ L2  =1

Grid size 1( )u L Order of accuracy, n 2( )u L Order of accuracy, n 
100 50 44.6600 10 3.8978  26.8264 10 1.9489

200 100 41.6972 10 3.8175  34.1198 10 1.9087
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Also, Figure 4 shows the temperature cross-
sectional variation at different time instants in 
comparison with the analytic solution. Solid lines 
are the numerical results and the symbol is the 
analytical solution. And Figure 5 demonstrates the 
temperature cross-sectional profiles in comparison 
with the analytic solution for different Prandtl  

numbers. Here, solid lines are the analytical 
solutions and the symbols are the numerical results. 
As can be seen from the figures, the numerical 
results agree well with the analytical solutions. The 
general results in terms of streamwise temperature 
and velocity for time instants 1.0t  and 1t  are 
shown in Figures 6 and 7, respectively.  

 
 

 
Figure 3 – Velocity profile of a 2D Poiseuille flow.  

Comparison of the exact solution with the result of the numerical solution at 
max1, 0, Pr 0.7, 0.1top botT T u    . 

 

 
Figure 4 – Temperature variation of a 2D Poiseuille flow.  

Comparison of the exact solution with the result of the numerical solution  
at max1, 0, Pr 0.7, 0.1top botT T u     
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Figure 5 – Temperature profiles of a 2D Poiseuille flow.  

Comparison of the exact solution with the result of the numerical solution at 
max1, 1, Pr 0.7 Pr 1.5, 0.1top botT T and u      

 

 
(a) 

 
(b) 

Figure 6 – Streamwise temperature at Pr 0.7 , Re 10  and  
computational time 1.0t (a) and 1t (b) 

 

 
(a)  

(b)
 

Figure 7 – Streamwise velocity at Pr 0.7 , Re 10  and  
computational time 1.0t (a) and 1t (b) 



81A.S. Zhumali et al.

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 10, №1, 75 (2019)

 

 

Conclusion 
 
The basic aim of this paper is the development of 

mathematical model for thermal flow in a channel 
and the implementation of numerical simulation of 
the problem by the Lattice Boltzmann method 
applying the D2Q9 model. The validity of this 
method is tested by comparing the numerical 
solution to the analytical solution of the planar 
channel flow. The comparison of the exact solution 
with the numerical solution for test problem of 
thermal Poiseuille flow given in Figures 3–5 shows 
a very good agreement and relationship. It is 
determined that the numerical method has a second 
order of accuracy in time. This means that the 
developed algorithm may well be applied to solving 
the problem of the dynamic thermal flow in a three-
dimensional region. This result will be obtained and 
shown in a future research. 
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Definition of the basic geometric parameters  
of a carousel type turbine its technological solution

Abstract. In the last 10-15 years, the use of wind energy has been developing rapidly. To date, more than 
20,000 wind power units have been installed in the world, the total capacity of which exceeds several MW. 
Kazakhstan has significant resources of wind energy. The most known in this respect are the resources of 
the Dzungar Gate and Shelek Complex, located in the Almaty region (Kazakhstan). Their possibilities for 
use in the generation of electric power of air flows are unique.
In this paper, the main calculations for determining the influence of the design characteristics of the Darrieus 
wind turbine on its energy efficiency are presented. The dependence of the maximum coefficient of wind 
energy use of vertical axle wind wheels on the number of blades at a constant filling factor σ, on the number 
of blades at their constant width, on the lengthening of the blade λ is studied. Based on these results, design 
characteristics for a rotor with a power of 1 kW are determined, and a diagram of the wind turbine which 
can provide thermal protection of the wind turbine by using natural ventilation of warm air inside the 
rotating elements of the windmill arising from centrifugal forces is also given.
And another way of solving the technological problem is proposed. Renounce a long rotating shaft 
and replace it with a short axis, on which two bearings will rotate with a wind wheel attached to them. 
Application of the proposed design of the wind farm will simplify the manufacturing technology.
Key words: wind turbine, Darrieus, aero dynamical characteristics, natural ventilation, geometrical pa-
rameters

Introduction 

The development of a reliable method of 
protecting a working wind turbine from adverse 
weather conditions is relevant. In this connection, 
in this paper, we propose the development of a wind 
turbine with an anti-icing system. This uses natural 
ventilation of the flow elements of the wind turbine 
with warm air, which does not allow the sticking of 
wet snowflakes on the surface of the apparatus and 
the formation of icing. �1� The present work is devot-. �1� The present work is devot-
ed to the study of the effect of geometric parameters 
of a turbine on its performance and some technologi-
cal solution.

It is known that when designing a wind turbine, 
the designer needs to know the effect of the main pa-
rameters such as blade lengthening, the number of 
blades, blade thickness and filling factor on rotor pro-
ductivity. 

Currently, the main source of information for 
designing  wind turbines with the Darrieus rotor is 
an experiment. The most complete and comprehen-
sive results of experimental studies were published 
in �2-4�.

In order to develop a semi-industrial version of 
the wind turbine, studies were conducted to determine 
the geometric parameters of the turbine. Thus, the 
calculations of the influence of design parameters 
on the energy characteristics of the turbine being 
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developed with an anti-icing system have been 
performed.

Determination of geometric parameters of the 
rotor influencing its energy characteristics

1) Effect of lengthening the blade. The 
lengthening of the blade is one of the main 
parameters of the design of the Darrieus rotor, which 
determines its aerodynamic characteristics. The 
levels of aerodynamic loads, including the torque are 
depending from the magnitude of elongation. For a 
single blade, the nature of this dependence is almost 
the same as for the wing. For elongations λ<1, the 
magnitude of aerodynamic loads varies linearly from 
λ. With increasing elongation, these loads approach 
their asymptotic values for λ> 5.

It follows from Fig. 1 that it is necessary to use 
blades with an elongation greater than 6 to provide 
an acceptable coefficient of wind energy utilization.

Figure 1 – Dependence of Cp on the elongation of blades
n=2, b/D=0.167, R=1.65 m, l= variable

2) The influence of the number of blades. Another 
important parameter of the design is the number of 
blades of the Darrieus rotor. To assess the influence 
of the number of blades on the energy characteristics 
of the rotor, special studies are carried out on rotor 
models with different number of blades.

The study shows that the single-blade rotor has 
the highest energy characteristics. But in this case, 
the torque is experiencing large pulsations in time, 
which gives rise to a bunch of dynamic problems. 
To smoother torque of the rotor we may increase 
the number of blades, but energy efficiency will 

decrease. This is especially pronounced when the 
number of blades is increased, their chord is reduced 
to maintain the constancy of the filling factor σ. It is 
more effective with increasing the number of blades 
to maintain the length of the chord.

Fig. 2 shows the results of calculations for the 
study of the influence of the number of blades at a 
constant filling factor. It can be seen that as the number 
of blades increases, the wind energy utilization factor 
decreases.

Figure 2 – Dependence of Cp on the number of blades at 
a constant filling factor

σ=const, l=3.3 m

Fig. 3 shows that with the blade width unchanged, 
the efficiency of Cp falls less significantly than with 
constant filling with increasing number of blades.

Figure 3 – Dependence of Cp on the number  
of blades with a constant width

b=const, D=3.3m, l=3.3m
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3) Effect of blade thickness. The effect of the 
relative thickness of the blade profile on the value of 
the maximum value of the coefficient Cp for different 
Reynolds numbers Re is shown in �5�.

The greatest effect is achieved for blades with a 
relative thickness of 0.15<c<0.20. The main feature 
of this influence is associated with a sharp drop in 
Cp for thin blades. It should be noted that the same 
character of the dependence on the relative thickness 
of the profile is observed for the traction force created 
by the flapping wing [2].

4) Influence factor effect. The filling factor is 
associated with two parameters of the rotor design: 
the number of blades nb and the ratio of the chord of 
the blade to the diameter of the rotor b/D. It should 
be noted that with an increase in the filling factor σ, 
the value of the rapidity of z decreases, at which Cp 
reaches its maximum.

