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Numerical aspects  
of the adaptive computational grid in solving the problems  

of electrical prospecting with direct current

Abstract. This paper is devoted to the numerical aspects of the adaptive computational grid in solving the 
problems of electrical prospecting with direct current. The purpose of this work is to determine the ac-
ceptable parameters of various algorithms for constructing a computational grid for computing electrical 
tomography curves associated with the ground surface relief. Optimal algorithms for constructing a com-
putational grid in problems of calculating of apparent resistivity curves, associated with the ground surface 
relief, can improve the accuracy in computation and cost-effectiveness in using computational resources. 
A mathematical model for calculating the field and of apparent resistivity curves, based on the theory of 
potentials, and the discretization of the surface of the calculated boundary are described. The problem is 
reduced to solving an integral equation.
We described here results of that method applied to the relief of simple 2D forms. Our calculations show 
that use of grid with triangulation gives the same results as a grid constructed with a refinement at the vicin-
ity of the source electrode. However, due to the refinement at the vicinity of the source electrode and mea-
suring line, the grid with triangulation is more efficient and allows one to calculate the function of apparent 
resistivity with relatively small number of nodes – approximately above 2000.
The data obtained in numerical experiments are basis for further research and for definition of the influence 
of relief forms on the distortion of apparent resistivity curves.
Key words: Method of integral equations, EIT, ground surface relief, apparent resistivity curves, 
computational grid.

Introduction

Progress in computing technologies has led 
to significant changes in software and hardware 
for geophysical methods of sounding of non-ho-
mogeneous media. Portable multi-channel sys-
tems for computerized geophysical equipments 
have evolved, which have changed the traditional 
method of field work. One of the leading meth-
ods of geoelectric research, used worldwide is 
the Vertical Electrical Sounding (VES) method 
in the modification of the electrical impedance 
tomography (EIT). The works that had the most 
influence on the development of the electrical to-
mography method in geophysics are the following: 
Edwards  L.S. (1977); Barker R.D. (1981, 1992); 
Griffits D.H. and Turnbill J. (1985); Zohdy A.A.R. 

(1989); Dahlin T. (1993, 1996); Loke M.H. and 
Barker R.D. (1996); Bobachev A.A., Modin I.N. 
and others (1995, 1996, 2006, 2008) [1-10].

In the problems of VES the study of the influ-
ence of experimental conditions on apparent resistiv-
ity curves is of major importance, in particular, that 
is the impact of a relief of the sounding medium. The 
review of the main researches concerning the influ-
ence of the ground surface relief is reported in the 
article [11]. As it is shown in works [11, 12], an ef-
ficient and accurate way to calculate the influence of 
a shape of a ground surface relief on sounding data 
is the Integral Equations Method (IEM). The method 
is based on representation of the potential of the sta-
tionary electric field via potentials of simple layers 
distributed on a surface of the medium and internal 
contact boundaries.
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In practice, construction of a geoelectric section 
of the medium is carried out on the basis of meas-
urements of apparent resistivity and using of 2D and 
3D inversion programs. These programs solve the 
inverse problem of EIT (for instance, Res2DInv, the 
author is M.H. Loke, 2000; and ZondRes2D of A.E. 
Kaminsky, last updated 26.06.10). In most cases the 
solution is smooth with blurred boundaries that do 
not always correspond to real geological situation. 
The sharp geoelectric borders become diffused, and 
the distortions of curves of apparent resistivity re-
lated with a surface relief generate pseudo anoma-
lies. From the best of our knowledge there are no 
programs which accurately calculate the influence of 
distortions, related with a ground surface relief.

Mathematical model and discretization of the 
surface 

As it is shown in [11], the problem of the numeri-
cal computation of a direct current field in the ho-
mogeneous medium with a ground surface relief can 
be reduced to the solution of the Fredholm integral 
equation of the second kind with a weak singularity: 

          (1)

Here M, P are points of the boundary Г of the me-
dium on which the integral is taken, q(P) is the den-
sity of a simple layer on boundary Г, which allows to 
calculate the potential of the field,  is a corner 
between a normal vector at the point P and the vec-
tor PM, F0(P) is the given function. Actually, F0(P) 
is expressed via the potential of the source electrode. 

In [11] the method of integral equations is real-
ized numerically on the grid refined near the source 
electrode, where large gradients of the field exist. 
The relief is mapped on the plane surface and the cal-
culated grid is constructed in polar coordinates. The 
source electrode is located at the origin point. The 
measuring line passes along the radius. Then the grid 
is adapted to the relief surface and to the position of 
the source electrode by the inverse mapping it to the 
relief surface (Figures 1, 2). Due to the integration 
error for coarse grid the calculated values of apparent 
resistivity show nonphysical oscillations when the 
distance from the origin of the coordinates (Figure 3, 
an asterisk indicates the position of the current source 
electrode) increases. 

To avoid these oscillations in the numerical 
solution, we have to make a significant refinement of 
the mesh and a local refinement of grid cells near the 
measurement line. It complicates the algorithm and 
breaks uniformity of the calculations.

Figure 1 – Computational grid in the polar coordinate system mapped to the plane

Other source of errors is the replacement of the 
infinite domain of integration by a finite domain; it 
means that we neglect induced charges outside of 
the calculated area. For decrease of this error it is 
necessary to reach compromise between expansion of 
calculated domain and the number of grid nodes. The 
solution is the use of a coarse grid far from current 
sources and the measurement line, since in these 

areas the potential of the field decreases inversely 
proportional to radius. 

To avoid mentioned above nonphysical 
oscillation and exclude excessive refinement of the 
grid, an alternate computational grid is constructed. 
This grid is based on the triangulation and is adapted 
not only to the position of the source electrode, 
but also is condensed near measuring line. In that 
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Figure 2 – Computational grid in the Cartesian coordinate system with the surface topography

Figure 3 – The calculation of the apparent resistivity far from the current source electrode  
and the corresponding relief for the grid with number of layers N = 20

algorithm the calculated area is set by some oval, its 
size is sufficient in order that it has been possible to 
neglect the field far from the source (Figures 4, 5). 

Acceptable size of the grid is determined via series 
of numerical experiments for each considered relief 
form. 

The grid construction problem is reduced to the 
following steps: map a relief surface of the medium 
on 2D domain of an oval shape on the plane. This 
oval is composed of two semicircles and one rect-
angle. Then we divide that oval into triangles with 
a condensation to the line connecting the centers of 
the semicircles. This line lies on a larger axis of an 
oval and corresponds to the measuring line. Due to 
the symmetry for 2D examples described below, only 

nodes of one half of the oval are used for calcula-
tions. 

Note that ��������������������������������������������in the article [13] ������������������������s�����������������������everal tests of the de-
scribed method are successfully performed for two-
layered model of the medium 

Brief description of the construction algorithm 
of a grid nodes. The user sets quantity of layers 
N, i.e. the oval is divided into N layers by the rule 
of concentric semi-ovals of radius ri=exp(i*hs-
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Figure 4 – The triangulation of the calculated area refined near the measuring line

Figure 5 – Triangulation of the relief surface

1)/α, where i is the number of a concentric semi-
oval, hs=ln(1+a*α)/N is a grid step on radius in 
the logarithmic coordinates, α is the coefficient 
of irregularity of the grid. Then thickness of the 
i-th layer will be ri-ri-1. Then the massif of nodes 
placed on for each layer is defined. By the tri-
angulation method the set of triangles satisfying 
Delaunay condition is formed for the given set of 
nodes. This condition allows to generate a set of 

triangles which are whenever possibly close to the 
set of equilateral triangles. Though in mathemati-
cal packages the functions realizing Delaunay’s 
triangulation are described, we elaborated the al-
gorithm which is much simpler than the common 
algorithm, because we takes into account features 
of our grid, namely, its layered structure and loga-
rithmic expansion with distance from the axis of 
the calculated area. 
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Calculated parameters of the algorithm are as fol-
lows: L �����������������������������������������������is the ����������������������������������������distance between center of side semicir-
cles of an oval; a is the maximal radius of semicircles 
of an oval; N is a quantity of layers of the grid; α is a 
coefficient of irregularity of the grid. The higher the 
coefficient of irregularity is, the more is a difference 
between the size of internal and external triangles. 
The program generates a set of nodes and triangles 
which further are used to solve an integral equation. 

Numerical results

Series of numerical experiments have been made 
to define acceptable parameters of the grid (Figures 
6, 7, 8����������������������������������������������), and comparison of the results for two algo-
rithms of grid’s construction are provided (Figures 
9, 10).

Impact on the triangulation of the irregularity pa-
rameter ��������������������  ���������������������   �α�������������������  ���������������������   �, number of layers N, the radius of semi-
circles of an oval a and length L have been analyzed. 
Number of nodes and triangles depend on these pa-
rameters and are determined after triangulation. Cal-
culations are made with parameters α in the range 
1.0÷16.0, N changes in the range 10÷100, parameters 
of a and L are assigned as a in 0.5÷2.0, L = 2·a.

Numerical experiments are executed for mod-
els with the negative and positive relief shapes, with 
sharp and smooth slope angles, also for a wavy shape 
of a relief. Source electrode is located in the origin 
of the coordinates. In Figure 9 curves of apparent re-
sistivity are constructed for a ground surface relief 
in the shape of hemispherical convexity with smooth 
slope angles for different calculation parameters. An 
asterisk indicates the position of the current source 
electrode.

Numerical experiments show that the most ac-
ceptable parameters of calculations provide a suffi-
cient condensation of the grid at the proximity of the 
measuring line, and the sufficient length of this line: 
at L=2·a. The most admissible values are the follow-
ing: α – not less than 8.0; N – not less than 20. At the 
same time the 20-layer grid is formed of triangles, 
with number of nodes is equal to 1834 and number 
of triangles is equal to 3416. Then the computational 
domain has been made wider by increasing parame-
ter a in the interval [1, 2.]. It turns out that changes of 
curves of apparent resistivity are within 0.6%. How-
ever, for every value of relief slope angles it is rec-
ommended to determine admissible parameters anew 
by making refinements of the grid and comparing the 
results.

Calculated curves of apparent resistivity for 
models of a ground surface relief for the negative 
and positive shapes in the form of hemispherical 
(semicircular) concavity and convexity for dif-
ferent slope angles α = 30, 45, 60 ° are given in 
Figures 10, 11, an asterisk indicates the position 
of the current source electrode. It follows from 
numerical experiments that values of maxima 
(minima) of the apparent resistivity curve con-
siderably increases (decreases) with increase of 
a slope angle.

Numerical results obtained for the same relief 
form for two type of grids has been compared with 
number of nodes close each other. For the grid with 
triangulation on relief with sinusoidal shape and 
slope angle 60 ° we use values of parameters L=5, 
a = 2.5, α =8.0, N=20. In those parameters 20-layer 
grid has 2170 nodes. 

The main parameters for the grid refinement only 
in the vicinity of the source electrode are the num-
ber of divisions along the radius and the angle [11]. 
Calculations on this grid are made on 20-layered grid 
with 2000 nodes. 

Calculated apparent resistivity curves for two grid 
types are compared in Figures (12, 13). An asterisk 
indicates the position of the current source electrode. 
It is seen that for the grid refined only near source 
electrode non-physical oscillations appear, which are 
related with coarse grid away from the source elec-
trode. Satisfactory results for this grid were found 
only with number of nodes equal to 8640. So, this 
kind of grid leads to the consumption of large ma-
chine resources. At the same time, results which are 
taken by mentioned above triangulation algorithm 
gives physical reliable curves of sounding with num-
ber of nodes above 2000.

Then we have made numerical simulations to 
check influence of other parameters. When the 
parameter a changes in the interval from 1 to 2, 
the relative change of apparent resistivity is not 
more than 0.6%. At the same time, maximal rela-
tive difference between apparent resistivity cal-
culated for N = 30 and N = 90 is 2.5%. Changes 
of N between 90 and 100 is followed by chang-
es of apparent resistivity not more than 0.5%. 
Changes of α between 8 and 16 yield to relative 
difference of apparent resistivity not more than 
0.2%. These mean, that for this relief form and 
length of measurement line with slope angle ≤ 
20̊ admissible calculation parameters are: a = 1, 
α=8, N = 30.
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Figure 6 – The shape of the ground surface relief and curves of apparent resistivity:
1 – the solution obtained for parameters N=10, α=1.0, f=372 k=660;

2 – the solution obtained for parameters N=20, α=8.0, f=1834 k=3416;
3 – the solution obtained for parameters N=40, α=16.0, f=8716 k=16718

1 – slope angle α = 30°; 2 – slope angle α = 45°; 3 – slope angle α = 60°

Figure 7 – Curves of apparent resistivity for the model of the surface with negative shape
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1 – slope angle α = 30°; 2 – slope angle α = 45°; 3 – slope angle α = 60°

Figure 8 – Curves of apparent resistivity for the model of the surface with positive shape

Figure 9 – The shape of the simulated ground surface and curves of apparent resistivity  
which are taken with different algorithms of grid’s construction:  

1 – by grid adapted to source electrode, 2 – by grid with triangulation adapted to measuring line
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Calculations are made for surfaces with given 
analytical form. Such method of assigning a func-
tion of the relief is very comfortable for simulations. 
However, in practice, the relief parameters are deter-
mined by field experiments. In electrical tomography 
method the relief is determined by the profiling step 
(distance between electrodes) and heights of measur-
ing electrodes which are placed along sounding area. 
This definition of the relief allows creating a table 
of values of the height function. The heights corre-
spond to the values of the function – zj (j=1..k), and 
the corresponding values of the argument – xj, can 
be calculated through the values of the step along the 
profile. For approximation of that tabulated function 
the interpolation methods are applied. 

For construction of computational grid on the 
arbitrary relief we considered two methods of inter-
polation of the relief surface: based on spline func-
tions and on radial basis functions (RBF) [14]. Cal-
culations are performed for different parameters of 
grid (number of nodes has been equal to 4147, 5222, 
7155, 8044). The big advantage of RBF interpola-
tion method is its computational efficiency com-
pared with the spline interpolation method. For ex-
ample, simulation on the grid with number of nodes 
f=7155 on a computer with processor Intel Core 
i7-4700, frequency 2.40 GHz, 16 GB RAM , takes 
900-1000 seconds for spline interpolated functions, 
while calculations with RBF method take 120-140 

seconds. Note that the calculation time depends on 
relief form also.

Conclusion

Interpretation of EIT data without taking into ac-
count influence of the relief form can give pseudo 
anomalies. We described here numerical method to 
compute the field and curves of apparent resistivity 
for a homogeneous medium with relief boundary 
based on the potential theory. Problem is reduced to 
the solution of an integral equation. The main feature 
of the method is its high accuracy and efficiency in 
calculations of the field for three-dimensional geom-
etry of the relief and for medium with several inner 
contact boundaries [15]. We described here results of 
that method applied to the relief of simple 2D forms. 
Our calculations show that use of grid with triangula-
tion gives the same results as a grid constructed with 
a refinement at the vicinity of the source electrode. 
However, due to the refinement at the vicinity of the 
source electrode and measuring line, the grid with tri-
angulation is more efficient and allows one to calcu-
late the function of apparent resistivity with relatively 
small number of nodes – approximately above 2000.

The data obtained in numerical experiments are 
basis for further research and for definition of the in-
fluence of relief forms on the distortion of apparent 
resistivity curves.

Figure 10 – The shape of the simulated ground surface and curves of apparent resistivity are taken  
with different algorithms of grid’s construction:  

1 – by grid adapted to source electrode, 2 – by grid with triangulation adapted to measuring line
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Immersion principle for a variation calculus problem  

with boundary conditions 
 

 
Abstract. The immersion principle is based on the investigation of the Fredholm integral equation of the 
first kind. For the Fredholm integral equation of the first kind, the existence theorem for the solution as 
well as the theorem on its general solution are proved. The basis of the proposed method for solving the 
variation problem is the immersion principle. The essence of the immersion principle is that the original 
variation problem with the boundary conditions with phase and integral constraints is replaced by 
equivalent optimal control problem with a free right end of the trajectory. This approach is made possible 
by finding the general solution of a class of Fredholm integral equations of the first order. In this work a 
method for solving the Lagrange problem with phase restrictions for processes described by ordinary 
differential equations without involvement of the Lagrange principle is supposed. Necessary and 
sufficient conditions for existence of a solution of the variation problem are obtained, feasible control is 
found and optimal solution is constructed by narrowing the field of feasible controls. In contrast to the 
well-known method for solving the problem of the variation calculus on the basis of the Lagrange 
principle, an entirely new approach an "immersion principle" is proposed.  
Key words: immersion principle, feasible control, integral equations, optimal control, optimal solution, 
minimizing sequence.  

 
 
Problem statement  
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where the control  
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continuous with respect to the variables together 
with partial derivatives by variables ),,,,( 10 xxux  

),(t  ),(t  It  are given s – dimensional 
functions. S is given bounded convex closed set of 

,2nR  the time moments 10,tt  are fixed. 

In particular, the set 
0,),(/),{(= 10

2
10  xxHRxxS j

n  ;1,= 1pj  

0,>=),(,< 10 xxa j  },1,= 21 ppj   where 

),,( 10 xxH j  11,= pj  are convex functions, 

,2n
j Ra   21 1,= ppj   are given vectors.  

Note, that if the conditions (1.7), (1.8) are 
satisfied for any control ),()( 2

mRILu   and the 
initial condition 00 =)( xtx  of the differential 
equation (1.2) has a unique solution ),(tx  .It   

This solution has derivative ),(2
nRILx  and 

satisfies equation (1.2) for almost all .It   
It should be noted that integral constraints 
 

0 1

1

0 0 1

0

1

( ( ), , ) =

( ( ), ( ), , , ) 0,

= 1, ,

j

t

j
t

g u x x

f x t u t x x t dt

j m



       (1.9) 

 
by introducing additional variables 0,jd  

,1,= 1mj  can be written in the form 
 

.1,=,=),),(( 110 mjdxxug jj   
 

Let the vector be 
,,0),0,0,,,(= 2

11
m

m Rddc    where 

0,jd  .1,= 1mj  Let a set be

},1,=0,/{= 1
2 mjdRcQ j

m   where 0,jd  

11,= mj  are unknown numbers. 
Definition 1.1. The triple 

10
*
1

*
0* ),),(( SSUxxtu   is called by admissible 

control for the problem (1.1) – (1.6), if the boundary 
problem (1.2) – (1.6) has a solution. A set of all 
admissible controls is denoted by ,  

.10 SSU    
From this definition it follows that for each 

element of the set Σ the following properties are 
satisfied: 1) the solutions ),(* tx  It  of the 
differential equation (1.2), issuing from the point 

,0
*
0 Sx   satisfy the condition ,=)( 1

*
11* Sxtx   and 
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also ;=),( 10
*
1

*
0 SSSxx   2) the inclusion 

),()(* tGtx  It  holds; 3) for each element of the 

set Σ we have the equality ,=),),(( 10 cxxug   
where 

)).,),((,),,),(((=),),(( *
1

*
0*2

*
1

*
0*1

*
1

*
0* xxugxxugxxug m  

The following problems are set:  
Problem 1.2. Find the necessary and sufficient 

conditions for the existence of a solution of the 
boundary value problem (1.2) – (1.6).  

Note, that the optimal control problem (1.1) – 
(1.6) has a solution if and only if the boundary value 
problem (1.2) – (1.6) has a solution.  

Problem 1.3. Find an admissible control 
.),),(( 10

*
1

*
0* SSUxxtu   

If problem 1 has a solution, then there exists an 
admissible control.  

Problem 1.4. Find the optimal control 

),()(* tUtu   the point ,(
*
0x  SSSx =) 10

*
1   and 

the optimal trajectory ),,;(
*
00* xttx  ,It   

where ),()(* tGtx   ,It  ,=)( 1
*
11* Sxtx   

0,),),((
*
1

*
0*  xxug j  ,1,= 1mj  

0,=),),((
*
1

*
0* xxug j   ,1,= 21 mmj   

=),),((
*
1

*
0* xxuJ   ),,),((inf 10 xxuJ   

.),(),),(( 10210 SSRILxxu m    
One of the methods for solving the problem of 

variation calculus is the Lagrange principle. The 
Lagrange principle allows to reduce the solution of 
the original problem to the search for an extremum 
of the Lagrange functional obtained by introducing 
auxiliary variables (Lagrange multipliers). 

 In the classical variation calculus, it is assumed 
that the solution of the differential equation (1.2) 
belongs to the space ����� ��) and the control u(t), t 
∈ I of the space ���� ��) in the optimal control 
problems [5], the solution x ∈ KC1 (I, Rn) and 
control u(t) ∈ KC1(I, Rm). In this paper, the control 
u(t), t ∈ I is chosen from L2(I, ��), and the solution 
x(t), t ∈ I is an absolutely continuous function on the 
interval I = [t0, t1]. For this case, the existence and 
uniqueness of the solutions of the initial problem for 
equation (1.2) are presented in the references [4, 6, 
7, 8].  

The purpose of this paper is to create a method 
for solving the problem of the variation calculus for 
processes described by ordinary differential 

equations with phase and integral constraints that 
differ from the known methods based on the 
Lagrange principle. It is a continuation of the 
scientific research presented in [9, 10]. 

 
The immersion principle  
 
Let the vector function be 0 0 1( , , , , ) =f x u x x t  

= 01 0 1 0 0 12
( ( , , , , ), , ( , , , , )).mf x u x x t f x u x x t  We 

introduce the vector function 1 2
( ) = ( ( ), , ( )),mt t t    

It  as .,),,),(),((=)( 100

0

Itdxxuxft
t

t

   

It follows that 
 

),,,),(),((=)( 100 txxtutxft  
 

0 1

0 1 2

( ) = 0, ( ) =

, ( , ) , ( ) ( , ),
( ) ( ).

m

t t

c Q x x S u t L I R
x t G t

 

   


 

 
Now the optimal control problem (1.1) – (1.6) is 

written in the form: minimize the functional  
 

0 1

1

0 0 1

0

( ( ), , ) =

( ( ), ( ), , , ) inf
t

t

J u x x

F x t u t x x t dt



      (2.1) 

at conditions 
 

,),,,()()(= IttuxftBxtAx       (2.2) 
 

,),,,),(),((=)( 100 Ittxxtutxft      (2.3) 
 

0 1 0 1

0 1

( , ) = ,

( ) = 0, ( ) = ,

x x S S S

t t c Q 

 


          (2.4) 

 
.),,()(),()( 2 ItRILutGtx m      (2.5) 

 
Note, that the problems (1.1) – (1.6) and (2.1) – 

(2.5) are equivalent. We introduce the following 
vectors and matrices  

 

, 2
1

, ,2 2 2

( )
= , ( ) = ,

n m

m n m m

A t Ox
A t

O O




          
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, 2
1 2

,2 2

( )
( ) = , = ,

n m

m r m

OB t
B t BO I

  
        

 

 

1 10 0
0 0 1

0 1

1 , 2

( ) =( ) =
( ) = = , ( ) = ,

( ) = 0 ( ) =
= ( , ),n n m

x t xx t x
t t

t t c
P I O

  
 

  
         

 
where qkO ,  is a rectangular matrix of order qk   

with zero elements, nI  is the unit matrix of order 
.nn  

Then the optimal control problem (2.1) – (2.5) 
has the form: minimize the functional  

 
0 1

1

0 1 0 1

0

( ( ), , ) =

( ( ), ( ), , , ) inf
t

t

J u x x

F P t u t x x t dt



       (2.6) 

 
at conditions 

 

1 1 1

2 0 1 0 1

= ( ) ( ) ( , , )
( , , , , ),

A t B t f P u t
B f P u x x t

  


 



      (2.7) 

 
,=)(,=)( 111,12000 QStOSt m    (2.8) 

 
.),,()(),()( 21 QcRILutGtP m     (2.9) 

 
Let a set be 
 

0}./{= 1  dRd m
           (2.10) 

 
We consider a linear controllable system  
 

,),()()()(= 22111 IttwBtwtBytAy   (2.11) 
 

),,()(),,()( 2
2221

mr RILwRILw    (2.12) 

0 0 0 0 ,12

1 1 1 1

( ) = ( ) = ,

( ) = ( ) = .
my t t S O

y t t S Q

 

 

 

 
    (2.13) 

 
The bases of the immersion principle are the 

following theorems on the properties of the solution 
of the Fredholm integral equation of the first kind 

 

,=)(),(= 0

1

0

adttuttKKu
t

t
             (2.14) 

 

where ,),(: 1
2

nk RRILK   ),( 0 ttK  is a given 

matrix of order kn 1  with piecewise-continuous 
elements by t for each fixed ,0t  ,1

00 Rt   

,1
11 Rt   ,Ø=10   Ø is an empty set, 
1nRa  is any given vector, ),()( 2

kRILu   is the 
origin function. 

Theorem 2.1. The integral equation (2.14) for 
any fixed a 1nRa  has a solution if and only if the 
matrix 

,),(),(=),( 0
*

0

1

0

10 dtttKttKttC
t

t
         (2.15) 

 
of order 11 nn   is positive definite, where (*)  is a 
transposition sign. 

Theorem 2.2. Let the matrix ),( 10 ttC  be 
positive definite. Then the general solution of the 
integral equation (2.14) has the form 

 
* 1

0 0 1

1
* 1

0 0 1 0

0

( ) = ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( ) , ,
t

t

u t K t t C t t a v t

K t t C t t K t t v t dt t I





 

 
   (2.16) 

 
where ),()( 2

kRILv   is an arbitrary function, 
1nRa  is any vector. 