In order to have 1 kW Darrieus rotor with direct 
blades with thermal protection, with an average wind 
speed U of 7 m / s, we find the streamlined surface of 
the rotor according to the formula:

                            (1)

where Nb – power, W; Cp – wind utilization coefficient 
is equal to 0.4; ρ – 1.29 kg/m3 – air density.

The streamlined area of the rotor with a power of 
1 kW should be 11.3 m2. If we assume that the rotor 
diameter D and the blade height l are equal, then D = 
l≈3.36 m. With an experimentally valid lengthening 
of the blade λ = l / b = 6-8, the length of the chord of 
the blade can be b =3.36/(6-8)=0.56-0.42 m, and the 
chord, on average, will be b = 0.55 m.

Since the maximum value of the coefficient Cp 
for different Re values is achieved for blades with 
a relative thickness of 0.15<c<0.20, we take the 
relative thickness equal to 0.18. Proceeding from this, 
the maximum thickness of the blade, as a fraction of 
the length of the chord, should be 0.09m. And the fill 
factor in turn will be equal to:

                        (2)

It is important to note that the filling factor σ 
satisfies the conditions under which Cp reaches its 
maximum.

Using application packages for mathematical 
calculations, we can obtain the area and perimeter 
of the cross section. For our rotor, the perimeter of 
the wing was Φ = 1.04 m and the ratio to the chord 

b is approximately 2.1. The cross-sectional area 
f1=0.0154 m2.

Thus, geometric parameters influencing the ener-
gy characteristics of a turbine with thermal protection 
were determined, and internal hydraulics and warm 
air motions along internal channels are described in 
detail in �1,6,7�.

The limitation of carousel type wind turbine 
and its technical solution

The main disadvantage in the vertical position: 
the vertical axis of rotation and its vertical mounting 
in the bearing supports. The manufacture of supports 
is also a complex technological task; it is required to 
ensure the alignment of the supports and their rigid-
ity. Also, a disadvantage of the design is the large 
mass of the shaft, which presses on the lower rota-
tional support, creates a large friction torque, which 
reduces the efficiency of the installation [8].

It is clear that the task of making such a shaft 
and its installation in a hull is a complex task. As a 
solution to this problem, a modular system is used. It 
is made from several parts-modules, and then assem-
bled in place in one unit.

In this paper, we propose another method for solv-
ing this complex technological problem. Renounce a 
long rotating shaft and replace it with a short axis, on 
which two bearings will rotate with a wind wheel at-
tached to them. Application of the proposed design of 
the wind farm will simplify the manufacturing tech-
nology. In the old design, it was necessary to have a 
long rotating vertical shaft, which must be fixed in 
two places below and above. For a 1 kW wind tur-
bine, a shaft of about 8 m in length is required. The 
length of the shaft is almost equal to the length of 
the rotor. From above, the shaft could not be shorter 
than the rotor, since it is necessary to secure the up-
per shaft support, usually it was taut cables. It is clear 
that the production of such a shaft, with the achieve-
ment of coaxially and rigidity, the most complicated 
technological task, a special lathe capable of process-
ing such long blanks with the required accuracy is 
necessary. Such a shaft is difficult to mount and pro-
vide support at the top and also affects the cost of the 
wind farm. The advantage of the proposed scheme is 
that a fixed rigid support is placed on the base (see 
Fig.4.), in which it is necessary to ensure alignment 
in the installation sites. The distance between the 
bearings can be 2-3 times the height of the support. 
In the new design, the shaft rotates inside a rigid rela-
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tively short body 1.0 m long. Bearing misalignment 
can also have a sufficiently large value of 1-2 mm. 
This error will be compensated by the elasticity and 
flexibility of the blade design itself.

Figure 4 – Fixed rigid support

The shaft does not require high structural require-
ments, since the shaft does not have original surfaces. 

All these factors greatly simplify the technology 
of manufacturing a wind power plant, by about 25-
30%. It should be noted that it is the problem of a 
long vertical shaft that is the main one, which con-
strains the wide application of rotor wind turbines 
in practice. Also, the mass of the shortened structure 
with the hollow internal shaft is much smaller than 
the mass of the long shaft; therefore, the force of their 
weight will create a much smaller friction torque in 
the lower rotational support, which undoubtedly will 
increase the efficiency of the installation. This solu-
tion can be used in any scheme of a wind farm with 
a vertical axis of rotation of the rotor, for example, 
the scheme of Savonius, Darrieus, Evans, Musgrove, 
carousel, etc. �8, 9�.

Wind installation with a shortened construction 
from the point of evaluation for manufacturability 
has a number of advantages, since the design is ori-
ented to manufacturing in small shops, which gives a 
reduction in the technological cost. This design also 
has the advantage of being transported to remote ar-
eas for the use of farms and in small businesses.

The assembly structure consists of 12 parts (see 
Fig.5.). A rigid shortened body is assembled on the 
mounting housing 7. The rotor assembly is assem-

bled on the mounting housing assembly on the key-
way and fixed with a special nut to the rotating shaft 
1. All assemblies can be mounted on supports of vari-
ous designs and heights.

1 – rotation shaft; 2 – rigid case; 3 – hubs’  
4 – wind turbine mounting unit; 5 – wind turbine blade;  

6 – generator; 7 – electric drive of the vertical movement 
of the working body; 8.9 – special nut; 10 – washer;  

11 , 12 – bearings.
Figure 5 – Assembly design wind turbine

Blades 5 windmill is made of aluminium and 
welded to the guiding body 4 by argon welding. 

The guide body assembly is welded to the hub 3 
according to the working drawing of the rotor assem-
bly. The shortened rigid body 2 is made of a standard 
thick-walled tube of steel CT 3. Two standard bear-
ings 11 and 12 are used in this design. For its intend-
ed purpose, the thrust bearing 11 is thrust, since it 
is affected by the weight of the rotor assembly. The 
lower radial single row bearing 12 operates on the 
rotational movement of the torque transmission from 
the pulley 6 to the generators generated electrical en-
ergy.
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A 2 m long chord and a 0.5 m chord will be made 
of aluminium AD0 according to GOST 4784-97 or 
aluminium grade 1050 according to EN 573-3 with 
a thickness of 2 mm. Using tabular data with x val-
ues, the distance from the profile’s bottom (in relative 
units, from 0 to 1, or percentages), yt is the coordinate 
of the top point and yb is the coordinate of the bottom 
point of the profile (also in relative units or percent-
ages). For the symmetrical wing profile NASA-0021, 
the volume of the blade of the installation was de-
termined. The density of aluminium is ρ = 2712 kg / 
m3. Thus, the mass of one blade of the symmetrical 
wing profile NASA-0021 is m = 11.366 kg. Since we 
have 2 blades, the total mass of the blades will be m 
= 22.732 kg.

Swing length of 1 m and chord 0.5 m, as well as 
the blade, will be made of aluminum AD0 according 
to GOST 4784-97 or aluminum grade 1050 accord-
ing to EN 573-3 with a thickness of 2 mm. Using the 
previous method, the mass of the fly was also deter-
mined, which is equal to m=11.366kg.

The shaft of rotation of the installation with a 
length of 1.334 m and an inner diameter dв=24mm 
will be made of structural alloy steel grade 30ХГСА, 
density of which is equal to ρ=7850kg/m3. With the 
help of the drawing, the volume of the rotation shaft 
was calculated. Multiplying the volume of the shaft 
by the density of the material, we determined the 
mass of the shaft m = 1.688 kg.

Using the drawings, the mass of the outer casing 
was determined, which will also be made of struc-
tural alloy steel grade 30ХГСА, density of which is 
equal to ρ = 7850 kg/m3. The mass of the outer tube 
is m = 17.34 kg.