The proofs of Theorems 2.1. and 2.2. are given 
in [9, 10]. 

Let the matrix )),((=)( 213 BtBtB  of order 

),()( 22 rmmn   and a vector function

).,())(),((=)( 2
221

mrRILtwtwtw   It is easy to 

verify that the control ),,()( 2
2

mrRILw   which 
takes the trajectory of the system (2.9) from any 
initial state 0  to any desired final state ,1  is a 
solution of the integral equation 

 

,=)()(),( 30

1

0

adttwtBtt
t

t

          (2.17) 
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where ),()(=),( 1   tt  )(t  is a fundamental 
matrix of solutions of linear homogeneous system 

,)(= 1  tA  the vector 
 

.),(=),(= 011010   ttaa        (2.18) 
 

As follows from (2.14), (2.17), the matrix 
),(),(=),( 300 tBttttK   at ,= 21 mnn   

.= 2mrk   For the integral equation (2.15) the 
statements of Theorems 2.1. and 2.2. are applicable. 
From the initial data of the system (2.11) – (2.13) 
we define the following matrices and vectors 

 
1

* *
0 1 0 3 3 0

0

1
*

0 0 0 1

0

( , ) = ( , ) ( ) ( ) ( , ) =

( , ) ( , ) = ( , ),

t

t

t

t

T t t t t B t B t t t dt

K t t K t t dt C t t

 






 

 
* * 1

1 0 1 3 0 0 1
* 1

0 1 0 1

* * 1
1 0 0 1

* * 1
2 0 0 1

( , , ) = ( , ) ( , ) =

( , ) ( , ) =

( ) ( , ) ( , )
= ,

( , ) ( , )

t B t t T t t a
K t t C t t a

B t t t T t t a
B t t T t t a

  







 



 
 

 

 

 
* * 1

1 3 0 0 1 0 1
*

0 0 1 0 1

* * 1
111 0 0 1 0 1

* * 1
122 0 0 1 0 1

( ) = ( ) ( , ) ( , ) ( , ) =

= ( , ) ( , ) ( , ) =

( )( ) ( , ) ( , ) ( , )
= ,

( )( , ) ( , ) ( , )

N t B t t t T t t t t
K t t C t t t t

N tB t t t T t t t t
N tB t t T t t t t







  

 

     
         

 

 
1

2 0 1 0 1 0 1 0
1

0 0 0 1 0 1 1

( , , ) = ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ,

t t t T t t T t t
t t T t t T t t t t

  







  

 
 

 
1

2 0 0 0 1 0 1( ) = ( , ) ( , ) ( , ) ( , ),
,

N t t t T t t T t t t t
t T

 


 

1
* *

1 0 3 3 0

0 0 1 1

( , ) = ( , ) ( ) ( ) ( , ) ,

( , ) = ( , ) ( , ), ,

t

t

T t t t B B t d

T t t T t t T t t t I

     

 


 

 
where the vector a is defined by formula (2.16).  

 

Theorem 2.3. Let the matrix be 0.>),( 10 ttT
Then the control 

),())(),((=)( 2
221

mrRILwww   transforms the 
trajectory of the system (2.11) – (2.13) from the 
initial point ,1200 mOS   to the final state 

QS  11  if and only if 
 

1 1 1 2 1
* * 1

1 1 0 0 1

11 1

1 1 2

( ) = { ( ) ( , ) / ( ) =

( ) ( ) ( , ) ( , )
( ) ( , ),

, ( ), ( ) ( , )},

r

r

w t W w L I R w t
v t B t t t T t t a

N t z t v

t I v v L I R



  

   



    

  (2.19) 

 

 

2
2 2 2 2 2

* * 1
2 2 0 0 1

12 1

2
2 2 2

( ) = { ( ) ( , ) / ( ) =

( ) ( , ) ( , )
( ) ( , ),

, ( ), ( ) ( , )},

m

m

w t W w L I R w t
v t B t t T t t a

N t z t v

t I v v L I R



  

   


    

  (2.20) 

 
where )),(),((=)( 21 tvtvtv  ),,()( 21

rRILv   

),()( 2
22

mRILv   are arbitrary functions. The 

function ),,,(=),( 21 vvtzvtz  It  is the solution 
of the differential equation 

 
1 1 1 2 2

0

= ( ) ( ) ( ),
( ) = 0, ,

z A z B t v t B v t
z t t I
 




        (2.21) 

 
.,()(),,()( 2

2221
mr RILvRILv   

   (2.22) 
 

The solution of the differential equation (2.11) 
corresponding to the control (2.19), (2.20) has the 
form 

 
2 0 1 2 1( ) = ( ) ( , , ) ( ) ( , ),

,
y t z t t N t z t v

t I
   

   (2.23) 

 
where ),,(=)( 1 vtztz  .It   
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Proof. The proof of the theorem follows from 
Theorems 2.1. and 2.2. As follows from the above, 
the solution of the boundary value problem (2.11) – 
(2.13) reduces to finding the general solution of the 
integral equation (2.17). The integral equation 
(2.17) is a particular case of (2.14), where 

).(),(=),( 300 tBttttK   Further, by replacing 

),( 0 ttK  on )(),( 30 tBtt  we get 

),(=),( 1010 ttTttC  (see (2.15)). From (2.16) 
follows (2.19), (2.20). The differential equation 
(2.21) with control (2.22) and relation (2.23) follows 
directly from formulas 

 

3

0

1

1 1 0 0 3

0

( , ) = ( , ) ( ) ( ) ,

( , ) = ( , ) ( , ) ( ) ( ) .

t

t

t

t

z t v t B v d

z t v t t t t B t v t dt

   

 




 

 
It is easy to see, that ,=)( 00 ty  .=)( 11 ty  

The theorem is proved. 
Note, that: 1) the sets ),,()(= 211

rRILtWW   

),()(= 2
222

mRILtWW   contain all sets of the 

functions ),(1 tw  ),(2 tw  ,It  for which the 
boundary value problem (2.11) – (2.13) has a 
solution; 2) ,)( 11 Wtw   ,)( 22 Wtw   then the 
solution of the system (2.11) – (2.13) is defined by 
formula (2.23); 3) outside sets ,1W  2W  there are no 
controls for which the boundary value problem 
(2.11) – (2.13) has a solution; 4) Theorem 2.3. 
allows to replace the boundary value problem (2.11) 
– (2.13) by the initial problem (2.21) – (2.23).  

Lemma 2.4. Let the matrix be 0>),( 10 ttT . 
Then the boundary problem (2.7) – (2.10) is 
equivalent to the following problem  

 
1 1 1 1 0 1( ) , ( ) = ( ( ), ( ), , , ),

,
w t W w t f P y t u t x x t

t I



 (2.24) 

 
2 2 2 0 1 0 1( ) , ( ) = ( ( ), ( ), , , ),

,
w t W w t f P y t u t x x t

t I



  (2.25) 

 
 

1

2

( ) = ( ( ), ) = ( ) = { ( )

( , ) / ( ) ( ) ( ), },s

p t F P y t t V V t p
L I R t p t t t I 

  

   
     (2.26) 

 
1 1 1

2 2 0

= ( ) ( ) ( )
( ), ( ) = 0, ,

z A t z B t v t
B v t z t t I

 
 


          (2.27) 

 
),,()(),,()( 2

2221
mr RILvRILv      (2.28) 

 
2

0 1 0 1

2

( , ) = ,

( ) ( , ), ,

n

m

x x S S S R
u L I R d

  

  
          (2.29) 

 
where the function )(ty , It  is defined by the 
formula (2.23).  

Proof. Lemma 2.4. states, that the boundary 
value problem (2.7) – (2.10) has a solution if and 
only if the relations (2.24) – (2.29) are satisfied.  

In fact, if the relations (2.24) – (2.29) are held, 
then )(=)( tty  , It , moreover 

000 =)(=)(  tty , 111 =)(=)(  tty  and the 
inclusions (2.9), (2.10) are satisfied. 

We suppose, that the boundary value problem 
(2.7) – (2.10) has a solution. It is possible if and 
only if 11 )),(),(( WttutPf  , 

21010 ),,),(),(( WtxxtutPf   by Theorem 2.3. 
These inclusions are equivalent to equalities (2.24), 
(2.25), where )(tz , It  – is a solution of the 
differential equation (2.27) with controls (2.28). The 
inclusion )()(1 tGtP  , It  has the form (2.26), 
and the relations (2.9), (2.10) are written in the form 
(2.29). The lemma is proved. 

Lemma 2.5. Let the matrix be 0>),( 10 ttT . 
Then the boundary value problem of optimal control 
with constraints (1.1) – (1.6) is equivalent to the 
following problem: minimize the functional 

 
1 2 0 1

1

0 1 0 1

0

( ( ), ( ), ( ), ( ), , , ) =

( ( ), ( ), , , ) inf
t

t

I u p v v x x d

F P y t u t x x t dt

   

    (2.30) 

 
at conditions 
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1 1 2 0 1

1 1

1 1

0 0
2

1 2
2

0 1 0 1
2

1

( ( ), ( ), ( ), ( ), , , ) =

( ( ), ) = [| ( )

( ( ), ( ), ) | | ( )

( ( ), ( ), , , ) |
| ( ) ( ( ), ) | ] = 0,

t t

t t

I u p v v x x d

F q t t dt w t

f P y t u t t w t
f P y t u t x x t
p t F P y t t dt

   

 

  

 

 

 

    (2.31) 

 
1 1 1 2 2

0

= ( ) ( ) ( ) ( ),
( ) = 0, ,

z A t z B t v t B v t
z t t I
 




          (2.32) 

 
),,()(),,()( 2

2221
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where 11 )( Wtw  , 22 )( Wtw  , the function )(ty , 

It  is defined by the formula (2.23). 
Proof. The proof follows from Lemma 2.4. The 

value of the functional 01 I  The functional 0=1I  
if and only if the equalities (2.24) – (2.26) are 
satisfied, relations (2.27) – (2.29) coincide with 
(2.31) – (2.33). The functional (1.1) can be written 
in the form (2.30). The lemma is proved.  

The function 
 

1
2
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2

2 0 1 0 1
2
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 

 

 
where 11 )( Wtw  , 22 )( Wtw  , 

),()(),,(),(=)( 12102 vtztNtvtzty   , It , 

),,),(),(),(),(),,(),,((=)( 10211 dxxtvtvtptuvtzvtztq
. 

Note, that:  
1) Since the initial problem (1.1) – (1.6) is 

equivalent to (2.30) – (2.33), that the problem (1.1) 
– (1.6) has a solution if and only if the relations 
(2.30) – (2.33) are satisfied; 

 
 
 

2) Since the value 01 I , that for the existence 
of a solution of the boundary value problem (1.2) – 
(1.6) it is necessary and sufficient that 

0=),,,,,,(inf 10211 dxxvvpuI  under the 
conditions (2.27) – (2.29). 

3) The transition from the original boundary 
value problem (1.2) – (1.6) to the initial optimal 
control problem inf),,,,,,( 10211 dxxvvpuI  
under the conditions (2.27) – (2.29) is called the 
immersion principle.  

 
Conclusion  
 
 The Lagrange problem of the variation calculus 

is investigated in the presence of phase and integral 
constraints for processes described by ordinary 
differential equations. The particular cases of which 
are the simplest problem, the Bolz problem, the 
isoperimetric problem, the conditional extremum 
problem.  

The main scientific results are: 
 –reduction of the boundary value problem 

connected to the conditions in the Lagrange problem 
to the initial optimal control problem with a specific 
functional;  

– necessary and sufficient conditions for the 
existence of the admissible control;  

– method of constructing an admissible control 
on the limit point of the minimizing sequence;  

The scientific novelty of the results is that: there 
is no need to introduce additional variables in the 
form of Lagrange multipliers; proof of the existence 
of a saddle point of the Lagrange functional. 
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Abstract. In this paper I review in a brief and introductory way some important developments in the 
analysis of the dynamics and statistics of N – dimensional Hamiltonian systems, in which my research 
team and I have played an important role over the last two decades. The results I describe here have 
helped us understand the surprising importance of simple periodic orbits and their local stability 
properties in revealing crucial dynamical and statistical properties of the systems as a whole. This has led 
us to introduce the concepts of “strong” and “weak” chaos that are expected to play a significant role in 
better understanding the complexity of these multi-dimensional systems, which have important 
applications in solid state, field theory, superconductivity and more recently nonlinear optics. 
Key words: N – dimensional Hamiltonian systems, superconductivity, nonlinear optics. 

 
 
Introduction 
 
Let us consider the 2- degree of freedom 

Hamiltonian system: 
� = �� + ��� = 

= �
� ���� + ���) + �

� ��� + ��) + �����            (1) 

 
Its solutions for ε = 0 (the uncoupled case), 

plotted as intersection points on a Poincare surface 
of section of the 4 – dimensional space, are shown 
as a family of smooth closed curves in the graph on 
Figure 1. 

 
 

  
Figure 1 – A surface of section plot on the plane x(tk), px(tk), (every time y(tk)=0).  

All orbits are obtained for the same constant value of the Hamiltonian, H=E)
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It is important to note that in this integrable 
(separable) case, all solutions correspond to periodic 
and quasiperiodic orbits with two frequencies ω1 
and ω2 belonging to the two uncoupled oscillators in 
(1). Thus, if ω1 and ω2 are rationally related, i.e. ω1 / 
ω2 = m/n (m,n positive integers) the corresponding 
closed curves in Figure 1 are filled with periodic 
orbits, while if ω1 / ω2 = irrational, the curves are 
filled by a single initial condition by an orbit that 
never closes and is called a quasiperiodic solution. 

Let us now make ε > 0, e.g. ε=0.02. What we 
discover is remarkable: While many smooth closed 
curves corresponding to ω1 / ω2 = irrational survive, 
those that correspond to ω1 / ω2 = rational have 
disappeared giving their place to chains of islands 
having a stable periodic orbit at their center and a 
chain of “saddle – like” regions where two pointed 
regions meet at an unstable periodic orbit of the 
same period, see Figure 2 below. Now if we 
magnify the region close to one of those unstable 

periodic points shown in Figure 2(a) by an arrow, an 
amazingly complex network of islands, as well as 
small scale chaotic region that we will later identify 
with “weak chaos”, are revealed in Figure 2(b) 
below [1].  

If we now further increase the value of ε to ε = 
0.2, we observe in Figure 3, that the small scale 
chaotic regimes observed near unstable periodic 
orbits (saddle points) of Figure 2 have now grown 
considerably into domains that we will refer to as 
domains of “strong chaos” later in this paper. 
Although we don’t show it here, as one can imagine, 
increasing further the value of ε, the islands of 
stable periodic motion will diminish in size, while 
the strongly chaotic regimes will further increase, 
showing a tendency to occupy most of the available 
phase space. The same effect will occur, if we fix 
the value of ε > 0 and start increasing the total 
energy E at which the surfaces of section are 
computed.

 
 

 
 

(a)                                                                        (b) 
Figure 2 (a) – The surface of section of Figure 1 showing orbit intersections in the plane x(tk), px(tk),   

for ε=0.02. (b) A magnification of the region shown by the arrow in (a), where,   
besides the chains of small islands having stable periodic orbits at their center,  

one observes a region of randomly scattered points which constitute a “weakly chaotic’ domain. 
 

 
Figure 3 – The surface of section of the orbits for ε=0.2 and the same energy value  

E as in Figure 2. Note how the weakly chaotic domains of Figure 2 have grown  
to a much greter size forming regions that we will later  



23A. Bountis

International Journal of Mathematics and Physics 9, №2, 21 (2018)

 

Simple periodic orbits, weak and strong 
chaos 

 
We study Hamiltonian dynamical systems of N 

degrees of freedom (dof), in an 2N–dimensional 
phase space of position and momentum coordinates, 
whose equations of motion are written in the form 

 
���
�� = ��

���
, ���

�� = ��
���

, k = 1,2, . . . N,         (2)  
 

where H is the Hamiltonian function. For more 
details on the results that follow in the present paper 
the reader is invited to consult [2]. 

If H does not explicitly depend on the time t, it 
represents a first integral, whose value gives the 
total energy of the system E. We will assume that 
the Hamiltonian can be expanded in power series as 
a sum of homogeneous polynomials of degree m ≥2, 
so that the origin is a stable equilibrium point of the 
system: 

 
� = ��(��, � , ��, ��, � , ��) + 

 
+��(��, . . . , ��)+. . . = �.                    (3) 

 
We now assume that Hm = 0 for all m > 2 and 

that the linear equations resulting from (2) and (3), 
yield a matrix, whose eigenvalues all occur in 
conjugate imaginary pairs, ±iωq, and thus provide 
the frequencies of the so-called normal mode 
oscillations of the linearized system.  

 

�� = � ��

�

���
= �, �� = 1

2 ���� + ������ �,  

� = 1,2, . . . , �,                           (4) 
 

where Pq, Qq are the normal mode coordinates.  
Then, according to a famous theorem by 

Lyapunov, if none of the ratios of these eigenvalues, 
ωj/ωk  is rational, for any j, k = 1,2,…,N, j ≠ k, all 
linear normal modes continue to exist as periodic 
solutions of the nonlinear system.  

If the frequencies for Hm≠0 are close to those of 
the linear modes, the continuation of the linear 
modes are examples of simple periodic orbits 
(SPOs) of the nonlinear system, where all variables  
 

oscillate with the same frequency. We shall mention 
below the spectrum of Lyapunov exponents, and 
will discuss how its properties are connected to the 
emergence of strongly (large scale) chaotic behavior 
in the solutions.  

We will also describe the method of the 
Generalized Alignment Indices GALIk, 
k=1,2,…,2N, which efficiently identify domains of 
chaos and order in N dof Hamiltonian systems and 
2N-dimensional (2N-D) symplectic maps.  

 
Indicators of regular and chaotic dynamics 
 
One of the most important questions in 

Hamiltonian dynamics concerns the connection 
between the local (linear) stability properties of 
simple periodic solutions of Hamiltonian systems, 
with the more “global” dynamics. We will examine 
this question using the one-dimensional lattice (or 
chain) of coupled oscillators called the Fermi Pasta 
Ulam β-model described by the N dof Hamiltonian  

 

� = 1
2 � ���

�

���
+ � 1

2 (���� � ��)�
�

���
+ 

 
+ �

� ∑ (���� � ��)����� = �,                (5) 
 

where xj are the displacements of the particles from 
their equilibrium positions, and pj = dxj /dt are the 
momenta, β is a positive real constant and E is the 
total energy. Let us now consider some examples of 
simple periodic solutions (SPOs), which have well-
defined symmetries and are known in closed  
form: 

(I) the out of phase (pi-mode)  
 

���(�) = ������(�) = ��(�), � = 1,2, . . . , �      (6) 
 

where N is even, under periodic boundary 
conditions; 

(II) the SPO1 mode, where every 2 particles one 
is stationary and those on its either side move out of 
phase; 

(III) the SPO2 mode, where every 3 particles 
one is stationary and the two on either side move out 
of phase both under fixed boundary conditions (fbc). 
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Figure 4 – Examples of SPOs that we have called the Out of Phase (or pi-)   
Mode (above), the SPO1 orbit (middle) and the SPO2 orbit  (below) 

 
 
Applying Lyapunov's Theorem to the FPU 

system we can prove the existence of SPOs as 
continuations of the linear normal modes of the 
system, whose energies and frequencies are  

 

�� =
1
2 ���

� � ��������� 
 

��������� = 2��� � ��
�(���)� ����� = 1�2� � � � � ������ (7)  

 
 It is thus easy to verify that SPO1 and SPO2 

orbits, as NNMs, are identified by the indices q = 
(N+1)/2 and  q = 2(N+1)/3 respectively.  

In fact, it is possible to formulate a semi – 
analytical criterion for “weak” chaos: 

We have verified numerically that the above 
NNMs first destabilize at energy densities of the 
form       

    Ec/N ~ 1/N α, α=1,2, as N→∞.              (8) 
 

In agreement with an analytical criterion by 
Flach and co-workers [3], Ec/N ~ π2/6βN2, we find 
that for α = 2 orbits (like SPO2) instability implies 
“weak” chaos and the breakup of FPU recurrences. 
On the other hand, if α = 1, for which the SPO1 
mode destabilizes we find what we shall later call 
“strong” chaos. Indeed, we believe that (8) may be 
true for other NNM solutions as well, but so far no 
proof of this statement is available. 

Lyapunov exponents and “strong” chaos  
 
Chaotic behavior is usually studied by 

evaluating the spectrum of Lyapunov exponents, Li, 
i=1,….2N, (LEs) L1=Lmax>L2>….>L2N , defined as 
follows: 

 

��� =
1
� ��

�|��(�)|�
�|��(0)|�

������������ ��� 
 

�������� = ��������
���������� = 1�2� � � � �2�               (9) 

 
where ��� represent rates of separation from the 
reference orbit of small deviations ��(�) along the 
2N directions in phase space. If the maximum of 
these exponents Lmax > 0, the orbit is chaotic, while 
if Lmax = 0 the orbit is stable. In the thermodynamic 
limit, where E→∞ and N →∞ (with E/N fixed), the 
Lyapunov spectrum near unstable NNMs tends to a 
smooth curve, see Figure 5(a) above [2]. 

For our two orbits SPO1 and SPO2, at low 
energies when they are unstable, we find that their 
Lyapunov spectra are distinct see Figure 5(b). 
Raising the energy, however, we observe in Figure 
5(c) that the Lyapunov spectra converge to the same 
exponentially decreasing function Li (N) ~ exp(-
αi/N), ,i=1,2,…,N, thus providing evidence that the 
orbits explore the same chaotic region.  
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Figure 5 – (a) The spectrum of  Lyapunov exponents near an out of  phase orbit  

of the β – FPU  model  as E and N grow (E/N=3/4). In (b) and (c)  
the Lyapunov spectra of solutions  starting near unstable SPO1and SPO2  orbits converge,  

as the energy grows from E= 2.1 in (b) to E=2.6 for (c),  
indicating that the chaotic regions about these orbits have merged 

 
 
Beyond Lyapunov exponents: The 

Generalized Alignment Indices (GALI)  
 
As mentioned above, the Lyapunov exponents 

are always computed with respect to a single 
deviation vector from the reference orbit. More than 
a decade ago, however, several researchers [4, 5] 
introduced an alternative approach by defining as 
the GALI indicators quantities which take into 
account simultaneously 2, 3 or more deviations from 
the reference orbit, obtaining thus more 
comprehensive results, enabling us to: (a) detect the 
chaotic nature of the orbits more rapidly than other 
methods and, (b) identify quasiperiodic motion 
providing also the dimension of the torus.  

The GALIk, k = 2, 3,…., N indicators are 
defined, through the evolution of k initially linearly 
independent deviation vectors wi(0), as the volume 

of a k-parallelepiped given by the wedge  
product  

 
����� � �|���(�) � ���(�)�� ���(�)|�� 

�� � ���� � � � � �                          (10) 
 

whose k edges are the unitary deviations ���(�) �
��(�)��|��(�)|�� Thus, it is evident that if at least 
two of the deviation vectors become linearly 
dependent, the volume of the k – parallelepiped 
represented by the wedge product in (10) becomes 
zero, and the GALIk vanishes. Thus, as expected, for 
chaotic orbits, deviation vectors tend to become 
linearly dependent in the direction defined by the 
maximal Lyapunov exponent. As an example of this 
effect, we show schematically in Figure 6 below 
how this happens in the case of the GALI2 indicator
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Figure 6 – Behavior of GALI2 for chaotic motion 
 

 
In fact, one can show analytically that in the 

case of chaotic orbits, all GALIk tend to zero 
exponentially for large t, following a detailed 
asymptotic argument analyzing the quantities (10 ) 
in determinants and keeping the most dominant 
terms as t → ∞ [2]. To see the main idea of how this 
is done, we show in the next subsection that 
GALI2(t) ~ exp[-(σ1 – σ2 )t] →0 , σ1 > σ2 , being 
approximations of the two largest Lyapunov 
exponents L1 > L2 . 

 
Asymptotic analysis of the GALI2 for chaotic 

motion 
 
The evolution of one deviation vector from a 

chaotic orbit can be approximated by the 
expression:  

 

��(�) =���(�)����
��

���
�̂� ≈ 

 
≈ ��(�)�����̂� + ��(�)�����̂�+. ..                (9) 

 
where σ1 > σ2 > … are approximate values of the 
Lyapunov exponents up to the time t of integration.  

Thus, dividing this deviation by its magnitude 
we derive a leading order estimate for w1(t):  

 

�� =
��(�)

�|��(�)|�
= ��(�)�����̂� + ��(�)�����̂�

���(�)� ����
= 

 

= ±�̂� + ��(�)

���
(�)� �

�(�����)���̂�,                (10) 

 
and an analogous expression for w2(t):  

�� =
��(�)

�|��(�)|�
= ��(�)�����̂� + ��(�)�����̂�

���(�)� ����
= 

 

= ±�̂� + ��(�)

���
(�)� �

�(�����)���̂�,             (11) 

 
Taking their cross product gives the following 

result:  
����� = �|��(�) � ��(�)|� ≈ 

 

≈ ����
(�)

��
(�) ± ��(�)

��
(�)�� ��(�����)�,                 (12) 

 
which clearly demonstrates what we referred to 
above as exponential decrease of the GALIs to zero 
as t goes to infinity. 

 
Behavior of GALI2 for regular motion 
 
It is also of great importance to analyze how 

GALIs will behave in time if they represent 
deviations of “ordered” or “regular” orbits, which 
have zero Lyapunov exponents and lie on tori of N – 
dimensional quasiperiodic motion in N dof 
Hamiltonian systems. Remarkably enough, all 
deviation vectors in that case become tangent to the 
torus, and, for a k -dimensional torus, the GALI of 
the associated k linearly independent vectors will 
not go to zero since the volume of the corresponding 
parallelepiped will not vanish (see a pictorial 
representation of this in Figure 7 below in the case 
of a 2 – dimensional torus). 

We now make the following very important 
observation: As we just explained, in the case of  
regular orbits lying on s-dimensional tori, all  
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deviation vectors tend to fall on the tangent space of 
the torus. As a result, if we start with k ≤ s, the 
deviation vectors will remain linearly independent 
on the tangent space of the torus and the GALIk will 
be approximately constant, different from zero.  
Hence, for quasiperiodic motion, we find GALI2(t) ≈ 
const. for all t > 0.  

Now, what is interesting is that if we start with k 
> s deviation vectors, since only s of them will in 
the end be linearly independent, the GALI will 
again go to zero, but this time following a power 
law! Clearly, this will be of great help in identifying 
the actual dimension of the torus, for which no 
other such criteria are available. 

 

 
 

Figure 7 – Behavior of GALI2 for regular motion occurring  
on a 2-dimensional torus. 

 
 
Summarizing, we have shown by asymptotic 

analysis that: (a) for a chaotic orbit, all deviation 
vectors tend to align in the direction of L1 , and all 
GALIk tend to zero exponentially following the law 

 
�����∞ exp (−(�� − �� � �� − �� � � � �� − ��)�) (13)  

 
where Li are the k largest LEs. (b) On the other 
hand, for k > s, all GALIk approach 0 as t →∞ 
following power laws,  
 

�����∞ 1
���� � � � � � �� − �� 

�����
�

��(���) � �� − � � � � ���           (14) 
 

since some deviation vectors will eventually become 
linearly dependent. In Figure 8 below we display 
some applications of the above theory to the study 
of tori in a 2 dof and a 3 dof Hamiltonian system. In 
the former case the tori are 2 – dimensional and for 
this reason GALI2 tends to a constant while higher 
GALIs decay by power laws given by (14), while in 
the latter the tori are 3 – dimensional and, therefore, 
not only GALI2 , but also GALI3 go to zero 
following the power laws (14) presented above.

 
 

 
Figure 8 – The GALI indices for a Hamiltonian system of (a) 2 degrees of freedom 

 and (b) 3 degrees of freedom. In case (a), since only GALI2 is constant the motion lies  
on a 2-dimensional torus, while in (b), where both GALI2 and GALI3 are constant, the torus is 3-dimensional 
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Localization in 1-dimensional lattices 
 
Localization in Fourier space 
 
In 1955, by E. Fermi, J. Pasta and S. Ulam 

(FPU) used the computers available at the Los 
Alamos National Laboratory to integrate a chain of 
31 nonlinear oscillators, coupled to their nearest 
neighbors, and investigate how energy was shared 
by all normal modes of the system. Starting with 

initial conditions placed on the  q=1 linear normal 
mode, they discovered, for small energies, a near-
recurrence to their initial state after relatively short 
times exciting very few other modes, see Figure 9 
(a) (for more explanations, the reader is again 
invited to consult the relevant chapters of [2]). 

This remarkable observation ran contrary to the 
expectation of energy sharing among all modes 
predicted by equilibrium statistical mechanics and 
was termed the “paradox” of FPU recurrences.

  
 

 
 

Figure 9 – (a) Localization in modal space in the form  of FPU recurrences,  
discovered by Fermi Pasta and Ulam, for a lattice of 31 particles  

 
 
"Energy localization” here implies localization 

in Fourier q-modal space, as the FPU recurrences 
were observed when all the energy was placed in the 
q=1 mode.  

Flach and his co-workers, in 2005 [3] introduced 
the concept of q-breathers, as exact periodic 
solutions of the problem. They showed that if we 
excite a single low q-breather mode the total energy 
remains localized only within a few of these low 
frequency modes, also called metastable states or 
natural packets.  

A more complete interpretation of the FPU 
paradox was provided by our group [6], where 
we introduced the concept of q-tori, reconciling 

q-breathers with the metastable packets of low-
frequency modes. Now we shall use the GALI 
indices to study the stability of these q–tori and 
the breakdown of the associated FPU 
recurrences. 

More specifically, in Figure 10 below we show 
that it is indeed possible in an N = 8 dof case to 
study a torus of dimension 2 by selecting initial 
conditions exciting a continuation of 2 linear modes 
(see Figure 10(a)). Then, because this torus is stable, 
its dimensionality for long times is verified by only 
the GALI2 being constant while the higher order 
GALIs decay by algebraic power laws given by (14) 
(see Figure 10(b)). 
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Figure 10 – FPU with 8 particles: (a) Only the E1 and E3 modes are excited.  

Observe that the associated q-torus is 2-dimensional, since (b) only GALI2 =const.  
and all other GALIk decay by power laws 

 
 
On the other hand, if the torus is unstable, and 

initial conditions nearby are going to wander in the 
weakly chaotic region that surrounds it, the GALIs 
are going to show it by falling exponentially to zero. 
In Figure 11(a) below we exemplify this by showing 
the behavior of GALI2 , while all higher order 

GALIs (not shown here) also fall to zero 
exponentially according to the laws (13). Note that, 
if one wanted to study this phenomenon by tracking 
the energies of the two excited modes, he would 
discover it much later in time through the excitation 
of other modes, s shown in Figure 11 (b) 

  
 

 
Figure 11 – FPU with 8 particles and initial conditions near a q=2 torus:  

(a) The evolution of GALI2 shows already at t ≈ 1000 that the orbit diffuses away from the torus weakly chaotically.  
(b) This becomes visible, as the FPU recurrences break down at t ≈ 14000 through the excitation of different modes 

 
 
Localization in configuration space 
 
It is also very interesting to apply the above 

approach to the localization of spatial coordinates in 
nonlinear lattices, through the occurrence of a 
fascinating type of exponentially localized periodic 
oscillations, called discrete breathers [7, 8]. These 
solutions have been verified analytically and 

numerically on a variety of lattices, like the Klein-
Gordon (KG) chain  

 
���� � ���(��) + �(���� � ��� + ����),  

 
�(�) � �

� ��� + �
� ��                    (15) 
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- ∞ < n < ∞ , where V(x) is an on-site potential and  
α > 0 is a coupling parameter. One example of such 
a breather solution is shown here in Figure 12 
below. Expanding in Fourier series, one finds that 

discrete breathers are directly related to homoclinic 
orbits of invertible maps, through which one can 
prescribe a numerical procedure for constructing 
them to arbitrarily high accuracy [7, 8]. 

  
 

 
 

Figure 12 – Localization in configuration  space in the form of a discrete breather  
of a harmonic nearest neighbor chain with on site nonlinear potential of the Klein Gordon type 

 
 
Indeed, keeping only the leading term 

xn(t)=Ancos(ωbt) in such an expansion we obtain the 
map 

���� � ����� � ��� � ������ ,  
 

� � �� � �� � ������,                 (16) 
 
which provides a very good approximation for the 
amplitudes An, as homoclinic orbits lying at the 
intersections of the invariant manifolds of the saddle 
point at the origin of (16), at |C|>2. 

Discrete breathers constitute one more example 
of what we call Simple Periodic Orbits, with all 
particles oscillating with frequency ωb outside the 
phonon band of NNMs. 

An interesting question here would be to 
identify whether discrete breathers are surrounded 
by low-dimensional tori when they are stable. If so, 

it would be pertinent to study the dimensionality of 
these tori and their stability using our GALI indices 
to determine if these localized solutions will 
eventually break down as time evolves. 

As we observe in Figure 13 below, in the case of 
a 31 particle lattice where a stable breather is 
followed for very long times, the oscillations of the 
central particle (larger band in Figure 13(a)), its two 
adjacent particles (middle size band) and the very 
small oascillations of all the others (small size band) 
remain practically constant up to t =1.4x106 time 
units. Using the GALIs, however, one does not need 
to integrate over such extended time intervals. As is 
already evident in Figure 13(b), for times as short as 
t = 104 time units, the stability and dimensionality of 
the breather are detected by the constancy of GALI2, 
and the fact that all other higher order GALIs decay 
by power laws. 
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Figure 13 – (Stable torus): (a) The oscillations of the central three particles  
of a KG chain of N=31 particles do not break down, forming a quasiperiodic breather.  

(b) The torus is 2-dimensional, since only GALI2 remains constant, while all other GALIk decrease by power laws 
 
 

 
Figure 14 – (Unstable torus): (a) The oscillations of the central 3 particles,  

starting further from the breather, appear quasiperiodic for very long times. (b) The solution, however, is chaotic  
and the “torus” eventually breaks down since the GALIs  decay exponentially 

 
 
On the other hand, when we increase the energy 

of the system somewhat, the breather oscillations 
become irregular (see Figure 14 (a)) and the 
breather collapses after t=1.4x106 time units, while 
the GALIs fall exponentially much sooner (see 
Figure 14 (b)), declaring after only a few thousand 
time units that this solution is dynamically unstable 
and will eventually break down! 

 
Complex statistics of chaotic dynamics 
 
To study and understand the statistical 

properties of chaotic behavior in Hamiltonian 
systems, it is important to recall first some basic 
facts of equilibrium thermodynamics also reviewed 
in [9]. As is well-known, in Boltzmann – Gibbs 
statistics, if a system can be at any one of i=1,2,...,W 

states with probability pi , its entropy is given by the 
famous formula  

��� = ��∑ �������
��� , 

under the  constraint  
 

∑ ���
��� = 1,                        (17)  

 
where k is the Boltzmann's constant. The BG 
entropy satisfies the property of additivity, i.e. if A 
and B are two independent systems, their union 
entropy is SBG(A+B) = SBG(A)+SBG(B). At thermal 
equilibrium, and for a continuum set of states 
depending on one variable, x, the probability density 
that optimizes the BG entropy subject to the 
constraints (17), zero mean and variance V is, of 
course, the well-known Gaussian  



32 Complex Dynamics and Statistics in Hamiltonian 1-Dimensional Lattices

International Journal of Mathematics and Physics 9, №2, 21 (2018)

 

�(�) = ����/��/√��.                  (18) 
 

Another important property of the BG entropy is 
that it is extensive, i.e. that SBG/N is finite in the limit 
N→∞. But, many physically important systems 
governed by long range interactions are neither 
additive nor extensive, like self-gravitating systems 
of finitely many mass points and ferromagnetic spin 
models. For such systems the so-called Tsallis 
entropy has been proposed [9]  

 

�� = � ��∑ ��
��

���
��� , 

under the constraint 
 ∑ ���

��� = 1,                        (19) 
 
depending on an index q. For a continuum set of 
states x, the Tsallis entropy is optimized by the q-
Gaussian pdf  

��(�) = ���
���� = 

 
= �(1 � (1 � �)���)�/(���),                    (20) 

 

where β=1/kT is a free parameter and a > 0 a 
normalization constant. Expression (20) tends to a 
Gaussian, as q → 1 eq →e. The Tsallis entropy is 
not additive, and, in general, non-extensive. It offers 
us the possibility of studying problems whose 
correlations decay not exponentially but by power 
laws, thus implying that the interactions within such 
systems are of the long range type.  

 
The case of multi-degree-of freedom 

Hamiltonian systems  
 
In the realm of multi – dimensional Hamiltonian 

systems analyzed in this paper, there are many 
situations where the dynamics is weakly chaotic and 
may, therefore, possess Tsallis statistics of the type 
described above.  

For example, we have found that, in the β-FPU 
model, near an unstable SPO1 orbit of a 5-particle 
chain, orbits that remain “trapped” for very long 
times in a thin chaotic region (see Figures 15, 16) 
and are described by pdfs of the q-Gaussian type 
with q ≈ 2.8 [11]. 

 
 

 
Figure 15 – Three different orbits with initial conditions very close to an unstable SPO1 orbit  

of the 5 particle FPU-β chain: The black “figure eight” in the middle starts from a distance of 10-7 ,  
the green one  starts within  0.0001 and the red one extending over a much larger region,  

starts within 0.01 from the  saddle point 
 

 
These are what we call quasi-stationary states 

(QSS) of the dynamics. Following these states for 
long times, one typically finds that their pdfs pass 
through QSS described by q-Gaussians of  q > 1, see 

Figure 16 (a,b,d,c), until they finally converge to 
Gaussians with q = 1, when the orbits escape to a 
much larger domain of strong chaos, see Figure 16 
(c,e).
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Figure 16 – Orbits starting at a distance of 1.0*10-7 from the unstable SPO1 orbit,  

integrated for: (a)   t=105 , (b)   t=107  , until they eventually escape in the large chaotic sea (c)  t=108    
(d – f):  Plots of pdfs of position variables for a 5- particle FPU chain  

and initial conditions close to an unstable SPO1 orbit. The QSS observed here are well described  
by q-Gaussians with (d) q = 2.78, then (e) q = 2.48, until the orbit drifts away to a wide chaotic sea  

and the pdfs converge to (f) Gaussians with q=1.05 
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Another example of a weakly chaotic orbit 
located near an SPO2 orbit of a a multi – 
dimensional β – FPU Hamiltonian system has been 

found to “stick” on a low – dimensional torus and 
remain for extremely long times near a type of 
quasiperiodic motion is shown in Figure 17 below

 
 

 
Figure 17 – (a) The dynamics near an SPO2 orbit ``sticks'' to a quasiperiodic torus,  

at least up to t=108 . The weakly chaotic nature of the motion is shown in (b),  
where we have plotted  the 4 largest Lyapunov exponents up to t=10^9.  

Although they all decrease towards zero, at about  t >109 , the largest exponent shows a tendency  
to converge to a positive value, indicating that the orbit is chaotic 

 
 
As Figure 17 demonstrates this orbit is 

dynamically very “stable”, as it remains for very 
long times near a regular quasiperiodic torus. Its 
chaotic nature, however, is clearly exemplified by 
the fact that after nearly t= 108 time units its largest 
Lyapunov exponents stops decreasing towards zero 
and starts to converge to a positive value! This is 
clear evidence that this orbit is not regular and can 

therefore be characterized as weakly chaotic, 
according to the terminology used in this paper. 

The interesting question that arises, therefore, is 
whether a statistical analysis of this orbit also shows 
that this orbit can also be characterized as weakly 
chaotic, by plotting the probability distributions of 
averaged sums of its coordinates, as was done above 
for the orbit shown in Figure 16. 

 
 

 
Figure 18 – Left: The distribution of the normalized sum pdf of the orbit starting near SPO2,  

for a total integration time t=106. Right: Final integration time t =1010.  
The pdf has converged to an almost analytical shape that is close to a q--Gaussian  

with q≈2.769 near the center, and seems to have analytical form 
 

 
Indeed, as is clearly seen in Figure 18, the 

probability density functions (pdfs) associated with 
this orbit are not Gaussian but are well described by 
q- Gaussian distributions of the form (20). The 

remarkable observation we make here is that, after 
1010 time units, the pdfs appear to converge to a 
smooth distribution, that departs from a q- Gaussian 
type at large distances away from its mean value. 
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This type of complexity provides one further 
justification for the title of this paper.  

 
Weak chaos in 2–dimensional area – 

preserving maps 
 
It is instructive to illustrate some of the 

phenomena we have described in this paper on a 2-
dimensional area – preserving map, which 
represents a simple model of a Hamiltonian systems 
of 2 – degrees of freedom. The question we wish to 
address here is whether what we have called strong 
and weak chaos can be observed in systems of low 
dimensions as well. For this reason, we shall 
examine the behavior of a model called the 
McMillan map expressed by the following equations 
mapping the xn, yn plane to itself [11]: 

 
���� � ��,  

 

      ���� � ��� + ����
��� + 1 + ���,       

 
� � �,1,�,�, � ��                       (21) 

 
For ε = 0 this system is integrable as it possesses 

a constant of the motion of the form �� + �� +
���� � ���� � ������ It is also easy to see that it 
also possesses a saddle point at the origin for μ >1. 
When ε > 0 and small (21) becomes non – 
integrable and chaotic orbits are expected to appear 
near its origin forming “figure eight” domains of the 
type shown in Figure 15. What we would like to 
investigate here is whether these orbits also display 
strongly and weakly chaotic properties similar to 
what we found earlier when we were discussing 
multi – dimensional systems.  

The results we obtained in [11] we indeed quite 
interesting: We first noted that for several μ, ε 
values the chaotic orbits wandering around the 
saddle point at (0,0) formed indeed a “figure eight” 
similar to the one of Figure 15 in a generally 

strongly chaotic fashion [11]. In other words, when 
followed for as many as 220 iterations (time units) 
the pdfs produced by averaged sums of the 
coordinates appeared to converge to Gaussian 
distributions.  In other words, the orbits wandered 
around a “figure eight” domain chaotic domain and 
their pdfs passed through a sequence of q-Gaussian 
states, with q > 1, until they become true Gaussians, 
with q = 1. 

However, for certain choices of parameter 
values, the orbits exhibited a remarkable “diffusive’ 
behavior, as they began after a certain time to 
escape from the “figure eight” and wander about in 
the plane along a chaotic boundary surrounding 
chains of islands that encircled the central “figure 
eight” region! This produced a complex pattern of 
chaotic domains in which the orbits wandered about, 
“sticking” often as it were in the vicinity of 
“thinner” chaotic regions surrounding higher order 
saddle points of the map extending over island 
chains of stable periodic orbits of (21) that also 
encircle the origin. It was precisely in these cases 
where we discovered that the pdfs of our chaotic 
orbits began to converge to a true q (>1)-Gaussian, 
for n →∞ , as shown in Figure 19 and Figure 20 
below, thus demonstrating their weakly chaotic 
nature.  

 
The role of Long Range Interactions 
 
As was mentioned earlier, all the results 

described above appear to suggest that the statistical 
properties of chaotic motions in Hamiltonian 
systems must depend on the type of interactions 
characterizing these motions. More specifically, we 
postulated that if these interactions are “short” (e.g. 
exponential) this might account for the strong chaos 
characterizing states that are described by Gaussian 
pdfs. On the other hand, if the interactions are long 
ranged (e.g. decaying by power laws) this would 
entail that the pdfs obtained after sufficiently long 
times would be of the q – Gaussian type.
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Figure 19 – Upper: Diffusive motion of orbits in a thin chaotic layer of the 2-d area – preserving map (21), 
 starting near the unstable fixed point at the origin, and evolving to N=220 iterations 

 

  
 

Figure 20 – The pdfs representing the normalized sum of averages of the xn coordinate of the map,  
for the chaotic orbit of Figure 18 are seen to converge after 220 iterations  

to the q-Gaussian shown here, with q=1.6 
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Thus, to test the validity of the above the above 
conjecture we decided to extend our studies and 
consider a class of N – dimensional Hamiltonians 
that involve Long Range Interactions (LRI) of the 
kind exemplified by the following class of FPU 
models: 

 

� = 1
2 � ���

�

���
+ 1

2 �(���� � �� )�
�

���
+ 

 
+ �

�(�,�) ∑ ∑ (�����)�

�|���|������������ = �(�),    (22) 

 
where b>0 and α ≥ 0 is an important parameter 
introduced to “measure” the length of the 
interactions [12.13]. Note that to keep all energy 
terms in the Hamiltonian extensive, i.e. proportional 
to N, we have introduced before the quartic part of 
the potential the factor 
 

�(�, �) = 1
� � � 1

(� � �)�

�

�����

�

���
= 

 
=  �

� ∑ �����
(���)�    ���� ,                 (23) 

 

What we found was indeed very interesting: 
Noting first that α = ∞ represents the shortest type of 
(nearest neighbor) interactions considered already in 
sections 3 and 4 of this paper, we studied the full 
range of α values all the way down to 0 ≤ α ≤ 1 
representing the regime of the longest type of LRI 
possible. As Figure 21 and Figure 22 below 
demonstrate, as α became smaller than α = 1, a 
surprising phenomenon of “regularization” of the 
dynamics was observed (see Figure 21): The 
maximum Lyapunov exponent λ > 0 was seen to 
decrease to values that seem to tend to zero!  In 
other words, a kind of weakly chaotic behavior was 
discovered, showing that LRI has a “stabilizing” 
effect on the dynamics.  

To see whether this “regularization” effect 
extends also to the statistical properties of the 
motion we studied the pdfs of sums of averaged 
momenta of our chaotic orbits and discovered that 
these also tended to become closely approximated 
by q – Gaussian distributions in the LRI regime 0 ≤ 
α ≤ 1 (see Figure 22). On the other hand, in the 
regime α > 1 where the interactions may be 
characterized of “shorter” type, the same pdfs 
quickly converged to q – Gaussians, demonstrating 
that the nature of the dynamics is characterized by a 
stronger form of chaos (see Figure 22)!

 
  

 
 

Figure 21 – LRI restores order out of chaos: For 0 < α < 1   
the maximal Lyapunov exponent λ starts to decay to zero as  

N increases and α “weaker” form of chaos is expected 
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Figure 22 – The momentum probability density function (pdf)  

for Long Range Interactions, α = 0.7, converges to a q-Gaussian with q=1.249  
indicating a “weaker” form of chaos as time increases 

 
 

 
 

Figure 23 – On the contrary, the pdfs of the momenta for shorter ranges of interactions  
with α > 1 (in the above example α = 1.4), are seen  

to quickly converge to a pure Gaussian, indicating “strong” chaos 
 

 
To test these ideas further, we proceeded to 

carry additional studies to see e.g. how the q index 
of the pdfs behaves in these very interesting LRI 
regimes and obtained results of the kind shown in 
Figure 23. 

We also observed, however, that in all cases we 
studied, if the time interval of our integrations 
increased, a critical time tc was always reached 
where the q values started to decrease, exhibiting a 
tendency to go back to q =1 where strong chaos and 
real Gaussians prevail.  

Another important effect was also observed in 
the LRI regime, when the number of particles N was 
increased (see Figure 25(b)): The q index of the pdfs 

was also seen to increase as N becomes larger and 
larger, suggesting that weakly chaotic dynamics 
may also be found in the thermodynamic limit 
where N and the total energy E become larger and 
larger while E/N is kept constant.  

Thus, scaling our parameter b by the critical 
time tc and plotting the pdfs at each tc vs. the value 
of 1/N we discovered a remarkable “phase 
diagram”, see Figure 25 below, dividing the 
parameter plane in two regimes: One characterized 
by Gaussians, strong chaos and BG statistics and 
one where pdfs are q – Gaussians and the weakly 
chaotic motion and Tsallis thermostatistics  
reign! 
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Figure 24 – The pdf index q decreases to 1 over the regime of Long Range Interactions,  

from α = 0 to just above α = 1, where shorter range interactions take over 
 

 
 

(a)     (b)  
 

Figure 25 – (a): For LRI, α= 0.7, the index q, starts to decrease towards 1 after a time threshold tc ≈ 106,  
for these parameter values. (b): Momentum distributions for the system  

with b = 10, ε = 9, α = 0.7 for increasing N values.  
Note that as N grows the pdfs are described by a q–Gaussian whose index q increases from 1.17  

for N = 512 until 1.25 for N = 8192 
 

 
Finally, we completed our study by plotting the 

q parameter as a function of 1/log(N) as N grows to 
higher and higher values. Based in the results 
plotted in Figure 27 we thus proposed the following 
formula 

 
���� �� � ����� � ����

����.             (24) 

 
demonstrating the dependence of q on N in the 

LRI regime. As a result, we can use this formula to 
estimate the asymptotic behavior of q → q∞ in the 
limit N → ∞. Note that as N becomes larger and 
larger, the above formula allows us to determine the 
values q∞ (α) that the q-Gaussian pdfs will have in 
that limit.  
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Figure 26 – A “phase transition diagram” is obtained, separating BG from  
Tsallis thermostatistics, in which the limits t→ ∞and   N→ ∞ do not commute 

 

 
 

Figure 27 – The index q depends linearly on 1/ \log N for N=4096, 8192, 16384,  
as α changes, according the formula (24) 

 
 
Next, in our more recent work [13], we extended 

the above results to study of N – dimensional 
Hamiltonian systems in which the “length” of the 
linear interactions (represented by quadratic terms in 
the potential of the Hamiltonian function) are 
characterized by a different α index than those of the 
nonlinear interactions, represented by quartic terms 
in the potential. We also considered the effect od 
LRI in N – dimensional Hamiltonian lattices, where 
besides the interparticle interactions each particle 
possesses an on site potential of its own [14].  

It is not the place here, however, to also describe 
these results, as they are of a more advanced and 

specialized character. We thus prefer to encourage 
the interested reader to consult the corresponding 
references [13, 14] and limit ourselves to 
summarizing these findings in the Conclusion 
section that follows. 

 
Conclusions  
 
In this work, we have reviewed a number of 

results of our research team in the broader field of 
study that may be called following Complex 
Dynamics and Statistics of Hamiltonian systems. 
Although the work presented here has focused 
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primarily on 1-D lattices of the so called β – FPU 
models involving quartic and quadratic interactions, 
we believe that they are much more general and can 
be found also be bound in similar systems with 
other type of nonlinearities. Indeed, weakly and 
strongly chaotic motions appear in conservative 
systems of low dimensionality, even 2 – 
dimensional area preserving maps like the McMillan 
model analyzed in section 5.2. 