As a result, having combined the masses of all 
the parts of the installation, the mass of the actual 
installation was determined to be m = 53.126 kg [10].

Conclusions

The dependence of the maximum coefficient of 
wind energy use of vertical axle wind wheels on the 
number of blades at a constant filling factor σ, on 
the number of blades at their constant width, on the 
lengthening of the blade λ is studied. The geometric 
characteristics of the blade and fly are obtained, 
which are the main parts of the rotor, which affect its 
energy efficiency.

Technological design of the components of the 
wind power plant has a direct relationship with labor 

productivity, time spent on technological preparation 
of production, manufacturing, maintenance and 
repair of the product. Therefore, the design of the 
technological process for the manufacture of parts 
must be preceded by an analysis of the technological 
nature of its design and, if necessary, processing for 
manufacturability. Technological design of the details 
of the wind power plant is estimated at two levels – 
qualitative and quantitative. A qualitative assessment 
and quantitative demonstration of the conformity of 
the design of parts during the analysing the designs 
of a wind power plant should met the following 
requirements:

– the design of the wind turbine shall be standard 
or consist of standard and unified structural elements;

– standard and unified blanks are used for the 
manufacturing of details of the wind turbines;

– dimensional accuracy and surface roughness 
of wind turbine components are optimal, reasonably 
structurally and economically;

– in determining the rigidity, shape and size, 
as well as the mechanical and physicochemical 
properties of its material, the components of the 
windmill were taken into account the capabilities 
of the manufacturing technology, storage and 
transportation conditions;

– accuracy and roughness of the surfaces of 
the components of the windmill ensure the required 
accuracy of installation, processing and control;

– the procurement of the components of the 
wind turbine must be obtained in a rational way 
(taking into account the volume of output and the 
type of production);

– in all designs of wind turbine parts, access 
to the surfaces to be treated and the possibility of 
simultaneous processing of several blanks;

Based on the analysis of the initial information of 
the wind turbine (the assembly drawing of the unit, 
the drawing of the part, the program and the annual 
volume of output, the type of production, the service 
purpose of the unit and the part), one can draw a 
conclusion on the expediency of a fundamental 
change in the method of obtaining the initial billet.

The correspondence of the surface, which 
will be used as technological bases, is revealed, 
and compliance with their requirements to the 
technological bases of the billet is checked. The total 
mass of a real installation is determined using the 
drawings. Also, for each part, a selection of materials 
was made from which the plant will be manufactured.
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Nomenclature
λ – Elongation;
Cp – wind energy utilization coefficient;
n – Number of blades;
b – Chord of the blade, m;
D – Diameter, m;
R – Radius, m;
l – Blade’s height, m;
σ – Filling factor;
c – Relative thickness;
Re – Reynolds number;
U – average wind speed, m/s
Ф – perimeter of the wing, m;
f1 – cross sectional area, m2.

References

1. R.K. Manatbayev, A. Georgiev, R. Popov, 
D. Dzhonova-Atanasova, А.А. Kuikabayeva, E.M. 
Zulbukharova. The effect of design parameters 
on energy characteristics of Darrieus rotor. 
International journal of mathematics and physics, 
74, 94-98 (2016).

2. D.N.Gorelov. The analogy between the flap-
ping wing and the wind wheel with the vertical axis 
of rotation. Applied mechanics and technical phys-
ics, 50, 152-155 (2009).

3. D.N.Gorelov, I.N.Kuzmenko, Experimental 
evaluation of the limiting power of a wind wheel with 

a vertical axis of rotation, Thermal physics and aero 
mechanics, 8, 329-334 (2001)

4. A.K.Ershina, R.K.Manatbaev, Organization 
of natural ventilation inside the working Darrieus 
turbine, Small energetics, 1-2, 63-66 (2013) 

5. A.K.Ershina, R.K.Manatbaev, Determination 
of the hydraulic resistance of the symmetrical wing 
profile NASA-0021, KazNU bulletin: mathematics, 
mechanics and informatics section, 51, 56-58 (2006)

6. K.J.Thuryan, D.Strickland, D.E.Berg, Power 
of wind turbines with a vertical axis of rotation, Aero 
cosmic technics, 1988

7. D.N.Gorelov, Aerodynamics of vertical axed 
wind turbines, KAN Polygraph center, 2012

8. D.DeRenzo, I.I.Shefter, Wind energy, 
Energoatomizdat, 1982

9. Manatbayev R.K., Yershina Sh. A., Yershina 
A.K.Method for Thermally Protecting Operating 
Revolving Type Wind-Power Installation, Involves 
Causing Internal Natural Ventilation in Wind 
Unit by Centrifugal Force to Heat All Elements 
of Wind-Power Installation by Warm Air. Patent 
Number(s):RU2008137251-A; RU2447318-
C2International Patent Classification:F03D-003/00 
Derwent Class Code(s): Q54 (Starting, ignition); 
X15 (Non-Fossil Fuel Power Generating Systems) 
Derwent Manual Code(s): X15-B01A6

10. Askarov E.S. Wind power plant with vertical 
axis of rotation of the wind wheel, KZ Patent№2219



© 2019 al-Farabi Kazakh National University   

International Journal of Mathematics and Physics 10, №1, 88 (2019)

Int. j. math. phys. (Online)

IRSTI 29.03.77 

1F.F. Komarov, 2*T.A. Shmygaleva, 2N. Akanbay, 2S.A. Shafii, 3A.A. Kuatbayeva 
1Belarusian state university, Minsk, Belarus 

2al-Farabi Kazakh National university, Almaty, Kazakhstan 
3 Sh.Ualikhanov Kokshetau State university, Kokshetau, Kazakhstan 

*e-mail: shmyg1953@mail.ru

Optimization calculation algorithms on cascade  
and probabilistic functions and radiation defects concentration 

 at the ionic radiation  

Abstract. Work is performed within a cascade and probabilistic method which essence consists in 
receiving and further usage of the cascade and probabilistic functions (CPF) for various particles. CPF 
make sense to probability that the particle generated at some depth of h’ will reach a certain depth of h 
after n number of impacts. In work optimization calculation algorithms of the cascade and probabilistic 
functions (CPF) depending on interactions number and particles penetration depth is offered, 
concentration of radiation defects at ionic radiation for the purpose of reduction calculation time and 
quality. For calculation CPF and concentration radiation defects there is an area of result, border of this 
area and a calculation step. Borders and a calculation step selection automation is executed. 
Key words: Optimization, algorithm, calculation, cascade and probabilistic, ion, defect formation, binary 
search, ternary search, function.  

Introduction  

In recent years much attention is paid to 
questions of various processes mathematical 
modeling. Mathematical models development, 
calculation algorithms, research objects allows to 
describe many phenomena [1-3]. Modeling on the 
computer radiation defect formation processes in 
solid bodies at radiation is considered by us their 
various charged particles and computer modeling 
features on cascade and probabilistic functions and 
radiation defects for ions. Such works necessity is 
connected with a solid body defects generation and 
evolution management problem, for receiving, 
eventually, materials with the set properties [4]. For 
metals radiation by ions is in an efficient manner 
changes of such properties as the metal durability, 
corrosion resistance, fatigue, depreciation etc. In this 
direction the solid body radiation physics would be 
left rather academic occupation which isn't interest 
to practical applications without researches. It is 
necessary to notice that a large number of works is 
devoted to radiation defect formation at interaction 

of ions with substance problems, for example [5-8]. 
Losses of energy on ionization and electron shells 
excitement of the environment atoms weren't 
considered, therefore the elementary CPF was used. 
At charged particles to substance interaction on their 
movement way there are continuous energy losses. 
These losses result in strong dependence for both 
power the flying particles spectrum, and the primary 
beaten-out atoms (PBOA) from penetration depth. 
The interaction run on PBOA formation 
significantly depends on energy in this connection 
there was a need of receiving the physical and 
mathematical models considering real dependences 
of the elementary act various parameters on energy, 
depth. 

Earlier in most cases at concrete calculations the 
elementary cascade and probabilistic function (CPF) 
was generally used, it isn't always justified as the 
run of interaction depends on energy [9,10]. It is 
necessary to investigate the received CPF behavior 
taking into account energy losses for ions, prove 
properties which they have to possess both with 
physical, and with mathematical points of view, 
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develop calculations algorithms and make CPF 
calculations depending on interactions number and 
particles penetration depth, spectrums of primary 
beaten-out atoms and radiation defects 
concentration. 

Nowadays well-known methods are next: the 
Monte Carlo method, the Boltzmann kinetic 
equation, Fokker-Planck’s equation, Lindhard’s 
methods, Vineyard's methods, etc. The choice of 
this or that method applicability is very complex 
challenge as, on the one hand, because of similar 
tasks complexity often it is necessary to apply too 
many approximations which significantly worsen 
the calculations accuracy to obtaining final result, 
and on the other hand – for obtaining qualitative 
result it is necessary to overcome very great 
computing difficulties. Eventually, everything is 
defined by a problem specifics and the researcher 
ability to apply this or that method to the specific 
objective solution. The cascade and probabilistic 
method is one of options in theoretical methods 
numerous calculation for the spatial and power 
distributions of the falling and secondary particles in 
the environment [9–11]. From this point of view it’s 
usage in scientific research is necessary. 

 
Main results 
 
The following physical model is given. Charged 

particle on the movement way continuously loses 
the energy on ionization and excitement (energy  
 

losses for each particles grade depending on energy 
are known and described by analytical expressions, 
in particular, by the Bethe-Bloch formula) [10].  
Impacts happen to atoms, cores discretely. After 
crashes primary particles keep the movement 
direction. At the movement charged particles 
through substance their run depends on energy 
through the interaction section which is calculated 
for ions by Rutherford's formula [10]. Observations 
depths are according to the tables of the ion-
implanted impurity spatial distribution parameters 
[12]. The calculated interaction section is 
approximated by the following expression: 
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we receive expression for CPF taking into account 
energy losses for ions in the following look: 
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where n – interactions number, h', h –ion generation 
and registration depths, l=1/(0.ak). 

Calculations of cascade and probabilistic  
 

functions taking into account energy losses for ions 
depending on interactions number and particles 
penetration depth were carried out on a formula: 
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For optimization CPF calculation algorithms 
depending on interactions number and particles 
penetration depth, vacancy clusters concentration 
are used Stirling formulas [13]: 

 
 nenn nn 2!  .                          (5) 
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Ions spend the main energy part for ionization 
and excitement the environment atoms (to 99%) and 
only 1% goes for atomic structure defects formation. 
At charged particles with material interaction dot 
defects, Frenkel's couples, big congestions the 
vacancy and interstitial atoms can be formed. 

Radiation defects at ionic radiation concentration 
calculation is carried out on a formula [11]: 
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E2max – the greatest possible energy acquired by 

atom, 2
1cm  – an ion rest energy. Ck(E0,h) is defined 

taking into account that a particle energy at h depth 
is E1(h). As E1(h)=E0-E(h), that setting energy 
losses on ionization and excitement E(h), we 
receive the corresponding observations h depths 
from a Bethe-Bloch formula. The primary beaten-
out atoms spectrum is defined by the following 
ratio: 
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where n0, n1 – initial and final value of interactions 
number from a cascade and probabilistic function  
 

definition range. CPF  n h( ) , entering expression 
(8), has next appearance: 
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Section2 is calculated by Rutherford's formula, 

1, 2 – run on an ion - atomic and atom - atomic 
impact respectively; k– integer bigger units; 
 hEEw ,, 21  – PBOA spectrum in the elementary 

act, E2 – primary beaten-out atom energy.  
The PBOA spectrum in the elementary act is 

calculated on a formula: 
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Carrying out transformations, we come to the following expression: 
 

    
 











 






1

0 2 212max2

max2
0 )(

exp)(
)(
)(

,
n

nn

h

kh
n

d

c

c

d
k h

hdhhh
EE
EE

E
EhEC

 
 ,                      (11) 

 
 
where Еd – average energy of shift, Е0 – initial 
energy of a particle, Ес – threshold energy.  

To calculate radiation defects concentration on a  

formula (11) with usage (9) it is impossible as in 
each member of CPF  there is an overflow. 
Expression for  n h( )  it is presented in the form:  
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When calculating CPF for ions there are 

difficulties consisting in approximating coefficients 
selection and in finding real area of result both 
depending on interactions number and from 
penetration depth. The area of result is influenced by 
the flying particle and target atomic number, initial 

energy of primary particle and penetration depth. 
All CPF calculations for a formula (4) have been 
made on a С#, as the DBMS for dataful operation 
MS SQL Server 2014 environment was used. CPF 
calculations results for ions depending on 
interactions number and particles penetration depth 
are given in figures 1,2. 
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Figure 1 – CPF dependence on interactions number for the titan in iron at 

h=0,0001; 0,0002; 0,0003 (cm); E=1000 keV (1-3) 
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nFigure 2 – Dependency ψ (h’, h, E0), from h for aluminum in the titan 
at E0 =800 keV for  n= 732; 2702; 5697 (1-3) 

Due carrying out CPF calculations depending on 
impacts number and particles penetration depth of 
result area behavior and a calculation step 
regularities are revealed. Let's note some of them. 
Result area behavior regularities for CPF calculated 
depending on interactions number consist in the 
following: 

1. With initial energy (the flying particle and a
target same) reduction with the same depth the area 
of result is narrowed and displaced to the left. 

2. With the flying particle increase in atomic
weight the area of result finding is displaced to the 
left relatively h/ and is narrowed.  

3. With the flying particle big atomic weight the
CPF maximum value is displaced to the left 
relatively h/  already with small depths, and with 
big depths the result is in narrow area. 

4. The narrowest area of result turns out with the
flying particle big atomic weight and small target on 
the end of a run.  

At the step choice following regularities take 
place: 

1. For the flying particle small atomic weight and
small depths the step is small (about 10-20), with 
increase in observation depth it begins to increase. 

2. With the flying particle atomic weight gain in
the step respectively increases, reaching several 
hundred and even thousands. 

3. With the flying particle big atomic weight and
small targets the step considerably increases. 

Let's give the regularities arising due finding a 
real range defined for CPF calculated depending on 
penetration depth: 

1. Calculations shows that a small atomic weight
of the flying particle and small depths area of result 
CPF depending on h is close to h, which 
corresponds h/. With increase in observation depth 
the area of result is displaced to the right and 
narrowed. 

2. With initial energy of a particle (the flying
particle and a target same) reduction with the same 
observation depth the area of result is displaced to 
the right and narrowed. 

3. With increase observation in depth for any
flying particle and any target the area of result is 
displaced to the right. 

4. Depending on the flying particle atomic
number at the same value of depth h the area of 
result is displaced to the right. 

5. At the flying particle atomic number great
value the area of result is displaced to the right 
relatively h, corresponding h/ already with small 
depths and the area of result is considerably 
narrowed. 

Step behavior regularities due CPF calculating 
depending on particles penetration depth are 
revealed. 

1. For the flying particle small atomic weight the
step is small, with increase in observation depth it 
increases, and on the end of a run very strongly. 
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2. With initial energy of a particle with the same
observation depth (the flying particle and a target 
same) reduction the step also increases. 

3. With the flying particle atomic weight increase
for the same observation depth the step increases at 
first gradually, then is very sharp. 

4. Step on atomic number dependence tends
increase. 

For automation and optimization finding CPF 
area of result depending on interactions number, 
penetration depths have been realized algorithms 
Ternary [14] and Binary [15] searches. The Ternary 
search algorithm has been modified taking into 
account CPF specifics: it exists in limited area. In 
the existing algorithms the division coefficient equal 
to 3 is used (ternary search). In the developed 
program complex the coefficient can vary. Binary 
(binary) search (it is also known as a halving and a 
dichotomy method) - the classical element search 
algorithm in the sorted array (vector) uses array 
crushing on half. It is used in computer science, 
calculus mathematics and mathematical 
programming. Ternary search is a method in 
computer science for finding the minimum or 
maximum of function, which at first strictly 
increases, then strictly decreases, or on the contrary. 