Our main conclusions can, therefore, be 
summarized as follows: 

1. We have demonstrated the importance of 
Nonlinear Normal Modes in exploring “weak” and 
“strong” chaos, depending on the energy density 
Ec/N > 0 at which they first become unstable. At 
energies where they have just destabilized it is 
possible to find in their vicinity weakly chaotic 
motions that “stick” to the associated saddle points 
for very long times. 

2. We mentioned the significance of Lyapunov 
spectra in quantifying strong chaos, and introduced 
the GALIk  spectrum of indices k=2,3,4,…, which 
are best suited for identifying chaos, when they 
vanish exponentially. We also stressed the fact that 
in the case of quasiperiodic motion, where the 
GALIs decay as power laws, they offer the most 
convenient strategy known to date by which the 
dimensionality of the torus can be determined. 

3. The GALI indices can also be used to study 
the breakdown of localization in 1-dimensional 
lattices: (i) In modal space connected to FPU 
recurrences and (ii) in position space, occurring in 
the form of discrete breathers, for which we can 
predict their breakdown long before it can be 
detected by other methods. 

4. When Long Range Interactions are imposed 
(LRI) on the nonlinear forces (quartic terms in the 
potential of our FPU models) – for any range of 
linear interactions – we obtain weakly chaotic 
motion characterized by q-Gausian pdfs with q>1 
(Tsallis thermostatistics). 

5. More specifically, in the LRI regime, we 
find a new “phase transition diagram”, separating 
BG from Tsallis thermostatistics, in which the limits  
t → ∞and N → ∞ do not commute. 

6. When we introduce LRI only on the linear 
forces (quadratic part of the potential) we obtain 
strongly chaotic motion demonstrated by pure 
Gausian pdfs with q = 1 (Boltzmann Gibbs 
thermodynamics). 

7. When LRI are imposed on the nonlinear 
forces, we find for long times limiting values q∞ > 1 
as N → ∞ , showing that the system remains weakly 

chaotic (with Tsallis and not Boltzmann Gibbs 
thermostatistics) in the thermodynamic limit. 

8. Finally, when we include in our potentials, 
besides the interparticle interactions, terms 
associated with local potentials at the site of each 
separate particle, LRI again yields evidence of 
highly regular dynamics, as single--site excitations 
lead to special low--dimensional solutions, that may 
be well described by a 2 – degree of freedom 
Duffing oscillator. On the other hand, the behavior 
of the maximal Lyapunov exponent, suggests in that 
case an approach to “quasi integrable” behavior in 
the thermodynamic limit, characterized by non-
Gaussian momentum distributions. 
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Critical exponents of Fujita type  
for certain time-fractional diffusion equations 

 
 

Abstract. Solutions of initial value problems for non-linear parabolic partial differential equations may 
not exist for all time. In other words, these solutions may blow up in some sense or other. Recently in 
connection with problems for some class of non-linear parabolic equations, Kaplan [1], Ito [2] and 
Friedman [3] gave certain sufficient conditions under which the solutions blow up in a finite time. 
Although their results are not identical, we can say according to them that the solutions are apt to blow up 
when the initial values are sufficiently large. The data at which solutions can blow up is called critical 
exponents of Fujita. 
The present paper is devoted to research critical exponents of Fujita type for certain non-linear time-
fractional diffusion equations with the nonnegative initial condition. The Riemann-Liouville derivative is 
used as a fractional derivative. To prove the blow up, we use the known test function method developed 
in papers by Mitidieri and Pohozhaev [16]. 
Key words: blow-up, global weak solution, critical exponents of Fujita, time-fractional diffusion 
equation. 

 
 
Introduction 
 
In the paper [4], Fujita considered the initial 

value problem: 
 

   
   

,   for  , 0, ,

,0 0,   for  ,

p N
t

N

u u u x t R

u x a x x R

      


  
    (1) 

 
where p  is positive number,    1 Na x L R  is 

nonnegative and positive on some subset of NR  of 
positive measure and ∆ denotes the Laplacian in N 
variables.  

More precisely, he considered this problem on 
 0,NR T  for some T   . A (classical or weak 

solution) of equation on  0,NR T  for some 
T    is called a local (in time) solution. The 
supremum of all such T’s for which a solution exists 

is called the maximal time of existence, Tmax. When 
maxT    we say the solution is global. When 

maxT   , we say the solution of equation is not 
global (or the solution “blows up in finite time”.  

Let 2 / .cp N  Fujita proved the following 
assertions: 

(i) if 0 cp p   and   0a x   for some 0x , 
then the solution of problem (1) grows infinitely at 
some finite instant of time; 

(ii) if cp p , then problem has a positive 
solution for every t > 0. 

More exactly, for each 0k  , there exists a 
0   such that problem (1) has a global solution 

whenever  
2

0 k xa x e   . The number cp  is 
referred to as the critical exponent. In the critical 
case, this problem was solved in [5] for 1, 2N   
and in [6] for arbitrary N . It was shown that 
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if cp p  and then there is no nonnegative global 
solution for any nontrivial initial data. The proof 
was simplified by Weissler [7]. 

Later, Fujita [8] extended his own results to the 
more general case in which  f u  (the term 
describing the reaction) is convex and satisfies 
appropriate conditions (the main of which is the 
Osgood condition). The results obtained for problem 
(1) were generalized in [9] to the case of an initial-
boundary value problem in a cone with the term 

1px u   instead of 1pu  ; it was proved that, in this 

case, the critical exponent is equal to  2 / N . 
It was shown in [10] that the critical exponent 

for the porous medium equation is equal 
to 1 2 /m N   , where  2 /m N N   . 

The equation  
 

1 ,m p
t

su uxu t     0,   ,Nt x R   
 
with nonnegative initial data was considered in [11]. 
It was shown that the critical exponent for this 
problem is equal to 
    1 1 2 2 / 0m s s N      . 

The following parabolic equation with the 
fractional power   /2 ,0 2,     of the 
Laplace operator was studied in [12]: 

 

  /2 1 ,p
tu u u     , .Nt x R R   

 
Using Fujita’s method [4], the authors [13] 

discussed nonnegative solutions of the equation 
 

   /2 1 ,p
tu u h t u    , .Nt x R R     (2) 
 

where  h t  behaves as at 

 1,  0 1 .pN         The proof given in 
[13] is based on the reduction of Eq. (2) to an 
ordinary differential equation for the mean value of 
u  with the use of the fundamental solution 
[say,  ,  P x t ] of   /2:  /L t 

      . 
Apparently, the approach of [13] cannot be used for 
systems of two differential equations with distinct 
diffusion terms unless, for example,  ,  P x t  can 

be compared with  ,  P x t  for .   

The following spatio-temporal fractional 
equation 

 
       

   

/2 1
0

0

D , ,   for  , ,

,0 0,   for  ,

p N

N

u u h x t u x t R R

u x u x x R

  


     


  
 
where 0D

 ,  0,1   is the fractional derivative in 

the sense of Caputo,  1, 2   with nonnegative 
initial data was considered in [14]. The critical 
exponent for this problem is equal to  
 

 
 

1 1
1cp p

N
   
  

 
   

 
. 

 
The main goal of the present research is to 

obtain results on critical exponents for time -
fractional diffusion equation of the form 

 

   
2

1
2 ,  , 0,p

t tu D u u x t R T
x





     


    (3) 

 
with the initial condition 

 
   0,0 0u x u x                     (4) 

 
where 1

tD 
  denotes the time-derivative of arbitrary 

order  0,1  in the sense of Riemann-Liouville. 
In the case, 1   the time-fractional diffusion 

equation (3) reduces to the usual heat equation, 
which is well documented in [4].  

 
Some definitions and properties of fractional 

operators 
 
Definition 1. [15]The left and right Riemann-

Liouville fractional integrals aI  and bI  of order 
( 0),R    are given by  

 

         11 ,  , ,
t

a
a

I f t t s f s ds t a b




   
   

 
and 

 

         11 ,  , ,
b

b
t

I f t s t f s ds t a b




   
   
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respectively. Here ( )  denotes the Euler gamma 
function. 

Definition 2. [15] The left Riemann-Liouville 
fractional derivative aD

  of order ,R   
 0 1   is defined by 

 

   

       

1

1 ,  , ,
1

a a

t

a

dD f t I f t
dt

t s f s ds t a b

 






 



 

  
  

 

 
Similarly, the right Riemann-Liouville fractional 

derivative bD
  of order  ,  0 1R     is 

defined by 
 

   

       

1

1 ,  , .
1

b b

b

t

dD f t I f t
dt

s t f s ds t a b

 






 



 

  
  

 

 
Definition 3. [15] The left and the right Caputo 

fractional derivatives of order ,R    0 1   is 
defined, respectively, by 

 

   

       

1D

1 ,  , ,
1

a a

t

a

df t I f t
dt

t s f s ds t a b

 






 



 

  
  

 

 
and 

   

       

1D

1 ,  , .
1

b b

b

t

df t I f t
dt

s t f s ds t a b

 






 



  

   
  

 

 
requires    1 0, .f s L T   

Definition 4. A function 
      1 ,  : , 0,loc T Tu L x t R T       is a local 

weak solution to time-fractional diffusion equation 
on T  such that 

 

     

       

1, , D ,

, , , ,
T

T T

T xx

p
t

L u u x t x t dxdt

u x t x t dxdt u x t x t dxdt

 

 






 

 

 



 
 
where 

     

       

1

0

1
0

0

, , ,

, , ,0 ,

T

t x R

T

t
R R

L u D u x t x t dt

D u x t x t dt u x x dx
x





 

 







 


 





 
 

 
for any test function    2,1

,, x t Tx t C    defined on 
the domain T  with  , 0.x T   

Property 5. Integrating fractional integral by 
parts  

 
       1, , , , .

T T

t TI u x t f x t dxdt u x t I f x t dxdt 
 

 

 
 

Main results 
 
Multiply the time-fractional diffusion equation 

(1) by a test function  ,x t , we have 
 

   

   

   

0

2
1

2
0

0

, ,

, ,

, , .

T

t
R

T

t
R

T
p

R

u x t x t dxdt

D u x t x t dxdt
x

u x t x t dxdt















 





 

 

 

 

 
Integrating by parts the equation (3) and note 

that  , 0x T  we get 
 

   

   

   

0

0

0

, ,

,0

, , ,

T

t
R

R
T

t
R

u x t x t dxdt

u x x dx

u x t x t dxdt









  



 



 

              (5) 
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and 
 

   

   

   

   

2
1

2
0

1

0

1

0

1

0

, ,

, ,

, ,

, ,

T

t
R

T

t
R

T

t x R

T

t xx
R

D u x t x t dxdt
x

D u x t x t dt
x

D u x t x t dt

D u x t x t dxdt



































 



 



 





 

        (6) 

 
By Property 5 the last part of the (6), can be 

written as 
 

   

   

1

0

1

0

, ,

, D ,

T

t xx
R
T

T xx
R

D u x t x t dxdt

u x t x t dxdt



















 

 
 

 
Obviously, we can write the equation (3)-(4) in 

the following form 
 

     

   

   

1, , D ,

, ,

, ,

T

T

T

T xx

t

p

L u u x t x t dxdt

u x t x t dxdt

u x t x t dxdt

 














 

 









        (7) 

where 

     

       

1

0

1
0

0

, , ,

, , ,0 ,

T

t x R

T

t
R R

L u D u x t x t dt

D u x t x t dt u x x dx
x





 

 







 


 





 
 

 
 

Theorem 1. Let 1.p   If  
 

21 1 ,cp p


     

 
then problem (3) admits no global weak 
nonnegative solutions other than the trivial one. 

Proof. The proof proceeds by contradiction. 
Suppose that u  is a nontrivial nonnegative solution 
which exists globally in time. That is u  exists in 
 *0,T  for any arbitrary * 0.T   Let ,  T R  and   be 

positive real numbers such that 2/ *0 .TR T   
Let  z  be a smooth nonincreasing function 

such that 
 

 
1  if  z 1
0  if  z 2

z


   
 

 
and  0 1.z    

The test function  ,x t  is chosen so that 
 

   

   

2/

'1 '/

' '/

D , ,

, , , .
T

T

p p p
xxTR

p p p
t

x t x t dxdt

x t x t dxdt


  

 

 










   




    (8) 

 
To estimate the right-hand side of the Definition 

4 on 2/TR  , we write  
 

   

       

2/

2/

2/

2/

1

1/ 1 1/

, D ,

, , D , ,
TR

TR

xxTR

p p
xxTR

u x t x t dxdt

u x t x t x t x t dxdt















  






 




   

   




 

Therefore, by using the   Young equality we 
have

     

         

2/

2/

2/

2/ 2/

1

'1 '/

, D , ,

, , D , , .

TR

TR TR

xxTR

pp p p
xxTR

u x t x t x t dxdt

u x t x t dxdt C x t x t dxdt







 





 

    






 


 

   

 



 
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Similarly,  
 

             
2/ 2/ 2/

' '/, , , , , , .
TR TR TR

p p p p
t tu x t x t dxdt u x t x t dxdt C x t x t dxdt

  

     

  

     

 
 

Now, taking   small enough, we obtain the estimate 
 
 

            2/

2/ 2/

' '1 '/, , D , , , .
TR TR

pp p p p
xx tTR

u x t x t dxdt C x t x t x t dxdt

 

     


 

          (9) 

 
 
We set  

 
2

2, x tx t
R




 

  
 

, 

where , .R Z   
Let us perform the change of variables 

2/ ,t R   x yR  and set 
 

     2/ 2: , 0, / ,  2 ,y R T R y          

 
  2, .y y      

 
Now, we choose   such that the right-hand 

sides of  

 

           

       

 

     

2/

2/

2/
2/ 2/

2/

'
' 11 '/ '/

'
1 '/2/ 2/ 2/ 2/

2 2/

12/ 1 ' 2 ' 2/ 1

1D , , , ,

1 1

1

TR TR

TR

p
TR

p p p p p
xx sxxTR

R

pT
p p

yy

T
p p

syy

x t x t dxdt s t x s ds x t dxdt

R R R d RdyR d
R R

R d






 







   
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

  



   


     


  


  


 

 



   

   


     


   


  

 



 

  

     
2/

2/

'
'/

' '/2/ 1 ' 2 ' 2/ 1 1

TR

TR

p
p p

p p pp p
T yy

dyd

R D dyd





   


  

  





    




 

  







 

 

and  
 

       
2/ 2/

' ' '/'/ 2/ ' 2/ 1, ,
TR TR

p p p pp p px t x t dxdt R dyd
 

 
        

 

       

 
 
are of the same order in R. In doing so we find   . 

Then have the estimate 
 

   
2/

'
, , ,

TR

p
u x t x t dxdt CR






                                                    (10) 
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where 

 2 21 ' 2 ' 1p p 
 

      

and 
 

        
2/

' ' '/p1D .
TR

p p p
T yyC C dyd




     

 




         

 
 
If we choose 0  , (i.e. is cp p ) and let 

R   in (10), we obtain 
 

 , 0.pu x t dxdt


               (11) 

 
This implies that 0u   a.e., which is a 

contradiction.  
In case 0  , (i.e. is cp p ) observe that the 

convergence of the integral in (10) if  
 

    2 2 2,  0, : + 2R x t R T R x t R       
 

then 

   , , 0
R

p

R
lim u x t x t dxdt




            (12) 

 
If instead of using the   Young equality, we 

rather use the Hölder inequality, then instead of 
estimate (9), we get  

 

       
2/

1/

 , , , ,
RTR

p
p p

u x t x t dxdt L u x t y dyd


   
 

 
   

 
                                  (13)  

where 

       
1 1

' 1/ '
' ''/ '/1:

p p
p pp p p p

T yyD dyd dyL d
       


 

   
          

   
       

 
 

and  
 

    2/ 2
1 ,  0, / :1 + 2 .y R T R y         

 
Using (13), we obtain via (12), after passing to 

the limit as R  ,  
 

 , 0
p

u x t dxdt


  

 
This leads to 0u   a.e. and completes the proof. 
 
Conclusion 
 
In this paper were studied Fujita-type critical 

exponents for certain time-fractional diffusion 
equations with the nonnegative initial condition. As 
a result, using the test function method, the critical 

exponents of Fujita were determined in the 

following form 21 1cp p


    . 

Consequently, by using the Fujita-type critical 
exponents we proved that, the problem (3) admits 
no global weak nonnegative solutions other than the 
trivial one. 
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On a boundedness result  
of non-toroidal pseudo-differential operators 

 
 

Abstract. In this article, we prove boundedness results for θ-toroidal pseudo-differential operators 
generated by a differentiation operator with a non-periodic boundary condition. θ-toroidal pseudo-
differential operators are a natural generalization of a toroidal one. As in the classical case, this class of 
operators act on a suitable test function space by weighting the Fourier transform “very well”. Standard 
operations as adjoints, products and commutators with θ-toroidal pseudo-differential operators can be 
characterized by their θ-toroidal symbols. For pseudo-differential operators on R�, the symbol analysis is 
well developed.  Here, we provide more complicated properties of the θ-toroidal pseudo calculus. Namely, 
we introduce a Holder space induced by a differentiation operator with a non-periodic boundary condition. 
Finally, for the elements of this space we prove theorems on boundedness of the operators acting on the 
specified functional spaces. Indeed, in this paper we continue a development of the so called “non-
harmonic analysis” introduced in the recent papers of the authors. 
Key words: θ-toroidal pseudo-differential operator, θ-toroidal Holder space, θ-Fourier transform, θ-
symbol, bounded operator. 

 
 
Introduction 
 
In [3], it was introduced an analysis generated 

by the differential operator 
 

Ly(x) = −i ��(�)
�� ,   0 � � � 1            (1) 

 
acting on L�(0; 1) with the boundary condition 

 
θy(0) − y(1) = 0,                       (2) 

 
where θ ≥ 1. 

Spectrum of the operator L is 
 

λ� = −i ln θ + 2ξπ, ξ ∈ Z                (3) 
 
System of eigenfunctions of the operator L is 
 

u�(x) = θ�e�����, ξ ∈ Z.                    (4) 

 
and the biorthogonal system to u�(x) in L�(0; 1) is  
 

v�(x) = θ��e�����, ξ ∈ Z.              (5) 
 
For the following spectral properties of the 

operator L we refer to [3] and [7]. 
1. The system of eigenfunctions of the operator 

L is a Riesz basis in L�(0; 1); 
2. If function f belongs to the domain of operator 

L, then f(x)  expands to a uniformly convergent 
series of eigenfunctions of the operator L; 

3. The resolvent of the operator L is  
 

(L − λI)��f(x) = 
 

= i e��(���)

Δ(λ) � e����f(t)dt
�

�
+ ie��� � e����f(t)dt

�

�
, 
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Where  Δ(λ) = θ − e��. 
 
�-toroidal pseudo-differential operators 
 
θ-Fourier transform and � -toroidal Hӧlder 

spaces. Here we give a definition of θ -Fourier 
transform [3]. θ-Fourier transform �f �
f��: С�

�[0,1] → S(Z) is given by 
 

f�(ξ) ≔ � f(x)�
� v�(x)�������dx                      (6) 

 
and its inverse f�(ξ)�� is given by 

 
f(x) = ∑ f�(ξ)u�(x)�∈� .                     (7) 

 
Remark 1 The functional space С�

�[0,1] is called 
the space of test functions and S(Z)  is space of 
rapidly decaying functions [3]. 

In what follows, we will use the following 
spaces from [5]. 

We define θ-toroidal Hӧlder spaces 
 

Λ�([0,1], θ) = 

= �f: [0,1] → C: |f|�� = sup
�,�∈[�,�]

|�(���)��(�)|
|�|� � �� (8) 

 
Λ�� ([0,1], θ) = �f ∈ Λ�([0,1], θ):  f(0) = 0�    (9) 
 

for each 0 � � ≤ 1. These spaces are Banach. 
� -toroidal symbol class. Suppose that m ∈

R, 0 ≤ δ, ρ ≤ 1 . Then the θ -toroidal symbol class 
S�,�

� ([0,1] × Z)  consists of those function a(x, ξ) 
which are smooth in x  for all ξ ∈ Z , and which 
satisfy 

 

�Δ�
� ∂�

�a(x, ξ)� ≤ C����〈ξ〉�������       (10) 
 

for every ξ ∈ Z, x ∈ [0,1], α, β ∈ Z�, where 
 

〈ξ〉 ≔ 1 + |ξ|. 
 
We call a(x, ξ) a symbol [3]. The operator Δ�  is 

the difference operator  
 

Δ� σ�(ξ) ≔ eσ�(ξ), 
 

where σ�(ξ): Z → C. 
We denote the θ -toroidal pseudo-differential 

operator by  
 

a(X, D)f(x) = ∑ u�(x)�∈� a(x, ξ)f�(ξ)       (11) 
 

where a(x, ξ)  is a symbol of a θ-toroidal pseudo-
differential operator [5].  

We can write for h ∈ T, 
 
 

a(X, D)f(x + h) = 

= � u�(x)
�∈�

a(x + h, ξ) � f(y + h)v�(x)�������dy.
�

�
 

 
Theorem 1. (Bernstein). Assume that f ∈

Λ�� ([0,1], θ),  for s > �
�.  Then we have �f����(�) ≤

C�‖f‖��. 
 
Proof. We prove this statement by recalling a 

definition of the norm 
 

 

�f����(�) = ��f�(ξ)�
�∈�

= � �� f(x)v�(x)�������dx
�

�
�

�∈�
≤ � �|f(x)|dx

�

��∈�
= 

 

= � � |f(x) − f(0)|
|x|� |x|�dx

�

�
≤

�∈�
� � sup

�∈[�,�]
|f(x) − f(0)|

|x|� |x|� dx
�

��∈�
 

 

≤ �|f|�� � x�dx
�

��∈�
≤ � 1

s + 1 |f|��

�∈�
≤ � 1

s + 1�∈�
�|f|�� + sup

�∈[�,�]
|f(x)|� = �� 1

s + 1�∈�
� ‖f‖�� ≤ C�‖f‖��. 
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Finally, we proved the theorem. 
 
Boundedness for � -toroidal pseudo-

differential operator 
 
Here we prove similiar theorems as in [5]. 
Theorem 2. Let a(X, D) = a(D)  be a pseudo-

differential operator with symbol a(ξ)  depending 
only on the discrete variable ξ. If a(ξ) ∈ L�(Z), then  

 
|a(D)f|�� ≤ |a|��(�)|f|��, 

 
for 0 � � ≤ 1. 

Proof. By the formula, we have 
 

a(X, D)f(x + h) − a(X, D)f(x)= 
 
= ∑ u�(x)�∈� a(ξ) � (f(y + h) − f(y))v�(y)�������dy�

� . 
 
Thus, we obtain  
 

|a(X, D)f(x + h) − a(X, D)f(x)|
|h|� ≤ 

 
≤ ∑ �|a(ξ)| � |�(���)��(�)|

|�|� dy�
� ��∈� . 

 

Finally, we get 
 

|a(D)f|�� ≤ ��|a(ξ)|
�∈�

� |f|��. 

 
Theorem 3. Let �

� � � � 1  and a ∈
S�,���([0,1] × Z),m ≥ 1 . Then there exists M > 0 
such that  

 
|a(X, D)f|�� ≤ M‖f‖��. 

 
 
Proof. By the mean value theorem, there exists 

x� ∈ [0,1] such that 
 
 

u�(x + h)a(x + h, ξ) − u�(x)a(x, ξ)= 
 

= hu�(x�)(a(x�, ξ)lnθ + i2πξa(x�, ξ) + 
 

+a′(x�, ξ)). 
 
By the Bernstein’s theorem, we have  
 

 
 

|a(X, D)f(x + h) − a(X, D)f(x)|
|h|� ≤�|h|���|a(x�, ξ)lnθ + i2πξa(x�, ξ) + a′(x�, ξ)|

�∈�
�f�(ξ)� ≤ 

 

≤�C1(|lnθ||a(xh, ξ)| + 2π|ξ||a(xh, ξ)| + |a′(xh, ξ)|)
ξ∈Z

�f�(ξ)� ≤�C1(C〈ξ〉m + |ξ|C〈ξ〉m + C〈ξ〉m+δ)
ξ∈Z

�f�(ξ)� ≤ 

 

≤�C��C〈ξ〉� + C〈ξ〉��� + C〈ξ〉����
�∈�

�f�(ξ)� ≤ �3CC��f�(ξ)�
�∈�

≤ 3CC�C�‖f‖��. 

 
 

Thus, 
|a(X, D)f|�� ≤ M‖f‖��. 

 
The next theorem gives a single sufficient 

condition on the symbol a(x, ξ)  for the 
corresponding pseudo-differential operator  

 
a(X, D): Λ�� ([0,1], θ) → Λ�([0,1], θ) 

 
 

to be bounded for 0 � � � 1. 
Theorem 4. Let 0 � � � 1, 0 ≤ δ � � ≤ 1 and 

m > 1 + �. If a ∈ S�,��� then, the operator 
 

a(X, D): Λ�� ([0,1], θ) → Λ�([0,1], θ) 
 
is bounded. 

Proof. Suppose f ∈ Λ�� ([0,1], θ), we get 
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a(X, D)f(x + h) − a(X, D)f(x)= 
 

= ∑ u�(x) �a(x + h, ξ) � f(y + h)v�(y)�������dy�
� − a(x, ξ) � f(y)v�(y)�������dy�

� ��∈� = 
 

=�u�(x) �a(x + h, ξ)�(f(y + h) − f(y))v�(y)�������dy
�

�
�

�∈�
+ 

 
+∑ u�(x) �(a(x + h, ξ) − a(x, ξ)) � f(y)v�(y)�������dy�

� ��∈� .  
 

 
 
Therefore, using the value mean theorem, we obtain 
 
 
 

|a(X, D)f(x + h) − a(X, D)f(x)|
|h|�  

 

≤��|a(x + h, ξ)|� |f(y + h) − f(y)|
|h|� dy

�

��∈�
+ |a(x + h, ξ) − a(x, ξ)|

|h|� �|f(y)|dy
�

�
� 

 

≤��|a(x + h, ξ)|� |f(y + h) − f(y)|
|h|� dy

�

�
+ |h||a′(x�, ξ)|

|h|� �|f(y)|dy
�

�
�

�∈�
 

 

≤��C〈ξ〉��|f|��� + |h|���C〈ξ〉���� �|f(y)|dy
�

�
�

�∈�
≤��C〈ξ〉��|f|��� + |h|���C� |f(y) − f(0)|

|y|� |y|�dy
�

�
�

�∈�
 

 
≤ |f|����∑ C〈ξ〉�����∈� � �〈ξ〉�� + �

���� ≤ |f|����∑ C〈ξ〉�����∈� � �1 + �
����. 

 
 
 
 
Finally, we obtain 
 

|a(X, D)f|�� ≤ |f|��� ��C〈ξ〉����
�∈�

� �1 + 1
s + 1�. 

 
Remark. It follows from the proof of Theorem 4 

that 

|a(X, D)f|�� ≤ |f|��� ��C〈ξ〉���� +
|a(∙, ξ)|���
s + 1 �

�∈�
. 

 

So, if |a(∙, ξ)|��� ∈ L�(Z) , then |a(X, D)f|�� ≤
M|f|��� ,  with M = ∑ C� �C〈ξ〉���� +

|�(∙,�)|���
��� ��∈� <

∞.  In conclusion, the operator a(X, D)  will be 
bounded from Λ�� ([0,1], θ) into Λ�([0,1], θ). So we 
obtain the next result: 

Theorem 5. Let s ≠ 1, m > 1 and |a(∙, ξ)|��� ∈
L�(Z) . If a ∈ S�,���  then a(X, D): Λ�� ([0,1], θ) →
Λ�([0,1], θ) is a bounded operator. 
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Theorem 6. Let 0 < � < 1 and k ∈ N with  k >
�
� , let a be a symbol such that ���

�a(x, ξ)� ≤
C�〈ξ〉��

���(���)|�| , �∂�
�ξa(x, ξ)� ≤ C�〈ξ〉��

� , for 
|α|, |β| ≤ k . Then, a(X, D)  is a bounded operator 
from L�(T) into L�(T) for 2 ≤ p < ∞. 

In the following theorems, we obtain Hӧlder 
boundedness using the Morrey inequality [6]: if 1 <
� < ∞ and s� = 1 − �

�, then for x, y ∈ R we have 
 
 

|u(x + h) − u(x)|
|h|�� ≤ |u′(x)|��(�). 

 

Function on the torus may be thought as those 
functions on R that are 1-periodic, under these 
assumptions, we can use a toroidal version of 
Morrey inequality on L�(T). 

Theorem 7. Let 0 ≤ δ < ρ ≤ 1 and m > 1. If 

a ∈ S�,�
�� , then a(X, D): Λ�

�
� ([0,1], θ) → Λ

�
�([0,1], θ) 

is a bounded operator. 
Proof. The composition of the pseudo-

differential operators �
�� and  a(X, D) is the pseudo-

differential operator �
�� a(X, D) of degree – m + 1 <

0 , so, T = �
�� a(X, D): L�(0,1) → L�(0,1) . If u ∈

Λ�
�
� ([0,1], θ), then 

 
 
 

|a(X, D)f(x + h) − a(X, D)f(x)|
|h|�� ≤ C � d

dx a(X, D)u�
��

≤ C � d
dx a(X, D)�

(��,��)
|u|��  

 

= C � d
dx a(X, D)�

(��,��)
�� |u(x) − u(0)|

|x|���
��

|x|���
��dx

�

�
�

�
�

≤ C � d
dx a(X, D)�

(��,��)
�1

2�
�
� |u|

��
�
�
. 

 
Finally,  
 

‖a(X, D)f‖
��

�
�([�,�],�)

≤ max � sup
�∈[�,�]

|a(x,∙)|��(�) , C � d
dx a(X, D)�

(��,��)
�1

2�
�
�� ‖f‖

��
�
�([�,�],�)

 

 
 
Theorem 8. Let 0 < � < 1  and a(x, ξ)  be a 

symbol such that ���
�ξa(x, ξ)� ≤

C�〈ξ〉��
��(���)|�| , �∂�

�ξa(x, ξ)� ≤ C�〈ξ〉��
� , for 0 ≤

|α|, |β| ≤ 1 . If �
� < � < 1 , then 

a(X, D): Λ�� ([0,1], θ) → Λ�([0,1], θ)  is a bounded 
linear operator. 

Proof. If �
� ≤ s < 1 , there exists 2 ≤ p < ∞ 

such that s = 1 − �
� . Applying Theorem 6 to the 

symbol i2πξa(x, ξ) we obtain L�(0,1)- boundedness 
for the operator �

�� a(X, D). If u ∈ Λ�� ([0,1], θ), then 
 

 
 

|a(X, D)u(x + h) − a(X, D)u(x)|
|h|� ≤ C � d

dx a(X, D)u�
��

≤ C � d
dx a(X, D)�

(��,��)
|u|�� 

 

= C � d
dx a(X, D)�

(��,��)
�� |u(x) − u(0)|

|x|�� |x|��dx
�

�
�

�
�

≤ C � d
dx a(X, D)�

(��,��)
�1

p�
�
� |u|��� . 
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Hence, 
 

|a(X, D)u|�� ≤ C � ddx a(X, D)�(��,��) �
1
p�

�
� |u|���  

 
Now, since |ξa(x, ξ)| ≤ C〈ξ〉�

�
�, we get 

 
|a(x, ξ)| ≤ C〈ξ〉�

�
�|ξ|��, ξ ≠ 0. 

 
Hence, we obtain  
 

M = sup
��[�,�]

|a(x,∙)|��(�) < ∞ 

 
Therefore 
 
 

‖a(X, D)f‖���([�,�],�) ≤ 

≤ max�M, C � ddx p(X, D)�(��,��) �
1
p�

�
�� ‖f‖���([�,�],�). 
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Simulation of thermal flows by lattice Boltzmann method  
on the CUDA computational platform 

Abstract. Originating from lattice gas automata theory, the lattice Boltzmann method  (LBM) is an 
interesting alternative to the solving of Navier-Stokes equations. In contrast to isothermal simulations, for 
a while thermal flow simulations were challenging for LBM.  Thermal flow simulations are important 
task in various fields of research. Despite a large amount of work and research the dynamics of thermally 
induced flows are still highly demanded. Motivation of this work is development of computational tool 
for simulation of the dynamics of thermal flows. To this purpose, we developed LES-LBM solver 
accelerated by the Graphics Processing Unit (GPU) on the CUDA computational platform, integrating 
LBM with Large Eddy Simulation (LES). Simplicity of coding is usually an appealing feature of the 
LBM. Conventional implementations of LBM suffer from high memory consumption and poor 
computational performance. The main advantage of the solvers based on GPU is their ability to perform 
significantly more floating point operations per unit time (FLOPS) than a Central Processing Unit (CPU) 
and a good scalability of explicit parallel algorithms. LES-LBM code was tested on the NVIDIA GeForce 
GTX 1050 ti and NVIDIA TESLA K80 GPUs. 
Key words: The lattice Boltzmann method, CUDA, thermal flow. 

Introduction 

In June 2007 NVIDIA released a new 
framework named CUDA for general parallel 
processing applications. This framework enables 
developers to implement GPU parallel programs in 
C, C++ languages and allows direct access to the 
GPU computing power without complicated 
graphics API. Special tools which are included in an 
official software development kit (SDK) allows to 
debug GPU programs in runtime. Since 2007 a lot 
of numerical libraries presented. They allow to 
create efficient programs with less effort, and cover 
such numerical algorithms like linear algebra 
operations, sparse matrix computations, Fourier 
transforms, image algorithms etc. 

In a market NVIDIA has several separate 
products, GeForce is for gaming, Quadro is for 
professional OpenGL based rendering and Tesla for 
high performance computations. Tesla compute 

accelerators get strong positions in a such high 
performance areas as financial analysis and 
scientific computations. A lot of supercomputer 
providers use NVIDIA GPUs to create energy 
efficient computing clusters. One of the secret of the 
hight popularity among users is the support of most 
popular proprietary (CUDA) and open standards 
(OpenCL, DirectCompute) for GPU programming. 

Effort to use GPU as a massively parallel 
processor computational fluid dynamics (CFD) 
started in the beginning of 2000. One of the first 
publications was a chapter in the GPU Gems Books 
by M. J. Harris [1]. In the Chapter 38 he described 
realization of simple fluid dynamics solver based on 
Stam’s stable fluids [2]. Later several authors 
published results of implementing Marker and Cell 
method on a GPU [3]. 

The smoothed particle hydrodynamics (SPH) is 
another approach for simulation of the fluid 
dynamics, without direct use of the Navier Stokes 
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equations. Originally developed in [4] SPH is a 
meshfree Lagrangian method which tracks position 
and movement of many fluid particles, which allows 
direct mass conservation. One drawback over grid-
based techniques is the need for large numbers of 
particles to produce simulations of equivalent 
resolution. Explicit nature of the method allows it to 
run effectively on massive parallel processors as 
GPU [5-7].  

The lattice Boltzmann method (LBM) is a 
relatively novel approach in computational fluid 
dynamics (CFD), which, unlike most other CFD 
methods, does not rely in directly solving the 
Navier-Stokes equations by a numerical algorithm.  

One of the most interesting feature of LBM is 
that numerical procedure has the data locality 
property. Such a property is very well suited to be 
implemented in a massively parallel processors, like 
GPUs [8-11]. In [12] LBM Large Eddy Simulations 
for high Reynolds numbers were performed. 
Developed numerical implementation was able to 
run on four Fermi class GPUs simultaneously. Large 
GPU memory (24GB) allowed to perform 
simulations with relatively high spatial resolution 
(max grid size 10240x10240) with active double 
precision mode. However, authors mentioned that 
four GPUs were located on the same machine, and 
there is strong hardware limitation for further 
improvement of spatial resolution. To overcome this 
fact, authors recommended to extend their 
implementation to multinode GPU clusters. 

On the other hand, while for describing 
hydrodynamic turbulence models based on the 
Navier-Stokes equations have been used almost 
exclusively for almost two centuries, a significant 
increase in interest in LBM methods has recently 
been explained by their computational efficiency. 
These methods, based on the Boltzmann equation, 
make it possible to predict the macroscopic 
magnitudes of continuum mechanics, such as 
velocity and pressure. Although it was proven 
several years ago that hydrodynamic turbulence can 
be accurately described using these methods, the 
development of LES within LBM is still at a very 
early stage [13]. For example, the LES-LBM 
methods are used in [14-19]. 

 
Lattice Boltzmann Method 
 
The basic quantity of the LBM is the discrete 

velocity distribution function ��(�
⃗ � �) which is also 

called particle populations. Particle populations 

represents the density of particles with velocity �⃗� =
(���� ���� ���)  at position-time (�⃗ � �)� �⃗ = ��� �� �� . 
The discrete velocities are chosen such as to link 
each lattice site to some of its neighbors. Fig. 1 
shows the D3Q27 stencil, where each node is 
connected to 26 of its nearest neighbors, and 
position 0 assigned to resting particles. 
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By discretising the Boltzmann equation in 

velocity space, physical space, and time, we find the 
lattice Boltzmann equation: 
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Where �  is collision operator and ��  is force. 

One of simplest models for collision is Bhatnagar-
Gros-Krook [20], which relaxes the populations 
towards an equilibrium ��� at a rate determined by 
the relaxation time �: 
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Relation between physical kinematic viscosity 

and lattice relaxation time is given by [10], where �� 
is the lattice speed of sound: 

 
� = ���(� − ��

� )                           (6) 
 

Numerical algorithm for LBM consists of 
collision (7) and streaming (8) steps. During 
streaming particles propagate to neighbor nodes fig. 
2a-b. 
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Figure 1 - D3Q27 lattice model used in the simulations 
 
 
In many situations, the work from viscous 

dissipation and compression is so small that it does 
not significantly contribute to the heat balance. It is 
then sufficient to consider an advection-diffusion 

equation for temperature without heat source terms, 
together with the incompressible Navier-Stokes eq. 
For such simulations often two population model is 
applied, in which there is separate distribution 
function for temperature - ��  is introduced. For 
temperature distribution function same equations are 
applied for collision and streaming process (7-8).  

Buoyancy is modeled through force density F. If 
density variations due temperature is small 
Boussinesq approximation could be used [10-11]. 

Numerical algorithm for LBM reads as: 
 
——————————— 
for each time step t do 
compute macroscopic velocity, temperature and density 
compute equilibrium distribution for g 
perform one step of collision for g 
apply boundary conditions for temperature 
perform propagation step 
compute equilibrium distribution for f 
perform one step of collision for f 
apply boundary conditions for velocity 
perform propagation step 
 ������ 
———————————

 
 

 
a 

 
b 

 
Figure 2 – Streaming from central node (a) and streaming into central node (b) 

 
 
CUDA implementation 
 
CUDA enabled simulation code is implemented 

in the CUDA C language which is an extension to 
the C language. Functions in a CUDA C are marked 
as host functions, device functions and kernels. Host 
functions are simple C functions which executed by 
host processor. Device functions are special 
functions which should be launched on a GPU. 
Kernel functions are used to launch GPU functions 
from the host code. 

Kernel function runs in parallel on the GPU. 
During launch of the kernel a lot of kernel copies  
executed in parallel by GPU. The execution pattern 
is identified by a grid. The grid is the special 
configuration of the parallel threads, which are 
grouped into blocks. Grid and block layout could be 
one, two and three dimensional. Fig. 3 show 
example of the grid which has 6 blocks and two 
dimensional layout. Each block in fig. 3 also has 
two dimensional layout with 9 threads, total number 
of threads 54.  
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Figure 3 – CUDA execution model 
 

 
Each thread is executed by Streaming 

multiprocessor (SM). SM has several scalar 
processors (SP) which actually runs code. Special 
scheduling algorithms and chips make use of large 
amount of SP on a GPU. 

For convenience, “threadIdx” is a 3-component 
vector, so threads can be identified using a one-
dimensional, two-dimensional, or three-dimensional 
thread index, forming a one-dimensional, two-
dimensional, or three-dimensional block of threads. 
This provides a natural way to invoke calculations 
for elements in a domain, such as a vector, matrix, 
or volume. 

The index of a threads and its identifier are 
directly related to each other: they are the same for a 
one-dimensional block; for a two-dimensional block 
of size (Dx, Dy), the thread ID of index(x, y) is (x + 

y Dx); for a three-dimensional block of size (Dx, 
Dy, Dz), the thread ID of index(x, y, z) is (x + y Dx 
+ z Dx Dy). 

There is a limit on the number of threads in a 
block, since it is expected that all threads of a block 
will be on the same processor core and must share 
the limited memory resources of this core. On 
modern GPUs, a block of threads can contain up to 
1024 threads. 

However, the kernel can be executed by several 
blocks of threads of the same shape, so that the total 
number of threads is equal to the number of threads 
in the block multiplied by the number of blocks. 

Listing 1 provides example of GPU kernel 
function for streaming stage in LBM simulations. 
Variables i, j, k are used to assign memory location 
for each thread. 

 
 
Listing 1 – GPU kernel function 
 
__global__ void stream(float *f_dst, float *f_src) 
{ 
    unsigned int i = threadIdx.x + blockIdx.x * blockDim.x; 
    unsigned int j = threadIdx.y + blockIdx.y * blockDim.y; 
    unsigned int k = threadIdx.z + blockIdx.z * blockDim.z; 
 
    for (unsigned int l=0; l<NDIR; l++) { 
        unsigned int i2 = (NX + i - dirx[l]) % NX; 
        unsigned int j2 = (NY + j - diry[l]) % NY; 
        unsigned int k2 = (NZ + k - dirz[l]) % NZ; 
 
        f_dst[voffset(i, j, k, l)] = f_src[voffset(i2, j2, k2, l)]; 
    } 
} 
 
CUDA programming model introduces concept 

of memory types. CUDA enabled GPU has device, 
shared, texture, constant cache and register memory. 
Register memory is very fast memory, with on-chip 
implementation. Size of register memory may vary 
between GPU’s, but it is usually small, and cannot 

store arrays. Shared memory is special memory 
which is shared between threads of the same block. 
Proper use of shared memory may decrease load to 
global GPU memory. Global GPU memory or 
device memory is large memory, which is slow 
comparably to other types of memory, but has 
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advantage of big size, often several gigabytes. There 
is also special caches to store constant values and 
one-two-three dimensional textures. Use of texture 
cache may increase simulation speed if there exist 
special pattern while accessing data in cache.  

To archive high performance CUDA implies 
that programmer uses right type of memory for 
various data. Results of the simulation should be 
uploaded to CPU or host memory using special 
CUDA API calls. 

 
 

 
 

Figure 4 - CUDA hardware model 
 
 
Results 
 
The CUDA LBM solver implemented on the 

GPU is used to study the differentially heated cubic 
cavity outlined in Fig. 5. Two opposite vertical 
walls have imposed temperatures -􂀀T0 and +T0, 
whereas the remaining walls are adiabatic. This 
configuration has been extensively studied in the 
two-dimensional configuration and various 
benchmark solution are available. 

All simulation parameters were the same as in 
the benchmark solution [11]. In order to perform 
validation, the flow in the differentially heated 

cavity is computed for Rayleigh numbers equal to 
10� , 10� , 10�  and 10� . The results are compared 
with available data. Table 1 gives the obtained 
Nusselt numbers as well as the values published in 
[11]. GPU simulations shows good results which are 
in accordance with the reference values. 

Simulations were performed in a single 
precision mode on a NVIDIA 1050 and Tesla K80 
GPUs. Their characteristics are presented in the 
table 2. Mesh size is 128x128x64. Additional 
comparison was made with multicore workstation 
with 64 available cores and 256 threads. Results of 
performance comparison is presented in fig. 6. 

 
 

 
Figure 5 – Natural convection scheme 
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Table 1 – Comparison of Nusselt numbers 
 

Rayleight number     
Present 2.031 4.3302 8.6468 16.4193

Obrecht [11] 2.056 4.3382 8.6457 16.4202
 
 

 
 

Figure 6 – Performance comparison 
 

 
Table 2 – GPU parameters 
 

Parameter/GPU 1050 Ti Tesla K80 
CUDA cores 768 4992 
GPU Clock 1392 MHz 875 MHz 

SP performance 2.1 TFlops 8.73 TFlops 
DP performance 1/32 of SP 2.91 TFlops 

Memory 4 GB GDDR5 24 GB GDDR5 
Bandwidth 112 GB/s 480 GB/s 

ECC support No Yes 
 
 
Conclusion 
 
In this paper, we presented in-house thermal 

LBM solver for CUDA enabled GPU workstations. 
Validity of the numerical algorithm was tested on a 
benchmark Natural convection problem. The code 
uses separate populations for velocity and 
temperature. According to the timings GPU based 
LBM gets higher performance in comparison with 
the single CPU code. Code runtime also compared 
with the results of OpenMP version of the code, 
which is executed on Xeon Phi KNL workstation 
with 64 available cores. Promising results shows 

that GPU accelerated LBM is a good alternative to 
CPU versions. Drawback of the CUDA code is the 
dependence on the CUDA platform and decisions 
made by Nvidia company. Also, most of the CUDA 
libraries are closed source, or proprietary standards, 
which is opposite to the role of the OpenMP.  

Still a plenty of improvements are possible to 
the code. One is the extension of the algorithm to 
multi GPU and multi node configurations and more 
aggressive optimization for memory bandwidth. 

Developed code could be used in various 
thermal fluid flow simulations for which Boussinesq 
approximation for density fluctuations is valid. 
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Computational study of temperature stratification effect  
on harmful gases expansion in the atmosphere

Abstract. To date, the study of atmospheric pollution is of great interest. Assessment, monitoring and cal-
culation of concentrations of harmful impurities in the atmosphere with their source is based on theoretical 
studies, and it is possible to make short-term forecasts used to control emissions from industrial enterprises. 
Disposal of waste by industrial enterprises, often consisting not only of light impurities, but also of heavy 
elements, does not always control what constitutes a danger to living creatures and flora in the affected area. 
Сomputational model is constructed for determination of harmful impurities expansion in atmosphere, 
which is most serious environmental problems in many industrial cities in the world. Numerical calcula-
tions are obtained by program complex ANSYS. There is given analysis and results of calculations deter-
mining the distribution of harmful impurities concentrations in different temperature gradient. Calculations 
are conducted for different pollutant-emission rate from point source. There is studied the influence of tem-
perature in ground layer on the dynamics of harmful impurities concentration from point source. Obtained 
results allow to predict of distribution contour of impurities and its extent.
Key words: atmospheric boundary layer, numerical modeling, ANSYS software system, spread of pollut-
ing substances.

Introduction

Dispersion of pollution represents an important 
environmental problem with respect to human health. 
In urban areas, several sources of pollution (e.g. 
wind-blown dust, vehicle exhaust, toxic and odorous 
emissions) may be unpleasant and dangerous. Among 
them, pollutant emissions from rooftop stacks is a 
factor that can seriously affect the quality of fresh-
air at intakes of the emitting and/or surrounding 
buildings, and potentially compromising the well-
being of these buildings’ occupants. Additionally, 
inside cities − where the building density increases − 
the stack emissions can be accumulated between 
buildings, thus inducing an increase of the 
contaminant concentration because reduced airflow 
passes through the zone’s boundaries as compared to 
free-stream flow.

The problem of environmental protection 
and restoration is becoming one of the most 
important tasks of science, the development of 
which is stimulated by the ever-increasing pace of 
technological progress in all countries of the world. 

The rapid development of industry contributed to 
the emergence of an acute problem for humanity 
– the preservation of ecological systems that 
historically formed on our planet. In recent decades, 
environmental systems have experienced a significant 
impact of natural, especially anthropogenic factors, 
changing in an undesirable direction for nature. The 
increased concentration of pollutants is observed in 
the atmosphere of almost every industrial city, so 
there is a need to solve the problem of assessing and 
modeling the spread of pollutants in the atmosphere 
from local stationary sources to prevent or reduce 
their impact on the ecosystem. A wide range of 
environmental protection tasks is being solved using 
mathematical modeling methods. This approach 
allows testing multiple options for work, to predict 
various scenarios for the development of the process 
while varying the initial data. A lot of articles have 
been published in which studies of atmospheric 
pollution from different directions and taking into 
account various factors are presented [1-6].

Numerical simulations with CFD offer some 
advantages compared to other methods; they are 
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relatively less expensive, they provide results of flow 
features at every point in space simultaneously [7]) 
and they do not suffer from potentially incompatible 
similarity because simulations can be conducted 
at full scale [8]. In addition, at the micro-scale, the 
CFD technique is the preferred way of investigation 
and very suitable for parametric studies for various 
physical flow and dispersion processes [9]. Due to 
the rapid development in computer hardware and 
numerical modelling, CFD has been increasingly 
used and adopted to simulate the flow development 
and pollutant dispersion [10]. Many studies have 
shown that the approach is capable of reproducing 
the qualitative features of airflow and pollutant 
distributions [11]. However, the accuracy and 
reliability of CFD are of concern, thus solution 
verification and validation studies are imperative 
[12]. Since experience has already shown that 
numerical results do not compare among themselves 
[13], experimental tests (i.e. field and reduced-scale 
measurements) appear unquestionably necessary for 
fulfilling the requirements of assessing the quality 
of CFD simulation [14]. In addition, one of the 
objectives of laboratory studies has frequently been 
to aid the development of dispersion algorithms that 
can be used in dispersion modelling packages to 
predict behaviour near and around buildings [15].

In this paper, we consider the effect of tempera-
ture stratification on the distribution of concentra-
tions of harmful substances in the atmosphere emit-
ted by industrial enterprises through local sources 
(pipes). The mathematical model of the problem is a 
system of Navier-Stokes equations, energy equations 
and equations for the k-ε model of turbulence. This 
system of equations is solved with using of FLUENT 
package [17].

Physical statement of problem

One of the conditions affecting the dynamics 
of the distribution of harmful substances is the 
stratification of temperature in height, due to the 
ability of the earth’s surface to absorb or radiate heat 
[1].

The paper deals with the problem of spreading the 
concentration of harmful substances in the atmosphere 
emitted by industrial enterprises through point 
sources (pipes), taking into account of temperatures 
variation with vertical. Computational domain is the 
rectangle with width – 60 m and height – 30 m. The 
point source (pipe) is located at 4 meters apart from 
left boundary. Diameter of source’s mouth is 1.2 m, 
height of source is 7 m. Figure 1 schematically shows 
computational domain.