Ternary search defines that the minimum or a 
maximum can't lie either in the first, or in the last 
third of area, and then repeats search on the 
remained two thirds. 

The concentration values calculated by a formula 
(11) have the following behavior: for the easy flying 
particles curves increase, reaching a maximum, then 
decreases to zero. With initial energy of a particle 
increase curves are displaced to the right. With 
increase in threshold energy Ес concentration values 
decreases and curves pass much below, transition 
through a maximum is carried out more smoothly. 
While energy Е0 =100 keV the curve decreases. Due 
the flying particle increase in atomic weight the 
value of function in a maximum point increases and, 
therefore, curves pass above while values of depths 
decrease. Calculation algorithms optimization with 
formulas (5), (6) usage is performed. After carrying 
out optimization in formulas (4), (11) it is visible 
what a counting duration was considerably reduced, 
for example, for germanium in aluminum at E0 = 
1000 keV, E1 = 120 keV calculation time was 1 hour 
44 minutes. After optimization calculation time has 
less than 1 minute. Calculations comparison results 
before optimization and after it is given in the 
table 1.  

Table 1 – Definition range borders of radiation defects concentration for germanium in silicon at Ес=50 keV и 
Е0=1000 keV 

h*104, cm Ск, cm Е0,keV n0 n1 1 2 
0,1 10476 1000 219 560 5' 1''
5,3 17598 800 25146 27958 10' 2''
10,6 29380 600 69624 74258 25' 3''
15,8 51189 400 147578 154312 1h 7''
18,9 77629 300 227841 236220 3h29' 15''
19,9 90354 260 264188 273220 4h12' 20''
20,9 107041 220 308961 318741 5h30' 25''
21,8 124137 180 359803 368257 7h06' 35''
22,3 123290 140 394307 403204 10h01' 1'
23,2 118373 100 474116 486299 12h41' 2'
23,9 50357 70 563193 575375 15h26' 7'
24,1 -20064 60 596160 608342 17h19' 10'

Here 1, 2 – calculation time before carrying out 
optimization and after it.  

Calculations results of are given in figures 3-5 
and in tables 2-5 [16-21]. 
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Figure 3 – Radiation defects concentration dependence on depth  
for the titan nitrogen ions radiation at Е0=1000 keV, Ес=50 keV(1),  

100 keV (2), 200 keV (3) 
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Figure 4 – Radiation defects concentration dependence on depth in the ionic radiation 
for nitrogen in silicon at Ес=50 keV; Е0= 1000, 800, 500, 200, 100 keV (1-5);  

Ес=100 keV; Е0= 1000, 800, 500, 200 keV (6-9); Ес=200 keV;   
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Figure 5 – Radiation defects concentration dependence on depth in the ionic radiation 
for nitrogen in silicon (1) and nitrogen in germanium (2)  

at Е0= 1000 keV; Ес=50 keV 

Finding the radiation defects concentration area 
of result at ionic radiation has allowed to find this 
area’s behavior regularities. Let's note some of 
them. 

1. With increase in threshold energy with the
same penetration depth value of radiation defects 
concentration considerably decreases, area of result 
borders don't change. 

2. Depending on penetration depth the radiation
defects concentration value increases. 

3. With increase in primary particle initial energy
at the same value of threshold energy and 
penetration depth, value of radiation defects 
concentration decreases. 

4. The radiation defects concentration area of result
borders depending on penetration depth increases, the 
borders change range fluctuates from 0 to 5000. 

5. Depending on threshold energy at the same
energy and the same penetration depth the border 
don't change. 

Table 2 – Radiation defects concentration definition range borders for nitrogen in the titan at Ес=50 keV, Е0= 1000 keV 

h*10 4, cm Ск, cm Е0, keV n0 n1 τ 

0,1 453,93 1000 0 27 1″
1,7 504,21 900 61 224 3″
3,5 569,57 800 196 439 4″60
5,4 650,76 700 376 681 6″
7,3 747,10 600 596 970 7″90
9,4 878,12 500 894 1341 9″
11,6 1050,64 400 1286 1840 13″
12,8 1165,35 350 1545 2142 14″
14 1294,26 300 1846 2474 15″70

14,5 1352,72 280 1987 2648 17″
15 1412,73 260 2138 2820 18″

15,5 1473,16 240 2301 2995 19″
16,1 1556,9 220 2514 3247 21″
16,6 1612,65 200 2709 3461 22″
17,2 1688,03 180 2967 3795 24″50
17,8 1746,76 160 3258 4105 26″
18,4 1765,86 140 3588 4455 29″
19 1695,9 120 3971 4885 31″45

19,6 1422,67 100 4422 5397 35″
20,3 677,95 80 5071 6110 41″
20,6 0 70 5406 6452 42″
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Table 3 –  Radiation defects concentration definition range borders for nitrogen in the aluminum at Ес=50 keV и 
Е0=1000 keV 

 
h*104, cm Ск, cm Е0, keV n0 n1 

0,1 296 1000 0 32 
3,5 335 900 84 310
7,1 381,5 800 250 583
10,9 439 700 469 899
14,9 511 600 751 1277
19,1 605 500 1116 1742
23,6 734 400 1607 2344
26 817 350 1923 2723

28,5 919 300 2304 3175
29,6 970 280 2493 3396
30,6 1017,6 260 2677 3611
31,7 1074 240 2895 3864
32,9 1142 220 3154 4163
34 1205 200 3414 4463

35,2 1278 180 3728 4821
36,5 1361 160 4108 5253
37,7 1422 140 4505 5703
39,1 1487,2 120 5041 6300
40,4 1460 100 5630 6965
41,9 1270 80 6465 7894
42,6 976 70 6934 8414
43,4 413 60 7558 9102
44,1 -745 50 8207 9816

 
 

Table 4 –  Radiation defects concentration definition range borders for nitrogen in the silicon at Ес=200 keV  и Е0= 800 
keV 

 
h*10  4, cm Ск, cm Е0, keV n0 n1 τ 

0,1 66,71 800 0 32 01″15
6,1 73,10 700 598 972 02″30
12,5 79,67 600 1499 2060 05″42
19,3 85,05 500 2688 3428 10″49
26,5 84,91 400 4271 5228 46″56
30,3 79,16 350 5282 6307 1′ 01″10
34,2 64,25 300 6483 7634 1′ 17″50
35,9 54,08 280 7070 8249 1′ 24″09
37,6 39,79 260 7701 8926 1′ 31″41
39,3 19,77 240 8384 9700 1′ 44″40
41,0 0 220 9124 10461 1′ 52″80

 
 

Table 5 –  Radiation defects concentration definition range borders for carbon in the titan at Eс=100 keV,   Е0= 500 keV 
 

h*10 4, cm Ск, cm Е0, keV n0 n1 τ 

0,1 213,66 500 0 30 1″
2,1 238,34 400 132 337 4″
3,3 251,38 350 269 541 7″
4,5 255,62 300 439 769 9″
5 253,24 280 520 881 13″

5,5 246,35 260 610 994 17″
6 232,94 240 705 1110 24″

6,5 210,03 220 811 1252 26″
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7,1 176,16 200 951 1423 33″
7,7 119,25 180 1109 1610 36″
8,2 24,45 160 1256 1789 11″
8,8 0 140 1456 2044 12″

 
      