Figure 1 – Scheme of computational domain
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Solution method

ANSYS software was used for solving of prob-
lem. At first stage, geometry of object was created 
with the help of built-in DesignModeler editor. 
Mesh editor allows sampling computational domain. 
Transition to Setup editor allows setting initial and 
boundary conditions of task, and choose solution 
method. In Gеnеrаl we set Typе – Prеssurе-Bаsеd, 
Timе – Transient, VeloсityFоrmulatiоn – Аbsоlutе, 
2DSpасе – Plаnаr. Below we put a tick in front of 
Gravity and assign value along vertical axis -9.8 m 
/ s2. In Models, we add energy equation, We change 
Viscous to Stardard k-ε, Species to SpeciesTranspоrt, 
here we choose MixtureMaterial – mеthаne-аir, 
Reасtiоns – Volumеtriс and Turbulеnse – Сhеmistry 
Intеrасtiоn – Eddy-Dissipation. Here, we use UDF 
to set temperature gradient. We create *.c file, where 
we set temperature profile. To use it in the project, we 
call menu Define -> DefineFunctions -> Interprete ..., 
select created file. After that, in settings of Cell Zone 
Conditions, we put a tick in front of FixedValues and 
change Temperature from none to udf_y_tempera-
ture. Specifying values on boundaries of domain is 
done in Boundary Conditions tab. Values of incom-
ing flow velocity to domain in air_inlet, emission rate 

of methane from pipe in gas_inlet are specified. Oxy-
gen mass fraction in air_inlеt is 0.23, and methane 
mass fraction in gas_inlеt is 1. In air_inlet, tempera-
ture is changed from none to udf_y_temperature.

As solution method, the method SIMPLE (Semi-
Implicit Method for Pressure Linked Equations) was 
chosen, put it otherwise – splitting method by physi-
cal parameters. Then calculation is initialized.

Analysis of results 

Calculations were carried out in different varia-
tions of temperature gradient and rate of harmful 
impurities emission from mouth of source. Results 
were obtained at pollutant-emission rates: 2.5 m/s, 4 
m/s, 10 m/s. Air flow from the left moves at veloc-
ity of 0.5 m/s. This airflow velocity according to the 
Beaufort scale corresponds to determination of wind 
strength – quiet [9]. That is, in this case, direction of 
wind can be seen through smoke, but not over weath-
ervane, leaves of trees remain motionless. Presented 
figures determine the state of plume on the thirtieth 
second. Iteration step in time is 0.1 s.

Figure 2 shows methane (CH4) concentration 
distribution in case of temperature decrease with 
altitude.

Figure 2 – Methane (CH4 ) concentration distribution  
in case of temperature decrease with altitude

Figure 3 – Methane (CH4 ) concentration distribution  
in the case of inversion (increase in temperature with altitude)
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Figure 3 shows methane (CH4) concentration 
distribution in case of inversion. In comparison 
with Figure 2, which presents the case of 
methane concentration distribution at negative 
temperature gradient, most of impurities is 
transported on considerable distance in direction 
of wind motion before it reaches considerable 
concentration in earth’s surface. This is due to 
dominance of small-scale mechanical turbulence 
arising at low temperature gradients [9]. In 
comparison with figure 2, which presents the 
case of methane concentration distribution at 
positive temperature gradient, it can be seen that 
contaminants are removed over long distances, so 
low concentrations of harmful substances reach 
ground level and weak mechanical turbulence 
arises [7].

Figure 4 is picture of methane concentration 
distribution emitted into atmosphere by point source, 
in case when the source mouth is located above the 
upper boundary of inversion layer.

Inversion layer, located below level of source 
mouth, is natural barrier to lowering pollutants 
to earth’s surface. Figure 5. describe of methane 
concentration distribution which emitted into 

atmosphere by local source, in case when the 
source mouth is located below the lower boundary 
of inversion layer. It can be noted that significant 
parts of concentration are separated from source 
by considerable distance. Dispersion also occurs 
at considerable distance from source. This is due 
to the fact that above mouth of source is powerful 
inversion layer, which prevents dispersion of harmful 
substances released into the atmosphere. Significant 
concentrations of harmful substances remain closer 
to earth’s surface. Inversion layer located above the 
level of source’s mouth is obstacle to dispersion 
of harmful substances, and therefore impurities 
concentration in surface layer can be higher than 
calculated one in several times.

Figure 6 describes of methane concentration 
distribution at pollutant-emission rate of 2.5 m/s. Four 
cases are considered, each of which corresponds to 
given temperature gradient. 6 (a) is characteristic for 
the case when temperature decreases with altitude; 
6 (b) – for the case of inversion; 6 (c) – for the case 
when mouth of source is located above the upper 
boundary of inversion layer; 6 (d) – for case when the 
source mouth is located below the lower boundary of 
inversion layer.

Figure 4 – Methane (CH4 ) concentration distribution in case  
when the source mouth is located above the upper boundary of inversion layer
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Figure 5 – Methane (CH4 ) concentration distribution in case  
when the source mouth is located below the lower boundary of inversion layer

Figure 6 – Methane (CH4 ) concentration distribution for various  
initial temperature profiles in case when pollutant-emission rate is 2.5 m/s
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Figure 7 – Methane (CH4 ) concentration distribution for various  
initial temperature profiles in case when pollutant-emission rate is 4 m/s

In Figure 7 were presented the methane 
concentration distribution at pollutant-emission rate 
of 4 m/s. Four cases are considered, each of which 
corresponds to given temperature gradient. 7 (a) is 
characteristic for the case when temperature decreases 
with altitude; 7 (b) – for the case of inversion; 7 (c) 
– for the case when mouth of source is located above 
the upper boundary of inversion layer; 7 (d) – for case 
when the source mouth is located below the lower 
boundary of inversion layer.

The computational experiment was done for the 
speed 10 m/s. Four cases are considered, each of 
which corresponds to given temperature gradient. 8 
(a) is characteristic for the case when temperature 
decreases with altitude; 8 (b) – for the case of 
inversion; 8 (c) – for the case when mouth of source 
is located above the upper boundary of inversion 
layer; 8 (d) – for the case when the source mouth is 
located below the lower boundary of inversion layer.

Thus, represented results allow to note wind 
influence importance to harmful substances 
distribution in atmosphere which are thrown out by 
point source of industrial enterprise.

Figure 9 corresponds to methane concentration 
distribution of at t = 10 sec (10 (a)), t = 30 sec (10 
(b)), t = 60 sec (10 (c)). As can be seen, at first stage, 
significant concentrations remain near mouth of 
source, scattering is noticeably observed. In second 
stage, significant concentrations are transfered to more 
remote distance from source, followed by dispersion. 
Third stage shows the most pronounced form of 
plume. Significant concentrations are transported 
a considerable distance from source in direction of 
wind propagation, followed by dispersion.

Opposed to case when mouth of source is located 
below the lower boundary of inversion layer, which 
is shown in Figure 10, significant concentrations are 
transferred on shorter distance from source.
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Figure 8 – Methane (CH4 ) concentration distribution for various  
initial temperature profiles in case when pollutant-emission rate is 4 m/s

Figure 9 – Temporal distribution of methane (CH4 ) concentration in case  
when the upper boundary of inversion is located below mouth of source 
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Figure 9 – Temporal distribution of methane (CH4 ) concentration in case  
when the lower boundary of inversion is located above mouth of source

It can be seen how plume acquires more 
pronounced cone shape over time. In comparison with 
Figure 10, it can be noted that dispersion of harmful 
substances is greater, which is due to fact that plume 
enters the atmosphere layer, where temperature 
gradient is positive. It can also be noted that in case 
when inversion layer is below mouth of source, 
significant concentrations of harmful substances are 
observed at higher altitude than when inversion layer 
is located above mouth of source.

Figure 10 shows methane concentration 
distribution emitted by point source at velocity of 
10 m/s over time (t = 10 s (10 (a)), t = 30 s (10 (b)), 
t = 60 s (10 (s ))), taking into account that mouth 
of source is located below the lower boundary of 
inversion layer. In contrast to the case when mouth 
of source is located above the upper boundary 
of inversion layer, which is shown in Figure 9, 
significant concentrations are transferred to a larger 
distance from source. It can also be noted that 
dispersion of harmful substances is less, which is due 
to fact that plume enters to inversion layer, which 
prevents diffusion. In case when inversion layer is 
below mouth of source, significant concentrations 
of harmful substances are observed at lower altitude 

than when inversion layer is located above mouth 
of source.

According to this, it can be argued that the case 
where inversion layer is located below mouth of 
source is safer for ecology of ground layer.

Conclusion

Thus, the computational model is constructed to 
determine expansion of harmful impurities in ground 
layer in different temperature stratification based 
on ANSYS software. Numerical experiments are 
conducted for different pollutant-emission rate from 
point source, for different temperature stratifications 
with altitude, which makes it possible to predict 
flame contour and its extent.

Obtained results can be used to predict distribution 
of concentration in ground layer, quality of air 
composition, that has a significant effect on state of 
environment ecology. Analyzing the obtained results 
makes possible to note the necessity of creating 
similar models for predicting the distribution of 
harmful substances concentration in ground layer, 
which will affect the state of environment ecology in 
general, and of atmosphere in particular.



71S.D. Maussumbekova, K. Khan

International Journal of Mathematics and Physics 9, №2, 63 (2018)

 References

1.	 Kader B. “Temperature and Concentration 
Profiles.” Journal of Heat and Mass Transfer no. 
24(9) (1981): 1541–1544.

2.	 Kader B. A. “Heat and Mass Transfer in 
Pressure-Gradient Boundary Layers.” Int. J. Heat 
Mass Transfer 34 (1991): 2837–2857.

3.	 Khaikine Ì.N., Kuznetsova I.N., Kadygrov 
E.N., Miller Å.À. “Investigation of temporal-spatial 
parameters of an urban heat island on the basis of 
passive micro-wave remote sensing.” Theor. Appl. 
Climatol 84, no. 1 (2006): 161–169. 

4.	 Wei T., Fife P., Klewicki J., and McMurtry 
P. “Properties of the Mean Momentum Balance 
in Turbulent Boundary Layer, Pipe and Channel 
Flows.” J. Fluid Mech. 522 (2005): 303–327.

5.	 Le P. M., and Papavassiliou D. V. “On 
Temperature Prediction at Low Re Turbulent Flows 
Using the Churchill Turbulent Heat Flux Correlation.” 
Int.J. Heat Mass Transfer 49 (2006): 3681–3690.

6.	 Xia Wang, Luciano Castillo, Guillermo 
Araya. “Temperature Scalings and Profiles in 
Forced Convection Turbulent Boundary Layers.” 
Journal of Heat Transfer 130(2) (2008). DOI: 
10.1115/1.2813781.

7.	 Berlyand, M.E. “Prediction and regulation of 
air pollution.” L.: Gidrometeoizdat 136 (1991): 121. 

8.	 Ji Xing, Zhenyi Liu, Ping Huang, Changgen 
Feng, Yi Zhou, Deping Zhang, Feng Wang.  “Experi-
mental and numerical study of the dispersion of car-
bon dioxide plume.” Journal of Hazardous Materials 
256–257 (2013): 40-48. 

9.	 P. Moonen, T. Defraeye, V. Dorer, B. Block-
en, J. Carmeliet “Urban physics: effect of the micro-

climate on comfort, health and energy demand.” 
Frontiers of Architectural Research 1 (3) (2012): 
197-228. 

10.	 H. Montazeri, B. Blocken “CFD simulation 
of wind-induced pressure coefficients on buildings 
with and without balconies: validation and sensitiv-
ity analysis.” Building and Environment 60 (2013): 
137-149. 

11.	 P. Gousseau, B. Blocken, T. Stathopoulos, 
G.J.F. Van-Heijst. “CFD simulation of near-field 
pollutant dispersion on a high-resolution grid: a case 
study by LES and RANS for a building group in 
downtown Montreal.” Atmospheric Environment 45 
(2) (2011): 428-438. 

12.	 P. Wang, H. Mu. “Numerical simulation of 
pollutant flow and dispersion in different street lay-
outs.” International Journal Environment Study 67 
(2) (2010): 155-167. 

13.	 Y. Huang, X. Hu, N. Zeng. “Impact of 
wedge-shaped roofs on airflow and pollutant disper-
sion inside urban street canyons.” Building and Envi-
ronment 44 (2009): 2335-2347. 

14.	 T. Stathopoulos. “Computational wind engi-
neering: past achievements and future challenges.” 
Journal of Wind Engineering and Industrial Aerody-
namics 67–68 (1997): 509-532. 

15.	 I. Abohela, N. Hamza, S. Dudek “Effect of 
roof shape, wind direction, building height and urban 
configuration on the energy yield and positioning of 
roof mounted wind turbines.” Renewable Energy 50 
(2013): 1106-1118. 

16.	 Valger S.A., Danilov M.N., Zakharova 
Yu.V., Fedorova N.N. “Basics of PC ANSYS 16.0: 
tutorial.” Novosibirsk: NSABU (2015): 240.



© 2018 al-Farabi Kazakh National University	                                   Printed in Kazakhstan

International Journal of Mathematics and Physics 9, №2, 72 (2018) 
 
 
 
 
 
 

IRSTI 27.35.17 
 

1A. Beketayeva, 2A.Zadauly 
 

1Institute of Mathematics and Mathematical Modeling  
of Ministry of Education and Science of Republic of Kazakhstan, Almaty, Kazakhstan 

e-mail: azimaras10@gmail.com 
2Institute of Mechanics and Engineering Science  

of Ministry of Education and Science of Republic of Kazakhstan, Almaty, Kazakhstan 
e-mail: akerkeh_333@mail.ru 

 
Influence of slit sizes on the interaction structure  

of supersonic turbulent air flow  
with a multi-component injection jet in a channel 

 
 

Abstract. The supersonic air flow in a flat channel with transverse injection of a turbulent hydrogen jet 
through a slit in the bottom wall is numerically simulated. The solution of the initial Favre-averaged 
Navier-Stokes equations closed by the k-ω turbulence model is performed using an algorithm built on the 
basis of the WENO scheme. The interaction of a shock-wave structure with boundary layers on the lower 
and upper walls under conditions of an internal turbulent flow is investigated, namely, the effect of the 
width of the jet slit is studied. It is found that, in addition to the known shock-wave structures arising 
from the interaction of the incident flow with the transverse jet and the interaction of the main shock 
wave with the boundary layers near the walls, there is an additional system of shock waves and separation 
of the flow on the bottom wall at some distance from the jet downwards flow. Comparison with 
experimental data showed satisfactory agreement. 
Key words: supersonic flow, perfect gas, boundary layer, the Navier-Stokes equations. 

  
 
Introduction 
  
Most published theoretical studies of the 

interaction of the jet and the oncoming flow in the 
channel mainly consider the jet injection region and 
generally the boundary conditions of symmetry or 
free flow are realized at the upper boundary [1-3], 
which greatly simplifies the solution of an assigned 
task. For example, in [1] the processes of mixing 
and chemical reactions during the transverse 
injection of a sound jet of hydrogen into a 
supersonic air stream with the parameters of 

4M  , 1000T K 4p atm  were calculated. Some 
features of the emerging flow were identified, 
including establishing the existence of the reverse 
current zones in front of the injector and behind it 
and obtaining the distributions of concentrations of 
the mixture of components. Studies in [2] dealt with 

the transverse injection of gaseous fuel at an angle 
into a low elongated supersonic combustion 
channel. It is shown numerically that the fuel 
injection at an angle leads to an increase in the 
efficiency of mixing of fuel with air.The authors of 
[3] considered the flow of a multicomponent gas 
mixture with the injection of a helium jet through a 
circular opening at different angles of inclination 
(300, 900 and 1500). The influence of the angle of 
inclination of the injecting jet on a supersonic gas 
mixing was studied. It was found that the larger the 
angle, the greater the overall coefficient of pressure 
loss in the jet. 

 The mechanism of formation of the shock-
wave structure of the aforementioned flow is well 
described in the literature [1-7]. A schematic picture 
of the flow in the injection region is shown in Figure 
1, where 1 is the head shock wave resulting from the 
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deceleration of the oncoming flow in front of the jet, 
2 and 3 are oblique and closing shock waves, 
respectively.The intersection of the head, oblique 
and closing shock waves at one point is the λ-shaped 
structure. The diagram depicts vorticesin front of the 
jet formed as a result of the primary and secondary 
separation of the flow from the wall. In this case, the 
vortex, located closer to the jet, moves 

counterclockwise and the vortex located at a greater 
distance from it, moves clockwise [4-6]. The figure 
also shows the detachable area behind the jet which 
occurs due to the discharge zone. In addition, the 
flow diagram (Figure 1) shows a weak shock, which 
is formed behind the injection nozzle when a stream 
of airflow that has passed around the blown jet 
flows onto the wall. 

 
 

 
 

Figure 1 – The flow diagram 
 

 
In some papers, the interaction of a transverse 

jet blown from the bottom wall and a shock wave 
falling from the upper wall of the channel was 
considered which also somewhat simplifies the 
formulation of the problem and allows a detailed 
study of their interaction. Thus in [8], the interaction 
of afalling shock wave and a transverse jet in a 
supersonic flow was numerically studied. The 
influence of the size and location of the shock wave 
generator falling from the top wall on the pressure 
profiles on the bottom wall in the region of the jet 
injection was studied. The inclination angle of the 
generator ranged from 15,7840 to 35,9740. The 
authors showed that not only the inclination angle, 
but also the size of the generator significantly 
increases the interaction area both in front of the jet 
and behind it.In [9] the results of a study of the 
influence of shock waves on supersonic burning of a 
hydrogen jet were given, and the main attention was 
on the growth of the mixing layer. The effect of the 

falling shock wave on the turbulent boundary layer 
was numerically investigated in [10] where the 
intensity of the shock wave was changed by 
adjusting the angle of the shock wave generator. 
Such models of turbulence as the k-ε, k-ε / k-ω 
hybrid model and the model with one equation for 
turbulent viscosity were studied in the work. 

 Experimental and theoretical papers studied the 
interaction of the falling shock wave but with the 
boundary layer [11–12]. There are almost no studies 
devoted to the interaction of a shock wave with a 
boundary layer under conditions of an internal 
turbulent flow. A schematic picture of the 
interaction of the shock wave with the boundary 
layer on the upper wall is also shown in Figure 1. 
Here 1 is the head shock wave falling on the upper 
wall, 4 is the shock wave separating the detachment 
region on the upper wall from the supersonic 
oncoming stream, 5 is the reflected shock wave and 
6 is the compression wave arising at the point of 
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attachment of the detached flow. Thus, in [11] the 
results of calculations obtained by the method of 
large eddies are presented. The focus is on studying 
the structure of the flow, the size of the detachment 
zone, as well as the dynamic and thermal loads that 
occur during this interaction. The conditions under 
which the angle of inclination and the intensity of 
the shock wave lead to the separation of the 
boundary layer were investigated in [12]. 

 The practical interest of supersonic flow with 
injection of jets in a channel is associated with the 
arising loads on both the upper and lower walls of 
the channel. The structure of the interaction will 
depend on the parameters of the injection jet, as well 
as on the height of the channel itself. As mentioned 
above, the problems of interaction of a shock wave 
with the injection jet and with boundary layers are 
mainly considered separately, not only because of 
the complexity of the numerical implementation of 
the nature of the flow and of the gas under 
consideration, but also with the presence of the 
upper wall, which requires reliable numerical 
calculation methods. 

 The difficulties encountered in the numerical 
solution of the problems described above do not 
allow a full study of the structure of both the 
interaction of the jet with the transverse flow and 
the interaction of the shock wave with the boundary 
layers on the lower and upper walls. The main 
problem of numerical simulation is well reflected in 
the literature [13-16]. At present, quasi-monotone 

conservative schemes of a higher approximation 
order, such as TVD (Total Variation Diminishing 
Schemes), ENO (Essentially Nonoscillatory 
Schemes), WENO (Weighted ENO) schemes [18-
19], are widely used to solve such complex 
problems. In [16] the authors developed the ENO 
scheme based on the Godunov method and showed 
the applicability of the scheme in solving the 
problem of supersonic flow of a multicomponent 
gas in a flat channel with injection of perpendicular 
jets. 

 The purpose of this paper is the numerical 
simulation of supersonic flow in a flat channel with 
transverse injection of a multicomponent jet and the 
study of the interaction of a shock wave arising in 
front of the injection jet with a boundary layer on 
both the lower and upper walls. Also included is the 
numerical study of the conditions of detachment of 
the boundary layer on the walls, as well as the 
influence of the jet width on the occurrence of 
detachment. 

 
Problem definition 
 
A supersonic flow of air with a transverse jet 

injection from the bottom wall of a rectangular 
channel is shown in Figure 1. The system of two-
dimensional Favre-averaged Navier-Stokes 
equations for a multicomponent gas mixture with 
respect to Cartesian coordinates in a conservative 
form is represented in the form: 
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The equations (1.1) are written in a 

dimensionless form in the generally accepted 
notation; the flow parameters (u∞, ρ∞, T∞) are 
accepted as determining ones; the pressure (P) and 
total energy (Et) are related to the value u2

∞ρ∞; 
specific enthalpy (hk) is related to the value RT∞/W∞; 
the molar specific heats (Cpk) are related to R; the 
characteristic length parameter is the slit width. Yk is 
the mass concentration of k component; the mass 
concentration index k=1 is related to O2; k=2-H2 (or 
k=2-He), k=3-N2, and Np = 3 are the numbers of the 
gas mixture. Wk is the molecular weight of k 
component; Re, Pr, Sc are the Reynolds, Prandtl and 
Shmidt numbers, respectively; τxx, τzz, τxz, τzx are 
viscous stress tensors; qx, dz, Jxk, Jzk are thermal and 
diffusion flows (diffusion flows are calculated 
according to Fick's law); and μ = μl + μt are 
coefficients of laminar and turbulent viscosity. To 
determine μt, the k – ω turbulence model is used. 

 
Boundary conditions 
 
At the input: 
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0w ,  kk YY ,   0x ,  Hz0 ; 

 
in the input section near the channel walls, the 
boundary layer is specified, and the longitudinal 
velocity is approximated by a power law; 
at the slit: 
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0

000
0 W

TRMw 
 ,  

0u , 0kk YY  ,  0z ,   hLxL bb  ; 
 

(n = P0/P∞ is the pressure ratio degree; P0, P∞ 
are the pressures in the jet and in the flow, 
respectively; M0, M∞ are the Mach numbers in the 
jet and in the flow, respectively; indexes of 0 and  
are related to the parameters of the jet and the flow); 

on the lower and upper walls the condition of 
adhesion and insulation is settled; on the output 
boundary, nonreflection conditions are specified 
[17]. 

 
Method of solution 
 
On the lower and upper walls in the boundary 

layer, as well as at the level of the slit, thickening of 
the grid is introduced for a more accurate numerical 
solution. Then the equations (1.1) in the transformed 
coordinate system are written in the form:  
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   zxJ ,/,  η -the Jacobian of 

transformation. 
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The coordinate transformation parameters are 
described in detail in [16, 18]. 

In this paper convective terms are approximated 
using the WENO scheme, which is based on the 
ENO scheme and described in detail in [18]. In the 
proposed WENO scheme when interpolating a 
piecewise constant polynomial function, the Newton 
third-order polynomials are used. Instead of 

choosing one interpolation polynomial a convex 
combination is used with the weighting coefficients 
of all represented polynomials. This achieves a 
substantially non-oscillating property of the scheme 
which increases the order of approximation of the 
scheme. In accordance with [18], a one-step finite-
difference scheme for integrating the system (3.1) 
over time is represented by: 
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Â
 , B̂

 are normalized Jacobi matrixes of the next form: 
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 are modified flows on the nodal points 
(i,j) consisting of source convective vectors ( E , F ) 
and addictive high-order accuracy parameters.  
 

In contrast to the high-order accuracy parameters of 
[18], vectors ijE


, ijD


 for positive and negative 

eigenvalues λij are written in the next form: 
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where 
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Values for weight coefficients Lij , Lij > 0 (L = 0, 1, 2) are obtained in the next form: 
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[19] 

 
and ISij is an indicator of smoothness of the solution 
and is found by summing all the root-mean-square 

values of the derivatives of the desired  
vector U : 
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To avoid uncertainty in the denominator of the 

weight coefficients Lij  and Lij  the low 
coefficient 10–7 < ε < 10–5 is added in (3.6). Vectors 

ijE


and ijD


 are written in the same way. Further in 

the system of equations (3.2), terms containing 
second derivatives are represented as a sum of two  
 

vectors: vectors of second derivatives and vectors of 
dissipative members and flow vectors with mixed 
derivatives are approximated explicitly with a 
second order of accuracy [18]. Linearization of 
convective terms is carried out using the properties 
of homogeneity. 

After applying factorization to the system (3.2), 
we have two one-dimensional operators for an 
implicit solution with respect to the vector of 
thermodynamic parameters by matrix driving: 
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2-nd step. 
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The second addend  n

ijRHS  is written the same 
way. 

The vector of mass concentrations of the 
mixture is determined using a scalar sweep. For 
approximation of the first derivatives in the system 
(3.7) the differences against the flow with the first 
order of accuracy are used and for the second 
derivatives, the central differences with the second 
order of accuracy are used. The temperature is 
determined in accordance with the [16]. 

 
Results and analysis 
 
The calculations were carried out on a grid 

separated by spatial coordinates with the next 
parameters:  

 
,62  M  152 n , 76 1010Re  , 7,0Pr  

 
To test the numerical method, the following 

experiment was performed: through the slit on the 
wall of 0.1 cm wide the hydrogen sound jet of T0 = 
800K and n = 10.29 was injected perpendicular to 
the main air flow (oxygen and nitrogen) of 
parameters M∞ = 3.75, P∞ = 11090 Pa, T∞ = 
629.43K, Pr = 0.7, Re = 62.73x106. The height and 
width were H = 15.2. sm and L = 45 sm, 
respectively. Specific heat capacities at constant 

pressure pkC  of k-component were calculated using 
fourth-order polynomial interpolation in 
temperature: 
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where  kia  is an empirical constant defined for 
temperature within 300 < T < 5000K [20]. 

Table 1 presents the sensitivity of the 
convergence of solutions to the characteristics of the 
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;  N is 

the number of iterations. Estimates were built for 
WENO and ENO schemes by successive refinement 
of the grids, and the grid M with nodes I ⨯ J was 
taken as the initial one, then the nodes M and L of 
the grid M̂  were varied. As follows from the table, 
the difference in the deviation of the values of the 
norms of the density residuals decreases with the 
grid refinement. The grid M̂  with nodes 301 ⨯ 281 
has minimal values while the indicator Lρ

 
for the 

WENO scheme is less than that of the ENO scheme. 
 

 
Table 1 – The relationship between the total and standard deviation (the density difference) on the size of the grid for WENO and 
ENO schemes 

The number of nodes WENO

1L
ENO

1L
WENO 

2L
 

ENO

2LJIM   LMM̂   
I = 301, 
J = 261 

M = I, L = 221 6,09102 8,02102 1,14103 1,4103 
M = I, L= 281 3,37102 3,49102 6,27104 7,22104 

I = 321, 
J = 281 

M = 301, L = J 2,74102 3,87102 5,29104 8,03104 
M = 341, L = J 2,91102 3,43102 6,11104 7,86104 
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To compare with experimental data, the problem 
of a flat supersonic air flow ( 9.2M , 

MPaP 0663.0 , KT 108 ) with perpendicular 
injection of a helium sound jet ( KT 2170 , 

MPaP 24.10 )  through a slit on the bottom wall of 
0.0559 sm width was calculated. The heights and 
width of the channel were H=7,62sm and L=25 sm, 
respectively. In this experiment it is necessary to 
know the Сpk (J / (Mol.K)) component of 2O , 2N , eH   
 

at a temperature below 300K. Here, the 
experimental data of [21] are used (Table 2) in 
which the dependences of Сpk on low temperatures 
are given. The construction of polynomial (4.1) is 
carried out using the method of least squares. For 
this purpose a system of linear algebraic equations is 
constructed for unknown empirical constants  kia , 
which is solved by the LU decomposition method. 
The values {αki} found in this way are shown in 
Table 3. 

 
Table 2 – Thermo-chemical table (J / (Mol.K)) 

 
 

Table 3 – The values of of the empirical constants kia  

 
KT 300  O2 N2 He 

 0.34843577E+02 0.39755287E+02 0.209336046E+02 

 -0.90674514E-01 -0.20027529E+00 0.000000000E+00 

 0.56072001E-03 0.14293081E-02 0.000000000E+00 

 -0.15761941E-05 -0.45017727E-05 0.000000000E+00 

 0.17168133E-08 0.52356848E-08 0.000000000E+00 
 
 
Figure 2 shows the calculated and measured 

values of the pressure distribution on the wall in 
front of the slit and behind it. Curves 1, 2 are 
numerical calculations of WENO and ENO 
schemes, respectively; ••• is an experiment from [1]. 
The figure shows good agreement between the 
numerical and experimental data in front of the slit. 
However, behind the slit the values were 

underestimated. The curve obtained using the 
WENO scheme is located below the curve 
corresponding to the experiments and the curve 
obtained using the ENO scheme, because of the 
dissipative properties of the WENO scheme. In 
general, there is satisfactory agreement between the 
results of calculations and experimental 
measurements.

 
 

T, 0K CP1 ( O2 ) CP2  ( N2 ) CP2  (He ) 
100 ----- 30.04253461 20.9336046
120 29.66933952 ---- 20.9336046
140 ----- 29.38966128 20.9336046
150 29.40808320 ---- 20.9336046
170 29.33305574 ---- 20.9336046
180 ----- 29.25719093 20.9336046
210 29.27142605 ---- 20.9336046
220 ----- 29.20326494 20.9336046
250 29.29822157 ---- 20.9336046
260 ---- 29.17747260 20.9336046
300 29.45497536 29.17161274 20.9336046
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Figure 2 – The pressure distribution on the wall: “●●●” is the experiment [1],  

curve 1 is the WENO scheme, curve 2 is the ENO scheme 
 
 
In Figures 3-6, the results of calculations of the 

problem of a flat supersonic air flow with transverse 
injection of a hydrogen sound jet through a slit on 
the bottom wall are given. The slit sizes of the 
injection jet are varied with three cases of the 
physical width of the slit (h1, h2, h3). In the first 
case, the dimensionless parameters of the 
computational domain are as follows: h = 1, L = 
125, H = 20, and, for the second case: h = 1, L = 
100, H = 16, which corresponds to h2 = 1.33h1, and 
for the third case: L = 75, H = 12, h3 = 1.66h1. 

 The parameters of oncoming flow are: M∞ = 
3.75, T∞ = 629.43K, Pr = 0.7, Re = 106; the 
parameters of the jet are: T0 = 800K, n = 15 The 
width of the boundary layer on the input section on 
walls is δ = 0.38/hi, where i=1,2,3. 

 When an underexpanded jet flows into a 
stream, the pressure in the jet tends to equalize 
with the ambient pressure as a result of which the 
jet expands with the formation of a family of 
rarefaction waves that move to the jet boundaries 
forming a hanging shock which is closed by the 
Mach disk. The distribution of the local Mach 
number ( cwuM 22 , with c being a local 
velocity of sound, is shown in Figure 3 (3a-h1, 3b-
h2, 3c-h3). It follows from the graph that for h1 
(Figure 3a) the jet injected at a sonic speed 
accelerates and goes into a supersonic zone at some 
distance (the value of the local Mach number 

increases to 2.5), then the boundary of the resulting 
supersonic zone closes, delineating a circle. This 
circle corresponds to the barrel separating the 
supersonic zone from the subsonic one. At the top 
of the barrel the compression waves converge 
forming a Mach disk. Behind the barrel the flow 
slows down and becomes subsonic with a Mach 
number of 0.4. Ultimately, the flow of the jet 
accelerates and goes into the supersonic zone and 
the Mach number increases to 3 and above. With 
an increase in the slit width, a noticeable increase 
in the size of the circle is observed which can be 
traced from the comparison of Figures 3a and 
Figures 3b. However, in Figure 3c, the narrowing 
of the barrel is clearly observed despite the fact 
that here the slit size is maximum. The graphs 
clearly show that the size of the Mach disk varies 
in an ambiguous manner although it is known that 
an increase in the size of the slit leads to an 
expansion of the barrel-like structure in the jet and, 
consequently, to an increase in the Mach disk. 
Such an increase in the size of the Mach disk is 
explained in the case of  a shift of the 
detachment zone towards the input boundary, the 
distance between the jet and the upper return area, 
respectively, becomes minimal (it is a confuser). 
As a result, the oncoming flow is significantly 
accelerated, thereby preventing the expansion of 
the jet. 
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Figure 3 – The distribution of the local Mach number for the slit width:  
 a) , b) , c)  

 
 
The results of numerical experiments for the 

velocity vector field and streamlines, Figure 4 (4a-
, 4b- , 4c- ), show a picture of the vortex 

structure arising from the interaction of shock waves 
with both the lower boundary layer and the upper 
one. The graph shows that in the zone adjoining to 
the wall, two vortices are formed in front of the jet 
which formed as a result of the primary and 
secondary separation of the flow from the wall. The 
directions of movement in them are opposite due to 
part of the air flow directly near the wall passing the 
sections of the oblique shock (2) and closing (3) 
turns down to the wall and penetrates into the zone 
of detached flow, then spreads in opposite 
directions. In this case, the vortex located closer to 

the jet moves counterclockwise, and the vortex 
located at a greater distance from it moves 
clockwise which is observed in the calculation 
results. Behind the jet the occurrence of a vortex 
region is associated with a zone of low pressures. 
The graphs show the region of separation on the 
upper wall due to the interaction of the head shock 
wave (1) with the upper boundary layer. The 
qualitative pictures of the return zones are similar in 
all three cases. However, they are quantitatively 
different since dimensions increase significantly 
with increasing of the slit width. 

In Figure 4a-c in addition to the known ones, 
there is an additional vortex on the bottom wall 
at some distance behind the jet which was 

а 

b 

c 
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formed as a result of the interaction of the shock 
(6) with the bottom boundary layer. As the size 
of the slit increases, it shifts towards the jet 
(comparison of Figure 4a-b). Thus, we can 

conclude that an increase in the size of the slit 
will lead to an increase in the mixing of air and 
fuel directly behind the injected jet due to the 
extensive zones of return flows. 
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Figure 4 – The velocity vectors and streamlines for the slit width:   

a) , b) , c)  
 
Figure 5 a-c shows the distribution of the mass 

concentration of hydrogen for all three considered 
slits. The contours of a constant concentration of 
hydrogen show that the maximum concentration 
value is reached behind the jet. The results show 
that increasing the size of the slit affects the range of 

the injected jet, so with h1 the line of 1% hydrogen 
concentration rose to a height of 45% of the total 
height of the channel (Figure 5a), when with the 
same line corresponds to half of the height of the 
channel, but for h3 is 47.5% of the height of the 
channel. In this case, a decrease in the range of the 

a 

b 

c 
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injected hydrogen also indicates a blockage of the 
jet. 

The pressure distribution on the bottom wall 
(Figure 6a) shows that the excess pressure in front 
of the jet increases and at some distance behind the 

jet its growth is also observed due to the detachment 
of the boundary layer. At the same time, it is 
noticeable from the graph that the curves for large h 
are significantly higher. A similar pattern is 
observed on the upper wall (Figure 6b). 
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Figure 5 – The distribution of the mass concentration of hydrogen for the slit width:   
a) , b) , c)  
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Figure 6 – The pressure distribution on the bottom and upper walls 
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Conclusion 
 
Using a numerical experiment, a shock-wave 

structure and a detachment region are obtained due 
to the interaction of shock waves with the boundary 
layer on both the upper and lower walls of the 
channel and depending on the size of the injected 
jet. An ambiguous decrease is shown in the 
expansion of the jet with an increase in the width of 
the slit which is a consequence of a confuser 
between the injected jet and the detachment zone on 
the upper wall. In addition to the well-known shock-
wave pattern an additional structure appeared here 
due to the interaction of the reflected shock (6) with 
the boundary layer on the bottom wall at some 
distance behind the jet which can lead to an increase 
in air and fuel mixing due to the extensive return 
flow zones. It is established that, depending on the 
increase of h, the range of the jet decreases due to its 
locking. Excessive pressure on the walls increases 
with increasing jet size which leads to an increase in 
the load on the channel walls. Comparison of 
calculations with experimental data shows 
satisfactory agreement of results. Thus, the 
numerical model developed in this paper for 
calculating turbulent flows based on the WENO 
scheme allows one to study both the supersonic flow 
of a multicomponent gas and to simulate 
combustion processes. 
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Evaluation of wind power potential in shelek corridor  

(Kazakhstan) using weibull distribution function  
 

 
Abstract. Kazakhstan currently has one of the highest, per capita, carbon footprints in the world. There 
are heavy reliance (approx 85%) on coal for electricity production in Kazakhstan. Coal is a very carbon 
intensive fuel. A drive to moderate coal’s contribution to electricity production provides a driver for wind 
energy development. Finding a suitable location requires a detailed and often costly analysis of local wind 
conditions. Wind resource assessment is a crucial first step in gauging the potential of a site to produce 
energy from wind turbines. In this paper, the wind energy potential of Shelek corridor, located in the 
Almaty region in Kazakhstan were examined. Local wind speed distributions are represented by Weibull 
statistics. The results show that the average annual mean wind speed variation for Shelek corridor ranges 
from 4.0 to 8.0 m/s. The wind power density variation based on the Weibull analysis ranges from 280.0 to 
320.0 W/m2. 
Key words: wind power, energy production, renewable energy, MERRA, Weibull distribution. 

 
 
Introduction 
 
For nowadays Kazakhstan is among the top 20 

countries which produce the highest carbon dioxide 
emission per capita. There are several reasons of this 
such as a small population per square kilometer, a 
strong dependence of the power plant on coal. Coal 
emits very high amount of carbon dioxide to the 
atmosphere. It means that wind electric stations will 
be attractive opportunity for Government and 
business sector. Investing in such projects is 
commercially feasible [1]. 

Kazakhstan’s geographical location is very 
suitable to develop wind energy stations with power 
up to 760 GW. For instance; Shelek corridor has 
potential to produce power from wind energy 
aprroximately 3200 kW/h/MW [2]. 

The performance of the wind power conversion 
system depends on a wide range of criteria including 

a lot of aspects [3]. The characteristics of the wind 
tendency are one of the main and influential 
parameters that support when determining the 
suitability of a site for the use of wind energy. Due 
to the stochastic nature of the wind, several models 
were developed to analyze the available wind data 
in order to obtain the characteristics of any wind 
mode. One of these established models operates on 
the basis of the Weibull distribution [3]. This article 
presents the details of the analysis based on the 
Weibull distribution of wind data, from the NASA’s 
Modern-Era Retrospective Analysis for Research 
and Applications. 

 
Kazakhstan’s wind power market 
 
The Republic of Kazakhstan has the ninth 

largest territory in the world. It is about 2.7 million 
km2. However, Kazakhstan is one of the countries 
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with the least population density in the world (5.5 
persons per km2). There are three cities with 
population over 1 million people: Astana, Almaty 
and Shymkent.  

Kazakhstan has huge resources of fossil fuels 
such as coal, oil, gas and uranium. These resources 
are being actively exporting. For instance, 
Kazakhstan produces just less than 100 million tons 
of coal and approximately 35% of this is exported to 
the neighboring countries. 1.5 million barrels of oil 
produced per one day. And 75% of them sold to the 
China and Russia.  

There is no any country in the world, which 
produces more uranium than Kazakhstan. According 
to the data in 2009 year, 27.6% of world’s uranium 
production was made by Kazakhstan.  

Excess of energy resources is the main factor 
hindering the development of renewable energy 
sources in Kazakhstan.  

Based on the outcomes of the World Summit on 
Sustainable Development held at Johannesburg in 
2002 Kazakh government accepted Sustainable 
Development Concept for 2007-2024. That Concept 
was devoted to sustainable use of renewable 

resources and alternative energy in Kazakhstan. 
Efficient and sustainable use of renewable resources 
and alternative energy sources will be possible if: 

– innovative technologies in use of land, water, 
forestry, fishery, biological resources and renewable 
sources of energy will be introduced; 

– efficient use of hydropower resources, solar 
and wind resources and other renewable resources 
and alternative energy sources will be simulated; 

– the Centers for distribution of international 
experience in the area of energy and resource 
efficiency and use of renewable sources of power 
will be established. 

Considering all of the above, it is possible to list 
the main challenges, which are the strong drivers for 
the development of wind energy in Kazakhstan: 

– the old power generation infrastructure; 
– high amount of transition and distribution 

loses; 
– The highest carbon footprints in the world.  
As a result, since 2012 year the amount of 

installed capacity by the onshore wind turbines has 
increased 65 times. It can be shown in the diagram 
below.

 
 

 
Figure 1 – Trends in renewable energy (Installed capacity) 

 
 



88 Evaluation of wind power potential in shelek corridor (Kazakhstan) using weibull distribution function

International Journal of Mathematics and Physics 9, №2, 86 (2018)

In 2012, installed capacity was only 1.5 MW, 
the first wind power station was installed in Kordai, 
Zhambyl region. Next year power production 
increased three times. 2014 year was significant for 
Kazakhstan wind power market, because the second 
wind power station was set up in Ereimentau, 
Akmola region. And it drove to fundamental growth 
in the installed capacity: from 5.5 MW in 2013 to 
the 52.81 MW in 2014. In 2015 and 2016, there 
were still positive trends in the installed capacity. 
Compared to 2014 year, potential power produced 
from the wind rose by the 40% each year.  

 
Methods and materials 
 
There are two ways of obtaining data. First way 

is analysing of production data. The benefits of 
using production data are that they are reflecting 
true fluctuations and do not require any additional 
calculations. But this approach is applicable to the 
places where a wind turbine has already been 
installed. The second way is using data from the 
weather station. However, that way has several 
disadvantages: it is not available; data records 
sometimes not complete. Moreover to that, to 
calculate a new location, you need to install 
anemometers. This is not economically profitable 
[4]. 

In Kazakhstan there is no free available wind 
speed data at the moment. Companies should 
measure wind data themselves. Previously a wind 
atlas of Kazakhstan was created in the framework of 
the UNDP / GEF Project and the Government of the 
Republic of Kazakhstan "Kazakhstan is an initiative 
to develop the wind energy market". However, at 
this moment that site is not available. 

Ritter et al. [4], recommended an alternative 
dataset which is providing wind power analysis and 
reanalysis data, such as Modern-Era Retrospective 
Analysis for Research and Applications (MERRA) 
data provided by NASA [5]. MERRA offers wind 
data all over the world and an hourly temporal 
resolution since 1979. It consist two components at 
three different heights (2 m, 10 m and 50 m above 
ground). A northward and an eastward wind 
component are helpful to derive the wind speed and 
wind direction at various turbine heights [6]. 

In this study the data used from “MERRA-2 
inst1_2d_asm_Nx: hourly, instantaneous, Single-
Level, Assimilations, Single-Level Diagnostics 
V5.12.4” during the period from 01.01.2015, until 
28.02.2018 for each day. We used the northward 
and eastward wind speed at the heights of 2 m, 10 m 

and 50 m above the ground. To cover all Shelek 
corridor grid points with a latitude between 440 E 
and 47.50 E and a longitude between 73.50 N and 
77.80 N are used. 

In recent years, more attention has been paid to 
the Weibull distribution, as suggested by the nearby 
approximation of the probabilistic laws of a number 
of natural phenomena and is expected to ensure a 
good correspondence to the experimental data [7].  

Mathematically, i.e. The Weibull distribution 
function of the two parameter functions is expressed 
as: 

 
�(�) = �

� (
�
�)����

�(��)�                    (1) 
 
The integral distribution function F (x) is given 

by: 
 

�(�) = 1 − ��(
�
�)�,                     (2) 

 
where:  

v – wind speed, m/s; 
k – shape factor ; 
c – scale parameter, m/s.  
 
The shape factor k is the main factor in 

determining the uniformity of the wind. The 
uniformity of the wind changes direction with a 
change to i. with increasing k, the uniformity of the 
wind increases. 

It has been established that almost all 
parameters, such as wind speed, wind speed 
probability, must be within a certain range, the 
energy is available in a certain mode, etc., are 
necessary to fully appreciate the dignity of the wind 
regime, depend on the rough calculation of these 
values of k and c [8].  

k and c parameters can be found with the several 
methods such as the power density method; least 
square method, Modified likelihood method etc. [9]. 
The methods are briefly discussed below 

 
1) Standard deviation method 
The standard deviation method gives the ratio 

between the mean (vm) and the standard deviation 
(σv): 

 

������
� = �������

��������
− 1                  (3) 

 
After k is determined, c is determined as: 
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� = ��
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                              (4) 

 
In a simple methodology, an acceptable 

approximation for k and c can be approximated: 
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                          (5) 
 

� = ���
��                                     (6) 

 
2) Empirical method (EM) 
A special case of the method of moments, the 

empirical method determines k & c, as in equations 
(4), (5): 
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3) Power density method (PDM) 
This is the one of the most important methods of 

determining k and c. First of all, energy pattern 
factor Epf is calculated by the division of cubic wind 
speed to cube of mean wind speed [9-10]. After that 
k and c may be found by formulas (7, 8): 

 

� = 1 + ����
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                        (7) 
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4) Modified likelihood method (MLM) 
That method was proposed by Stevens and 

Smulders [10] and describes k and c by the 
following formulas: 
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Results and Discussion 
 
In this study the data used from 01.01.2015, 

until 28.02.2018 for each day. The northward and 
eastward wind speed at the heights of 2 m, 10 m and 
50 m above the ground were horizontally 
interpolated by the formula [4]: 

 

�� = ���� + ���                          (9) 

 
Monthly mean values of wind speed are shown 

in the tables 1-3. The frequency distribution of the 
data is shown in Table 4. 

 
 

Table 1 – Monthly mean velocities at height of 2 m 
 

Month 
Mean velocity m/s

2015 2016 2017 2018
January 2.7242 3.3995 2.9572 5.9183
February 3.4051 3.6068 2.8878 3.0978
March  2.2784 2.8207 3.4395 - 
April 2.0906 2.2409 1.6123 - 
May 1.5377 2.8716 2.6959 - 
June 2.4187 1.0863 0.8440 - 
July 2.4385 1.3534 2.4462 - 

August 1.9352 5.6995 4.1758 - 
September 2.5953 5.6995 2.6755 - 

October  2.0809 2.5965 2.1037 - 
November 2.2991 2.3995 2.5797 - 
December  2.9105 2.5473 3.1505 - 
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Table 2 – Monthly mean velocities at height of 10 m 
 

Month 
Mean velocity m/s

2015 2016 2017 2018
January 3.3320 3.6725 3.3897 6.4588
February 3.8281 4.0027 3.4253 3.6344
March  2.9956 3.2741 4.0367 - 
April 2.3681 2.6763 2.0381 - 
May 1.8185 3.0655 2.9150 - 
June 2.8588 1.2251 0.9799 - 
July 3.0926 1.4276 2.9774 - 

August 2.4606 6.4904 4.7401 - 
September 3.0329 6.4904 3.3571 - 

October  2.4876 3.0643 2.6479 - 
November 2.7427 3.0442 2.9889 - 
December  3.4514 2.9444 3.7378 - 

 
 

Table 3 – Monthly mean velocities at height of 50 m 
 

Month 
Mean velocity m/s

2015 2016 2017 2018
January 5.4955 5.8329 5.8604 9.8087
February 5.8815 6.2380 5.3924 5.6900
March  4.3439 6.3175 6.0201 - 
April 3.7365 4.8102 3.1457 - 
May 2.4771 4.1304 4.5861 - 
June 4.7340 4.1634 1.7987 - 
July 4.9166 1.6786 4.7932 - 

August 4.0327 2.2848 7.8409 - 
September 4.7945 9.3863 5.1376 - 

October  3.8964 9.3863 4.1561 - 
November 4.6451 5.0147 4.9872 - 
December  5.4955 4.5663 6.0211 - 

 
 
According to these table the highest speed was 

detected in January, 2018 and reached almost 6m/s 
in between 2015 and 2017, and over 9 m/s in 2018. 
Respectively in the beginning of summer there 
always was low wind speed. The least meaning of 
wind speed for summer is 0.9 m/s. 

Collected speed data was also divided to the 
intervals to find more common velocity. It was 
observed that the most frequent velocity at height 
2 m is 2÷3 m/s (0.58). As for 10 m height 3÷4 m/s 
repeated with almost 40% frequency. The wind 

speed of 4-6 m/s at the height of 50 m was repeated 
at a frequency of 0.6. 

As we can see from the table, when the height is 
increasing the value of velocity is also increases. 
Thus, wind speed data at these three heights could 
be vertically extrapolated to the turbine height  
[11].  

From the above formulas and wind data, the 
results for shape and scale parameters are calculated 
using various methods described above is indicated 
in Table 4. 
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Table 5 – Wind velocity distribution 
 

Methods 
Frequency

2 m 10 m 50 m 
k c k c k c

SDM 2.74 3.14 2.93 3.66 3.10 5.74
EM 2.53 3.13 2.70 3.65 2.86 5.72

PDM 2.73 3.12 2.92 3.63 3.09 5.70
MLM 2.62 3.13 2.76 3.63 2.93 5.70

 
 
Accuracy of calculations was checked by the 

following three methods: RMSE, �2 and ��� – 
������ tests: 
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Where yi is observed frequency and xi Weibull’s 

frequency, N is a number of observations, n is a 
number of used constants. The results are shown in 
a table below 

 
 

Table 6 – Wind velocity distribution 
 

Tests SDM EM PDM MLM
RSME 0.675 0.0678 0.0692 0.0673

Chi-square 0.063 0.0063 0.0067 0.0061
R2 09485 0.9469 0.9472 0.9466

 
 
As shown in Figures 1-6, all the methods 

discussed show more or less similar results, even if 
the maximal likelihood method and the energy 
properties are a little more accurate and, therefore, 
can be considered as the most appropriate. 

As we can see from the graph, the most probable 
wind speed at this height is under 3 m/s. And our 
calculations have shown the mean value of the 
velocity is 2.78 m/s. 

According to the Fig.4 we can see that the most 
probable wind speed occurs at speed 5 m/s with a 
probability of 22.5%. This means that at Shelek 
corridor the wind speed that often arises at 5 m/s. 