Conclusions 
 
In work, analytical expressions of cascade and 

probabilistic functions taking into account energy 
losses for ions from recurrence relations for 
transition probabilities are received. The 
approximating expression entering a recurrence 
relation is picked up and approximation coefficients 
are found, so that the theoretical correlation relation 
was rather high [22-24]. Algorithms are developed 
and optimization of calculation cascade and 
probabilistic functions taking into account energy 
losses depending on interactions number and 
particles penetration depth, radiation defects 
concentration is made at ionic radiation, calculations 
are carried out. Behavior regularities on CPF area of 
result and calculation step depending on interactions 
number and particles penetration depth are revealed. 
It is shown that the area of result is influenced 
significantly by the primary particle initial energy, 
penetration depth, the flying particle atomic number 
and target. Automation and optimization area of 
result borders selection and calculation step with 
ternary and binary search algorithms usage is 
executed. Algorithms optimization on calculation 
the cascade and probable functions taking into 
account energy losses, depending on interactions 
number and particles penetration depth, 
concentration the vacancy clusters is performed in 
the ionic radiation case with Stirling formula usage. 
Results comparison of calculation for time before 
carrying out optimization and after it is executed. 
The program complex is developed in the Microsoft 
Visual Studio 2015 environment in the C# 
programming language. The database is created in 
the Microsoft Server 2014 environment. 
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Numerical simulation of heat and mass transfer processes  
in combustion chamber of pk-39 boiler 

Abstract. Over the past decades, the consumption rates of fossil energy resources has not declined, despite 
fundamental changes in the political, economic and social structures of society. According to experts, the 
share of coal in the global fuel and energy balance is more than 27%, thanks to which almost 45% of 
the world’s electricity is generated. For each country in the world, the structure of the national energy 
balance is determined by the availability of its own sources of fuel and energy resources. In the Republic 
of Kazakhstan, coal reserves are estimated at 30 billion tons, which is 3.4% of the world’s coal reserves. 
However, Kazakhstan’s coal is characterized by low calorific value and high ash content, its combustion 
leads to the formation and delivery of large quantities of pollutants in air, soil and water. Pollution of the 
atmosphere is one of the global problems of mankind, whose solution is to optimize the combustion process 
and realization stringent environmental requirements for specific emissions of harmful substances with 
waste gases. To solve this difficult task, there is a need to improve equipment, introduce new technologies 
and use alternative methods for organizing a combustion process, the basis of which is to study the processes 
of heat and mass transfer in the presence of combustion. Irreplaceable powerful method of theoretical 
research of currents at availability of burning is numerical modelling. The results of a three-dimensional 
numerical simulation of aerodynamics, temperature flow and carbon oxides are presented. Studies have 
been carried out for a pulverized-angle flame of various dispersity. A comparative analysis of the obtained 
results with the results of the field experiment is carried out. The obtained results will allow choosing the 
optimal variant of the combustion process organization in order to increase its efficiency and reduce the 
negative impact on the environment.
Key words: simulation, coal combustion, aerodynamics, monodisperse flame, polydisperse flame, 
concentration fields.

Introduction

Numerical modeling is sufficiently accurate and 
inexpensive way to analyze complex processes that 
occur during combustion of the fuel in the combustion 
chambers of real power plants, and it allows to 
simultaneously consider the complex of processes 
that are almost impossible to do, conducting in situ 
experiments. Only the numerical modeling and 
carrying out computational experiments optimally 
solve scientific and project engineering tasks in this 
area (improvement, design of new boilers; burners 
upgrade; development of multistage fuel combustion 

systems, optimization of combustion processes and 
other) �1,2�. 

At the present stage of development of the energy 
industry, immediate consideration and resolution of 
environmental issues are required. Due to the fact, 
that for most countries the main sources of pollutant 
emissions into the atmosphere are companies 
operating in the burning of low-quality raw materials 
as well as with poorly equipped with flue gas cleaning 
systems, the problem of pollution of the Earth’s 
atmosphere is an urgent. Environmentally hazardous 
emissions, which are products of coal combustion �3-
5� reactions cause enormous damage to the earth’s 
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ecosystem. It is therefore necessary to carry out a 
detailed study of physical and chemical processes 
that occur during combustion of energy fuels and to 
solve the problem of environmentally “pure” making 
use of coal �6,7�.

Methodology of investigation

For carrying out computational experiment the 
combustion chamber of the real power boiler BKZ-
160 Almaty TPP-3 (Kazakhstan) was selected. The 
boiler BKZ-160 of drum-type furnace with dry slag 
removal has a calculated steam generating capacity 
160 t/h at a pressure of 9,8 MPa and a temperature 
of the superheated steam 540 0C. The boiler has a 
U-shaped profile with a rectangular prism furnace. 
Combustion chamber volume is 790 m3. On the sides 
of the combustion chamber located four blocks direct 
flow slot burners (two burners in the block) which 
directed at a tangent to the circle with a diameter of 
one meter. Each burner has a fuel mixture channel 
and two secondary air channel, they are located from 
above and from below the channel of air-fuel mixture, 
and divided lined piers. The top and bottom burners 

are also divided by a pier. In the center of burners is 
located oil-fired nozzle for lighting and lighting of 
the flame. The performance of each of the eight coal-
fired burner fuels is 4 t/h.

Computational experiments on research heat 
and mass transfer processes have been carried out 
by the starting FLOREAN �8� software package, the 
geometry of the combustion chamber was created 
by a computer program «PREPROZ» (Fig. 1b). The 
software package FLOREAN was created to solve 
problems in the field of burning solid fuel and was 
repeatedly tested in many modern studies �1-12�. 
During the numerical simulation of heat and mass 
transfer process, the control volume method has 
been applied. Combustion chamber of a power boiler 
BKZ-160 has been divided into control volumes; it is 
possible to obtain 217 536 computational areas.

Numerical simulation was carried out on the basis 
of solutions of the Navier-Stokes equations, equations 
of heat diffusion and diffusion of components of the 
reacting mixture and the reaction products based on 
thermal radiation and multiphase media, equations 
of state, and chemical kinetics equations defining the 
intensity of nonlinear energy and matter �8, 13-15�.

                                              A)                                                                         B)

Figure 1 – A) Scheme of the furnace, 
B) General view of the camera, broken down into control volumes

For a qualitative description of combustion 
processes in a real three-dimensional physical and 
chemical system (combustion chamber of Thermal 

power plant) in the present work a numerical 
calculation of a turbulent pulverized coal flame was 
carried out taking into account the dispersion of 
coal. The percentage distribution of carbon particles 
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in size: dp=10 μm– 10%; dp=30 μm– 20%; dp=60 
μm– 40%; dp=100 μm– 20%; dp=120 μm– 10% 
corresponds to a polydisperse flame, dp=60 μm– 
100% – is the averaged diameter, which corresponds 
to a monodisperse flame. Numerical calculation in the 
work was carried out for the two cases listed above.

Results of numerical simulation

Let us consider the profiles of aerodynamics 
combustion of a turbulent pulverized flame in 
different sections along the length of the flame. Fig. 
2 shows the distribution of the full-velocity vector 
in the longitudinal section of the furnace during 
combustion of a monodisperse and polydisperse 
flames. Obtained velocity fields allow us to visually 
analyze the aerodynamics of reacting flows in the 
combustion chamber. The fields of the full-velocity 
vector show the value of the flow velocity of the 
medium and its direction at each point.

In the Fig. 2 the area of fuel and oxidizer is clearly 
visible: counter dust and gas streams from opposing 
tangential burners create a vortex in the central part 
on the location of burners and level of active burning 
zone. Clearly visible is the recirculation zone with 
reverse gas currents [15]. Part of the flow is directed 
down to the funnel, forming two symmetrical 
vortex in the area below the burner arrangement, it 
is typical both for burning of a monodisperse flame 
and for burning of a polydisperse flame. However, 
in a longitudinal section of the combustion chamber 
symmetry is broken relative to the vertical axis of the 
chamber when burning polydisperse flame (Fig. 2b). 
It means that burning of dust and gas streams with 
different particle sizes affects to the character of the 
flow stream. 

In cross-section chamber at a level between 
the lower and upper tiers of burners there is a clear 
picture of the current (Fig. 3). The pulverized coal 
streams flowing into the chamber deviate from the 
direction of the burner axes (located tangentially) 
towards the adjacent walls, with which they make up 
a smaller angle. Fusing into the total flow, the jets 
create a volumetric vortex with a vertical axis of 
rotation, which, as it rises, untwists and then moves 
along the axis, as can be seen clearly in Fig. 2.

The central vortical motion of the pulverized coal 
stream leads to uniform heating of the combustion 
chamber walls, to a decrease in the slagging of the 

heat shields and heat losses, which prolongs the life 
of individual elements of the boiler plant, and also 
increases the heat removal surface, which speaks of 
the advantages of the furnaces with the tangential 
arrangement of the burners. The aerodynamics 
of flow in the combustion of monodispersed and 
polydispersed flames has some differences; however, 
if it is necessary to make quick estimates, in numerical 
simulation of the aerodynamic characteristics of the 
coal combustion process, one can use the model of 
burning a particle of averaged size, which in turn 
reduces the expenditure of computer time �1, 16-21�.

Being the UNFCCC framework (the United 
Nations Framework Convention on Climate Change) 
since 1995 and the Kyoto Protocol since 2009, 
Kazakhstan has a principled position and pursues 
a consistent policy in the field of preventing global 
climate change, in the field of reducing the carbon 
intensity of the economy and in the field increasing 
energy efficiency, creating conditions for the 
transition to technologies for environmentally “pure” 
burning of energy fuel �22�. In this connection, 
the study of the concentration characteristics of 
greenhouse gases is an urgent task. 

Fig. 4,5,7 show a comparative analysis of carbon 
oxide concentration distributions for the case of a 
polydisperse and monodisperse flare. Analyzing 
the Fig. 4 it can be argued, the nature and pattern 
of carbon monoxide СО and carbon dioxide СО2 
are different from each other. Concentration of 
carbon oxide reaches area of the maximum values 
in a zone of active burning, unlike carbon dioxide 
which concentration increases as it moves out of the 
combustion chamber.

Concentrations of poly- and monodisperse 
flames in the field of an arrangement of burners do 
not differ. The average value of the concentration of 
carbon monoxide for polydisperse flame in the first 
tier of burners (z= 4,81m) is 0,184•10-2 kg/kg, for 
monodisperse is 0,185•10-2 kg/kg, in the second tier 
(z = 5,79m) is 0,279•10-2 kg/kg both for poly- and 
for monodisperse flames (Fig. 4A). In the area of 
active burning the concentration of carbon monoxide 
CO reaches the maximum value, chemical processes 
of formation of carbon monoxide CO fade to output 
from the combustion chamber, for polydisperse flame 
at the exit of the combustion chamber the mean value 
is 1,35•10-4 kg/kg, for monodisperse is 0,61 10-4 kg/
kg (Fig. 4A).
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                                                  A)                                                                                         B)

Figure 2 – Field of a vector of full velocity in the longitudinal section  
of the combustion chamber (x = 3,16 m) for A) monodisperse flame; B) polydisperse flame

                                              А)                                                                                            B)

Figure 3 – Field of a vector of full velocity in the cross-section of the combustion chamber 
(z = 5,3m) for А) monodisperse flame; B) polydisperse flame
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Figure 4 – Comparison of the average values of concentration А) СО, В) СО2  
for poly- and monodisperse flame on height of the combustion chamber

                           А)                                                 B)

Figure 5 – Distribution of the carbon oxide concentration in the 
longitudinal section of the furnace combustion chamber (y = 3,7m) 

for А) monodisperse flame; B) polydisperse flame
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field experiment [23]: А) on height of the combustion chamber В) zone of active burning
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Analyzing the distribution of CO concentration in 
the longitudinal sections of the combustion chamber 
(Fig. 5), it can be said that in the active combustion 
zone, there is a clear difference in the formation of 
CO for a mono- and polydisperse flames, which 
indicates that the particle size has a significant effect 
on the formation of reaction products. The maximum 
values of carbon monoxide CO are explained by the 
intensive physical and chemical interaction between 
the fuel carbon and air oxygen, and with increased 
temperatures in this region (Fig. 6). 

Fig. 6 shows the experimental points obtained 
directly from measurements at the thermal power 
plant [23]. It is confirmed that the numerical 
simulation results are in good agreement with the 
results of a natural experiment. It is leading to the 
conclusion of the applicability of the proposed 
physical-mathematical model of combustion 
processes, used in the present work. It should also 
be noted that the experimental data obtained directly 
from TPP-3 lie closer to the temperature curve of the 
polydisperse flame, from which it can be argued that 
the polydisperse flame model is more sensitive and 
reflects a more real process of burning pulverized 
coal at Almaty TPP-3.

Analyzing Fig. 4B and Fig. 7 it can be said that 
as flow moves out of the combustion chamber CO2 
is restored from CO, this regularity is fair both for 
monodisperse, and for polydisperse flames. It is 

possible to determine value of concentration in any 
point of furnace by a color scale of the received 
figures which is not always possible to obtain during 
the field experiments on the thermal power plant. 
So the average values of carbon dioxide СО2 in the 
longitudinal section of the combustion chamber (y 
= 3,7m) for polydisperse flame is 0,155 kg/kg, for 
monodisperse flame is 0,158 kg/kg (Fig. 7). At the exit 
of the combustion chamber average concentration of 
carbon dioxide for polydisperse flame is 0,1876 kg/
kg, for monodisperse flame is 0,1895 kg/kg.

Conclusion

In the present work, the calculation of 
aerodynamics, thermal and concentration 
characteristics of the combustion of mono- and 
polydisperse flames is performed; the results of the 
study can formulate the following conclusions:

– A detailed picture of the structure of the 
flame is obtained, which includes a developed 
recirculation zone with return currents of the 
combustion products;

– It is noted that the character of formation of the 
concentration fields CO and CO2 is different. The 
maximum concentration of carbon monoxide reaches 
in the zone of active combustion, and the formation 
of carbon dioxide CO2 increases as it moves towards 
the outlet from the furnace;

                            А)                                                         B) 

Figure 7 – Distribution of carbon dioxide concentration in a longitudi-
nal section of the combustion chamber of the combustion (y = 3,7m) for 

А) monodisperse flame; B) polydisperse flame
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– The results of computer simulation of 
temperature T were compared with the results of 
field experiments, the analysis of which confirms 
the correctness of the chosen model of numerical 
experiment.

In conclusion, we note that the nature of combustion 
of mono- and polydisperse dust has differences, i.e. 
the influence of fineness of grinding has a significant 
influence on the processes of heat and mass transfer 
in the combustion chamber of CHPP boilers. The 
combustion model of polydisperse dust more 
accurately reflects the actual combustion process, 
which confirms the comparison with the full-scale 
experiment. However, the application of this model 
requires large computer, time resources. The results 
obtained in this study will give recommendations for 
optimizing the burning process of pulverized coal in 
order to reduce pollutant emissions and creations of 
power stations on ‘pure’ and an effective utilization 
of coal.

Also in the future, the authors of this work 
are planing to conduct a numerical experiment to 
determine other concentration characteristics of 
the turbulent combustion process (NOx, SOx, NH3, 
NCN), taking into account the fineness of grinding 
fuel, which mutually complement each other and 
ensure the integrity of the entire study.
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Development and creation of a software system  
for the monitoring system mac1

Abstract. A special system of acoustic detectors was created to search for possible correlations between 
wide air showers and the signal of elastic oscillations from the depths of the earth’s crust. They are intended 
for joint synchronous work with storm installation.
Key words: microphone, signals, microcircuit, program, acoustics.

A preliminary search for short-term acoustic 
emission signals in events related to the group 
passage of high-energy muons was carried out in a 
special experiment at the Tien-Shan high-altitude 
station in 2012. Upon completion of the modification 
of the Tien-Shan stormwater installation and the 
transition to regular recording of wide atmospheric 
showers, experiments of this kind it is expected to 
continue in full.

A highly sensitive microphone with a sensitivity 
of 20 mV/Pa in the acoustic frequency range of 
500-1000 Hz is located at a depth of 50 m from the 
ground surface inside a well drilled in the rocky 
soil. The distance between the well and the storm 
detector system is approximately 200 m. The circuit 
of electronic equipment which provides registration 
is shown in Figure 1. The transmission of electrical 
signals from a microphone from the depth of a 
well is made over a cable line formed by a twisted 
pair of wires through a transformer junction. The 
microphone and the signal-carrying intermediate 
small-sized transformer are a single building block, 
which is completely lowered into the well. A constant 
voltage of ± 3V for powering the microphone is 
produced by an independent power source, which 
is built on the basis of a separate transformer with 

an ungrounded secondary winding and does not 
have direct electrical contact with the rest of the 
electronic circuit or the power lines of the external 
electrical network. From the power source to the 
microphone, this voltage is applied through the 
second pair of twisted wires. Thus, the microphone 
node of the measuring system is electrically isolated 
from all common ground lines and power supply to 
the electronic circuits.

Acoustic detector signals are recorded in a special 
room, which is located directly at the upper edge of 
the well. In the room are the other nodes forming the 
signal equipment. The differential amplifier (element 
D1 in Figure 1) provides 100 times the amplification 
of the useful signal while simultaneously suppressing 
common mode noise that occurs on a long link. The 
common mode rejection ratio of this type of amplifier 
is ~70 dB. At the output of the differential amplifier, 
bipolar sinusoidal signals are formed, belonging to 
the acoustic range (~102 – 104Hz) and ready for 
digitization by means of an ADC system. The low-
frequency selector built on the operational amplifiers 
D2 and D3 serves to highlight the modulating 
amplitude of the acoustic signal of the low-frequency 
envelope, which is provided for registration through 
a separate ADC channel.
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A special small-scale low-power ADC system 
has been developed for recording acoustic detector 
signals. It is placed together with the formation 
schemes directly at the upper edge of the well. 
The ADC system is based on the Raspberry PiB+ 
single-board computer on a Broadcom BCM2835 
type microprocessor with a clock frequency of 700 
MHz. This computer, through the lines of a general-
purpose digital I/O port embedded in it, controls two 
ADC elements with AD7887 chips manufactured by 

Analog Devices. The clock sequences C (clock) and 
CS required for the operation of the microcircuits are 
generated by a computer microprocessor running a 
special driver program. The same program accepts 
the results of converting the input signals that come 
from the DO outputs of the ADC chips in the form of a 
serial binary code and converts them into binary data 
bytes. A schematic diagram of the connection of the 
ADC elements to the Raspberry PiB+ microcomputer 
is shown in Figure 2.

Figure 1 – Connection diagram of a microphone in an acoustic detector

The signals of the ADC microcircuits are 
connected to the pins of the GPIO port of the 
microcomputer through the buffer elements of the 
TTL logic. They are part of the K155LN1 chip 
and through resistive dividers, which are necessary 
for matching the level of logic signals from the 
microprocessor with the level of the AD7887 chip. 
The input analog signals are recorded over two 
information channels of the small-sized ADC system 
continuously with a period of 2 ms. Measured data 
is collected for subsequent on-line analysis in a file 
on a local disk that connects to the Raspberry PiB+ 
microcomputer via its built-in USB interface.

The block diagram of the software package that 
is used to record the data of the acoustic detector is 
shown in Figure 3. As can be seen in this diagram, 
the program interacts directly with the hardware 
registers built into the Raspberry PiB microcomputer 
parallel I/O port, to the lines of which the control 
signals of the ADC chip are connected k09raspi.c 
driver. This program is written in the compiled 
programming language C and is responsible for the 
formation, in accordance with the corresponding 
temporal characteristics, of two clock sequences C 
and CS. They provide the necessary synchronization 
of the ADC chips. In response to each clock cycle of 
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Figure 2 – Compact ADC system

the synchronization sequence C, the next bits of the 
data code are received from the microcircuits, which 
are registered by the k09raspi.c program. on the two 
input lines of the parallel port. The received data bits 

are processed by the driver software, and parallel 
bytes of the 12-bit ADC code are formed from them, 
which are placed by this driver into a segment of 
shared memory that is readable by other programs.

Responsible for sampling the data generated 
by the driver from shared memory and further 
processing this information is the measurement 
management program k09001. This program 
performs the standard functions of supporting the 
measurement process, reads, immediately after 
launch, a set of configuration parameters from the 
input file k09in. It adjusts the algorithm of its work 
to the specifics of a specific measurement setup, 
tracks the appearance of new information packages 
in the shared memory segment, generates an array 
of binary data with measurement results from these 
packages, and writes this array to a file with the .zdat 
extension on the local disk. Before writing to the disk, 
the array is compressed by the archiver integrated 
into the program k09001, which reduces the total 
amount of output data and shortens the information 
exchange with the disk. Since the files recorded 
in this way directly during the measurements are 

packed in an irregular way, before they are sent for 
permanent storage they are processed once again by 
a special program – the utility k09006. It converts 
them into regular archive files .dat.gz, which can be 
read by standard archivers such as zip, gzip and the 
like. After the conversion, the data archive files are 
automatically sent to the general processing center 
via wireless communication lines.

Measurement management program k09001 is 
written in C ++ compiled programming language, 
which allows to satisfy rather stringent requirements 
for its speed. In addition, the required processing 
speed of incoming information is achieved due to 
double buffering and parallelization of operations 
in this program. When it starts, it creates two buffer 
arrays in the computer’s memory to write data, at 
each moment of time one of these arrays is filled 
with current data. Information from the second at the 
same time is being written to the computer disk in 
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a separate stream of execution. The Raspberry PiB 
+ microcomputer, which provides the process of 
digitizing the signals of an acoustic detector, runs on 
a specially adapted version of the Linux operating 
system. The programs included in this system ensure 
the performance of normal operations to support 

the normal operation of the entire measurement 
process: automatic start of the necessary utility 
programs, monitoring and automatic correction of 
the system clock, the ability to remotely connect via 
communication lines to monitor the system operation 
on-line and etc.

Figure 3 – Block diagram of the software system for the monitoring system

One of the specialized programs designed to work 
with the archived data files of the acoustic detector 
is the visualization program k09007, which, when 
launched in graphical mode of operation, allows 
you to view the measurement results stored in these 
files in the form of interactive graphs. The program 
k09007 is written in Python, and its graphical window 
interface is implemented using the Tkinter library, 
which is included in the standard distribution of this 
language. Graphs are drawn in the program window 
by means of the Python graphical library Matplotlib.

In addition to the interactive user mode of direct 
interaction with the user, the k09007 program also 
supports a non-interactive mode, in which information 
from archive files with measurement results, instead 
of directly displayed in the graphics window, is 
transmitted to external plug-in modules k09007exe, 

which implement various data processing algorithms, 
search for short peaks of intensity, etc. In particular, 
one of these modules is used to calculate the averaged 
parameters of the recorded signals: the rms values   of 
the ADC codes, which are calculated both for the 
analog signal removed from the microphone and for 
its low-frequency envelope, as well as the number 
of events recorded per minute with ADC codes 
exceeding a number of threshold values.

Conclusion

As shown in the block diagram (Figure 3), the 
averaged parameters of the acoustic signal calculated 
in this way are loaded by the program k09007 into the 
special table for the acou database of the same name. 
The information stored in this table can be requested 
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by the web server to be displayed in text or graphic 
form on the Tian-Shan station web page. Processing 
requests from the web server and preparing for it the 
necessary information is made through an auxiliary 
program “CGE-general-purpose script k14003.
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