Usually, 4-5 m/s is an ideal wind speed for wind 
turbines. However, the use of wind energy is 
commercially installed only for high (8-9 m/s) and 
medium (6-7 m/s) wind conditions. If wind energy  
 

is available in low wind conditions, it is possible to 
develop turbines specifically for these regions, 
which will help to reduce dependence on fossil 
fuels. 

To analyze the wind energy potential there is 
also mean power density based on Weibull 
distribution must be calculated [13]. 

 
��� = �

� ���Γ(1 + �
�)                  (10) 

 
Where c shape factors which were calculated by 

the four methods described below. ρ is air density 
related to the pressure, temperature and humidity. 
However, air density has not significant effect on 
wind resource calculations, thus it can be taken as a 
constant value 1.225 g/cm3.  
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Figure 2 – Weibull distribution at the height of 2 m 
 

 

 
 

Figure 3 – Weibull distribution at the height of 10 m 
 
 

 
 

Figure 4 – Weibull distribution at the height of 50 m 
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On the other hand, mean power density can be 
calculated by the formula: 

 
���� = �

� ��̅�                        (11) 
 
Conclusion 
 
The potential of wind energy in Shelek corridor 

have been studied in this analysis using widely used 
Weibull distribution technique. The Weibull 
parameters such as shape factor and scale factor 
have been calculated by four different methods such 
as least squares method, power density method, 
empirical method and modified likelihood method. 
Relative percentage of error and chi-square error has 
been analyzed for each method and also calculated 
the efficiency of these methods. The wind data was 
obtained from NASA Modern-Era Retrospective 
Analysis for Research and Applications “MERRA-2 
inst1_2d_asm_Nx: hourly, instantaneous, Single-
Level, Assimilations, Single-Level Diagnostics 
V5.12.4” during the period from 01.01.2015, until 
28.02.2018 for each day. 

The results found that Shelek complex is 
prospective site to set up vertical axed wind turbine. 
The results have been verified by Weibull 
distribution technique where Weibull shape factor 
and scale factor were calculated using four different 
approaches. The statistical analysis also found the 
modified likelihood method is more efficient 
method with minimum error in the wind data 
analysis. The study presented the potential of Shelek 
corridor to produce pure energy using wind power. 
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Influence of background gas and external magnetic field on the localization  

of particles in two dimensional yukawa systems 
 

 
Abstract. We investigate the simultaneous effect of a static homogeneous external magnetic field and a 
background gas medium on the quasi-localization of the dust particles – characterized quantitatively by 
cage correlation functions – in strongly coupled two-dimensional Yukawa systems. We apply the 
Langevin dynamics computer simulation method in which the frictional and Lorentz forces are taken into 
account. Both the presence of the magnetic field and the friction originating from the background gas, 
when acting alone, increase the caging time. When present simultaneously, however, we find that their 
effects combine in a non-trivial manner and act against each other within a window of the parameter 
values. For a fixed magnetic field, the increasing friction was found to first decrease the caging time and 
then to increase it beyond a certain value of the friction coefficient that depends on the magnetic field 
strength. A qualitative explanation was given for these observations based on the analysis of the 
peculiarities of the trajectories of individual particles. 
Key words: cage correlation, dusty plasma, Langevin dynamics simulation. 

 
 
Introduction  
 
Strongly coupled plasmas are characterized by a 

pair-interaction potential energy that dominates the 
average kinetic energy of the particles [1]. Systems 
with this property can be described by the “one-
component plasma” (OCP) model, which considers 
explicitly only a single type of charged species and 
assumes an inter-particle potential that accounts for 
the presence and effects of the other type(s) of 
species. The polarizable form of the interaction 
potential is the Yukawa type, while the non-
polarizable form is the Coulomb type; the 
corresponding systems are, respectively, quoted as 
Coulomb-OCP and Yukawa-OCP (YOCP). This 
latter type represents an important model system for 
dusty plasmas, for example, refs. [2–5]. In the 
simulations of these systems, the background 
plasma environment is accounted for by the 
screening of the Coulomb potential. The presence of 

the gaseous environment may be taken into account 
by using the Langevin simulation approach [6–9], 
where two additional terms are incorporated into the 
equation of motion. One of the terms represents a 
friction by a homogeneous background, while the 
other term adds momentum to the particles in form 
of random kicks that change the direction of the 
motion. The action of these two terms can be 
balanced to reach a desired system temperature.  

The possibility of the presence of an external 
magnetic field has opened a new area of dusty 
plasma research. Interesting new effects have been 
observed in the experiments [10–12], which, 
however, are closely related to the influence of the 
magnetic field on the discharge plasma that embeds 
the dust suspension itself. The reason for this is that 
due to the specific charge-to-mass ratios, the 
electrons and ions become very strongly magnetized 
before any effect on the dust particles sets on. 
Understanding the effects observed experimentally 
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is difficult because of the very demanding 
computational needs–simulation of dusty plasma 
experiments with strong magnetic fields is certainly 
an emerging area [13]. To overcome the problem of 
the magnetization of the discharge plasma, another 
approach, based on the equivalence of the 
(magnetic) Lorentz force and the Coriolis force 
experienced in a rotating frame of reference, was 
advised in Refs. [14, 15]. Implementation of this 
method and a successful identification of 
magnetoplasmons in a “quasi-magnetized” rotating 
dusty plasma were reported by Hartmann et al. [16]. 

Most of the computational studies have, 
meanwhile, concentrated on idealized systems, 
where the dust particles experience the effect of the 
magnetic field, whereas the surrounding medium is 
left unperturbed by this field. Many of the properties 
of such idealized systems have been studied by 
many-body (typically Molecular Dynamics) 
simulations. Collective excitations have been 
explored in Refs. [17, 18]; the effect of the magnetic 
field on the diffusion was analysed in Refs. [19, 20], 
while heat transport was addressed by Ott et al. [21]. 

Many of the properties of the strongly coupled 
complex plasmas are strongly related to one of its 
outstanding features, the quasi-localization of the 
particles in these systems [22]. A mathematical 
framework based on tracking the surroundings of 
individual particles has been developed by Rabani et 
al.[23]. The duration of the localization can be 
quantified by means of the so-called “cage 
correlation functions”. The effect of a static uniform 
external magnetic field on the cage correlation 
functions in frictionless two-dimensional Yukawa 
systems has been investigated by Dzhumagulova et 
al., [24] while the effect of the friction force, 
induced by the presence of the buffer gas, has been 
addressed by Dzhumagulova et al. [25] Here, our 
aim is to study the simultaneous effect of the 
magnetic field and the friction on the cage 
correlation functions. The interplay of these two 
effects is an open question that can only be 
answered by a systematic parametric study due to 
the inherent non-linearity of the system under 
investigation. Our studies are based on Langevin 
dynamics (LD) simulation into which a proper 
description of the movement of the particles under 
the influence of an external magnetic field is 
incorporated [26–28]. 

Our numerical integration scheme of the 
particles’ equations of motion follows the approach 
of Ref. [29], which takes into account the external 
magnetic field in the expansion of positions and 

velocities in the Taylor series. In Ref. [30], we 
introduced the friction force into the Velocity Verlet 
scheme, which is used in the present simulations. 
The scheme has been verified via comparisons of 
the cage correlation functions obtained in the 
limiting cases, when the friction force or the Lorentz 
force tends to be zero. 

The model and the computational methods are 
described in Section 2, while the results are 
presented in Section 3. A brief summary is given in 
Section 4. 

 
Model and Method  
 
We apply the following form for the interaction 

potential of the particles, which had a screening 
property of the surrounding plasma environment: 

 

0

exp( / )( ) ,
4

DrQr
r





              (1) 

 
where Q  is the charge of the particles and D  is the 
screening (Debye) length. 

We study a two-dimensional (2D) system; the 
particles move in the ( , )x y plane, and the magnetic 
field is assumed to be homogeneous and directed 
perpendicularly to the layer of the particles, that is 

0 0B ( , ,B) . The equation of motion of the 
particles (given here for particle i ) is: 
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where the first term on the right side gives the sum 
of inter-particle interaction forces (to be computed 
for ( , )i j  particle pairs that are separated by a 
distance ijr ), the second is the Lorentz force, and the 
third term represents the friction force (proportional 
to the particle velocity,  is the friction coefficient of 
the dust particles in the background gaseous 
environment), while the fourth term represents an 
additional randomly fluctuating “Brownian” force. 

The ratio of the inter-particle potential energy to 
the thermal energy is expressed by the coupling 
parameter 
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where T is temperature, and 1/2(1/ )a n   is the 
2D Wigner–Seitz radius, with n being the areal 
number density of the particles. We introduce the 
screening parameter / Da  . The strength of the 
magnetic field is expressed in terms of 

 

,
p





                               (4) 

 
where 2

0/ 2p nQ ma   is the nominal 2D 
plasma frequency, and /QB m   is the cyclotron 
frequency. The strength of the friction is defined by 
the dimensionless parameter 
 

.
p




                                (5) 

 
So, the system is fully characterized by four 

parameters: , ,   and  . 
We apply Langevin Dynamics (LD) simulation 

method to describe the motion of the particles 
governed by the equation of motion (2). To integrate 
this equation, a new numerical scheme based on the 
Taylor expansion of the particle acceleration and 
velocity, followed by the correct choice of all the 
terms that are not higher than 2(( ) )O t is used. The 
scheme was obtained by applying the technique 
developed by Spreiter and Walter, [29] but takes 
into account the friction force [30].  

We use the localization of the particles 
characterized by the cage correlation function by 
using the method of Ref. [23], which allows the 
tracking of the changes in the surroundings of 
individual particles. We use a generalized neighbor 
list il  for particle i , ,1 ,2 ,{ ( ), ( )... ( )}i i i i Nl f r f r f r (

,i if is excluded from the neighbour list, i.e. only 
“real” neighbours are taken into account). Due to the 
underlying sixfold symmetry of the system, we 
always search for the six closest neighbours of the 
particles, and the f s corresponding to these 
particles are set to a value 1, while all other f s  
are set to 0. The similarity between the surroundings 
of the particles 0t   and 0t   is measured by the 
list correlation function (defined as the normalized 
scalar product of the list correlation functions at 
time stand 0): 

 

2

( ) (0)
( ) ,

(0)
i i

l
i

l t l
C t

l
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where ...  denotes averaging over particles and 

initial times. Obviously, ( 0) 1,lC t    and ( )lC t  is 
a monotonically decaying function. 

The number of particles that have left the 
original cage of particle i  at time t can be 
determined as 

 
2( ) (0) (0) ( ),out

i i i iN t t                 (7) 
 

here, the first term gives the number of particles 
around particle i  at 0t  , which equals to six in 
our case. The second term gives the number of 
“original” particles that remained in the surrounding 
after time t . The cage correlation function cageC  is 

obtained by averaging the function ( )out
ic n  over 

particles and initial times, that is, 
 

( ) (0, ) .c out
cage iC t c n t                (8) 

 
where  is the Heaviside function. We compute the 
cage correlation functions for, 3c   and take the 
definition of the “caging time” introduced by Donkó 
et al., [31] according to which caget  is defined as the 

time when 3 ( )cageC t  decays to a value 0.1. 
The number of simulated particles is fixed at 
1000N   that move within a quadratic simulation 

box. The positions of the particles are chosen 
randomly at the initialization of the simulations, and 
their velocities are sampled from a Maxwell 
distribution with a temperature that corresponds to 
the value of specified . During the initial phase of 
the simulations, the system is thermalized, but 
thermostation is stopped before the data collection 
phase starts. 

 
Results  
 
Below we present the results of our simulations 

obtained for the cage correlation functions under the 
conditions of the simultaneous presence of the 
external magnetic field and the friction. In order to 
use the same numerical scheme throughout our  
 



97K.N. Dzhumagulova et al.

International Journal of Mathematics and Physics 9, №2, 94 (2018)

work, we had to use finite values of the magnetic 
field and the friction coefficient. The field-free 
and/or frictionless cases are approximated by using 
very small values of these coefficients ( 6 510 10  ) 
in the simulations. The results obtained this way 
approximate the “true” β = 0 and/or θ = 0 results 
well within the statistical noise of the results. 
Nonetheless, at the presentation of the results, we 
give the precise (low) values of these coefficients 
used in the respective simulations. 

Figure 1a shows the 3 ( )cageC t  functions obtained 
at fixed system parameters k = 2 and Г = 20 at a 
magnetic field β = 0.5, with the friction coefficient θ 
scanned over the domain between 510  
(representing a case with vanishing friction) and 
0.5  (representing a case with high friction). In 
panel (b) of the same figure, another set of data is 
presented for a stronger magnetic field of  = 1.0. 
One plasma oscillation period, disregarding the 
effect of the magnetic field, corresponds to 

2ωET ~  π, where E  is the Einstein frequency 
[32] that reflects the slowing down of the dynamics 
due to the effect of the screening. At the given value 
of the screening parameter k = 2 we find 

/ 0.49E p    [32], resulting in 

4 12.6pT   . As a general observation, we 
can note that the cage correlation functions decay to 
the 0.1 value – specified to correspond to the caging 
time – on the time scale of 2 – 5 plasma oscillations 
for the conditions of Figure 1. Such a long decay is 
characteristic for strong-coupled plasmas where the 
time scale for the diffusion of the particles is slower 
compared to the plasma oscillations, i.e. the 
particles are "quasi-localized" on the potential 
surface [22].  

We can also observe, by comparing panels (a) 
and (b) of Figure 1, that the increasing friction has a 
more significant effect on the correlation function in 
the lower -   case. At 0.5  , the correlation 
function increases monotonically with increasing  , 
however, for 1.0   a closer observation of the 
behavior (see the inset in Figure 1 b)) reveals a non-
monotonic behavior. The increasing   shifts the 
crossing of the correlation functions with the 

0.1cageC   line towards lower times first, and 
beyond 0.1   this trend reverses and remains the 
same for higher friction values. 

Figure 1 – Cage correlation functions for Г = 20 and k = 2 for (a) β = 0,5 and (b) β = 1,0  
for a wide range of the friction coefficient θ. The legend shown in (a) also holds for panel (b). 

The inset in (b) zooms at the region when the correlation functions cross  
the Ccage = 0.1 line (at times that correspond to the caging time) 

The effect of a changing strength of magnetic 
field on the cage correlation functions is presented 
in Figure 2 for 20   and 2  , for the 0.1   
(panel (a)) and θ = 0.5 values of the friction 
coefficient. The correlation functions increase 
monotonically with increasing β in both cases, a 
stronger influence is found at the lower value of 
friction (panel (a)).  

The non-monotonic dependence of the caging 
time on the friction coefficient is further analysed in 
Figure 3. At small values of the magnetic field, the 
caging time increases monotonically with increasing 
friction. At   > 0,5, however, as already indicated 
in Figure 1b, this dependence is non-monotonic. 
The effect – that the caging time first decreases as a 
function of θ-becomes more pronounced at higher 
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magnetic fields. The value of θ where the minimum 
of  Tcage occurs (θmin), as well as the θ value (θcross) 
where the effect of magnetic field and friction  
 

“compensate each other”, that is, when Tcage 
becomes the same again as at  = 0, both increase 
with increasing magnetic field. 

  

 
Figure 2 – Cage correlation functions for Г = 20 and k = 2 for (a) θ = 0.5  

and (b) θ = 1.0 for a wide range of the reduced magnetic field β 
 
 
The interplay of the magnetic field and the 

friction is non-trivial. Both mechanisms, when 
acting alone, are known to increase the caging 
time. The magnetic field results in this by forcing 
the particles to move on circular trajectories. 
When the Larmor radius is smaller than the inter-
particle separation, diffusive motion across the 
field lines is significantly hindered, and the 
caging time is enlarged [24]. The effect of friction 
on the caging time is similar [25] but results from 
a different physical mechanism. As explained 

earlier, the presence of the gaseous environment 
is modelled via a damping mechanism by the 
background (as a continuum) and by a random 
(“Brownian”) force that emulates random kicks 
by gas particles. The first of these slows down the 
particle motion, while the second increases the 
energy of the particle but randomizes its direction 
of velocity. The inverse of the frequency (related 
to the friction coefficient as θ = v / ωр) can be 
viewed as the timescale for the change of the 
direction of velocity. 

 

 
Figure 3 – Dependence of the caging time on the friction parameter  

θ at given values of  β in the highly magnetized domain.  
Note the non-monotonic dependence of Tcage on θ for the β > 0 cases.  

The dashed horizontal lines correspond to Tcage at θ = 0 
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Conclusion  
 
In this paper, we have investigated the 

simultaneous effect of friction induced by the gas 
environment, as well as a homogeneous external 
magnetic field, on the quasi-localization of dust 
particles in a 2D layer. The system has been 
described by LD simulation. We have found that, 
when acting alone, both an increasing friction 
coefficient and an increasing strength of the 
magnetic field enhance the caging of the particles, 
as quantified by the cage correlation functions. 
When present simultaneously, however, a non-
trivial interplay of the two effects was observed. For 
a fixed magnetic field ( 0  ), the increasing 
friction was found to first decrease the caging time 
and then to increase it beyond a certain value of the 
friction coefficient that depends on the magnetic 
field strength. A qualitative explanation was given 
for these observations based on the analysis of the 
peculiarities of the trajectories of individual 
particles; however, a more detailed, quantitative 
understanding of the effect calls for further studies 
that include the analysis of the velocity 
autocorrelation function of the particles. 
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Application of electron-beam technology  
to reduce anthropogenic load of thermal power plants 

 
 

Abstract. This article evaluated the level of air pollution during the combustion of Karaganda coal in 
thermal power plants. The technical analysis of coal is lead and parameters of quality of coal are defined. 
With the use of the “Era-Air” software complex designed for solving a wide range of tasks in the area of 
atmospheric air protection, the complex indicators of average annual pollution in the atmosphere of the 
city Shakhtinsk were calculated, maximally different emissions of ash, sulfur oxides, carbon, nitrogen, 
resulting from the burning of Karaganda coal at thermal power plants. It is established that a complex 
index of pollution of atmospheric air of the city Shahtinsk more than two times higher than index of 
pollution, calculated for five types of pollutants. Currently available methods of reducing greenhouse 
gases into the atmosphere from coal combustion based on electron beam technology. Electron-beam 
technologies are aimed at changing the physicochemical properties of the combusted fuel with objective 
of increase of efficiency and completeness of coal combustion. Preliminary electron beam processing of 
coal leads to decrease in emissions into the atmosphere, reduces the amount of ash and slag, and reduces 
the maximum single-time emissions. 
Key words: thermal power plants, high ash coal, maximum one-time emissions, surface concentrations, 
electron-beam processing. 

 
 
Introduction 
 
Air pollution – a serious environmental problem 

of Kazakhstan, especially in the industrial areas 
become by the centers of accommodation of the 
industrial enterprises and located in industrial areas. 
The basic volume of emissions of a dust, sulfur 
dioxide and nitrous oxide are accounted for by three 
main sectors of Kazakhstan: electric power industry 
with use of the mineral fuel, processing and mining 
branches and transport [1]. 

The greatest emissions of dust, sulphur dioxide 
and nitrogen oxide generates electric power 
industry, as well as heating plants, i.e. combustion 
sources natural fuel [2]. They make the most 
significant contribution to total emissions of 

pollutants into the atmosphere – 40% of total 
emissions, including 50% of particulate emissions, 
47% of sulfur dioxide emissions and 60% of 
nitrogen oxide emissions [3]. A significant part of 
emissions is due to the use of poor quality coal and 
absence of the effective equipment for the control of 
pollution in power plants and district heating plants. 

In recent years, Kazakhstan has seen a 
significant increase in air pollution. The substances 
polluting air increase the frequency of diseases and 
thereof lead to drawing of direct and indirect 
damage to national economy in the form of 
expenses for services of healthcare and decline of 
productivity of work. The republic's emission 
standards are much higher than European [4]. 
Therefore, to improve air quality in Kazakhstan 
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should consider establishing more stringent 
standards on emissions of dust, sulphur dioxide and 
nitrogen oxide. 

Currently, various methods of utilization of 
greenhouse gases contained in the emissions of 
enterprises are widely applied. However, it may be 
appropriate decrease in emissions due to 
improvement of quality of combusted fuel, 
increasing the efficiency of its combustion process. 

Thus, the purpose of this article is to quantify 
maximum one-time emissions and surface 
concentrations of pollutants from a thermal power 
plant when burning irradiated and non-irradiated 
Karaganda coal. 

 
Materials and Methods  
 
As object of research was selected Karaganda 

coal, burned in the combustion chamber of the 
boiler BKZ-75, established at Shakhtinskaya CHP 
(Kazakhstan) [5]. 

To modify the quality of the Karaganda coal, 
experiments on the radiation treatment of coal were 
carried out, carried out on the electronic accelerator 
ILU-6. The accelerator generated electrons with 
energy of 1.3 MeV, the dose rate varied from 0.19 
to 0.33 Mrad / s, the total absorbed dose varied from 
10 to 200 Mrad. The temperature of the coal layer 
thickness 7 mm was controlled using thermocouples 
and supported between 60-70 and 250-2600С. 
Gaseous products released during radiolysis were 
collected in a gasometer and analyzed on a 
chromatograph. The composition of coal after 

radiation exposure was studied by chemical 
elemental analysis and OS spectroscopy [6]. The 
general view of accelerator ILU-6 is shown in the 
Figure 1. The main characteristics of the burned 
Karaganda coal and coal that has passed the 
electron-beam processing are shown in Table 1. 

 
 

 
 

Figure 1 – The general view of the ILU-6 accelerator. 
1 – vacuum volume, 2 – the resonator, 3 – choke of the lower 

half of the resonator, 4 – magnetic discharge pumps,  
5 – electron injector, 6 – the venting device, 7 – measuring loop, 
8 – lamp of the generator, 9 – pillar of a loop of communication, 

10 – vacuum loop coupling capacitor, 11 – moving plate of 
feedback capacitor, 12 – cathode loop

 
 

Table 1 – The main characteristics of the burned Karaganda coal and coal that has passed the electron-beam processing 
 

Fuel � % ���� % �� % �� % ���� % ���� % � ���% ����� % Q MJ/kg 
non-irradiated 10.6 22 1.04 35.1 43.21 3.6 1.21 5.24 18.56

radiated 8.4 16 1.02 31 45 4.06 1.20 6.37 18.2
 
 
In this paper are carried out researches on 

influence of electron beam processing of coal on 
increasing the efficiency of its combustion and 
reducing emissions of harmful substances into the 
atmosphere. The calculation of the maximum values 
of surface concentrations of harmful substances in 
the atmospheric air was performed in the “Era-Air” 
software package [7]. The “Era-Air” software 
package is intended for the decision of a wide class 
of problems in the field of air protection connected 
with calculations of atmospheric contamination.  

For the calculation the analytical method was 
used using the accepted data analysis technique [8]. 
For calculation of total emissions of solid particles, 
the values of the required values for each fuel are 
selected in accordance with international standards 
and reference data of the standard method for 
calculating boilers in accordance with the calorific 
value, capacity of boilers: 

 
�� � � ��

���������
������� � �З�� �����     (1) 
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here B is the consumption of natural fuel, t/year 
(g/s);  

�� – ash content of fuel on the working mass, 
%;  

����� – the proportion of ash carried away by 
gases from the boiler;  

�З – fraction of solid particles trapped in ash 
collectors; 

����� – the content of combustible in the 
entrainment,%. 

Calculation of emissions of nitrogen oxides: 
when burning solid fuel combustion [9]: 

 
���� = ���������

� ����, (g/s) ,          (2) 
 

where �� – estimated fuel consumption, t/year;  
��� –  l–ower heat of combustion of fuel, MJ/kg;  
����

�  – specific emission of oxides depending 
on the type of fuel burned; 

�� – dimensionless coefficient, taking into 
account the principal design of the burners;  

�� – dimensionless coefficient, taking into 
account the temperature of the air supplied for 
combustion;  

�� – dimensionless coefficient that takes into 
account the effect of excess air on the formation of 
oxide substances; 

�� – is a dimensionless coefficient that takes 
into account the stepwise introduction of air into the 
combustion chamber;  

�� – conversion factor (when determining 
emissions in grams per second is 1, in determining 
emissions in tons per year is 10-3). 

Calculation of sulfur oxide emissions [10]: 
 

 
���� = 0�0�����1 − ����

� ��1 − ����
�� �, (g/s)  (3) 

 
 
where � is the natural fuel consumption, t/year 
(g/s); 

 ��  – sulfur content in fuel for the working 
mass,%; 

 ����
�  – the proportion of sulfur oxides bound 

by fly ash in the boiler; 

����
��  – the proportion of sulfur oxides trapped in 

a wet ash trap along with the trapping of solid 
particles. 

 
 

Calculation of carbon monoxide emissions [11]: 
 

��� = 10������ �1 − ��
���� , (g/s)        (4) 

 
where ��� is the yield of carbon monoxide during 
fuel combustion, g/kg; 

�� – heat loss due to mechanical incompleteness 
of fuel combustion,%. 

Specific emissions of pollutants are calculated 
on the basis of the known amount of emissions per 
unit time and the corresponding fuel consumption 
spikes[12-13]. The specific release of the � − �� 
substance can be determined by the unit of heat 
introduced into the furnace (g/MJ) or expressed as 
the concentration of this substance in 1 m3 of flue 
gases, taken under normal conditions, and the 
excess air factor �= 1.4. 

 
Results and Discussion 
 
In the given work total emissions of harmful 

substances according to characteristics of a boiler 
have been calculated. Steam boiler factory brand 
BKZ-75 – performance 75 t/h (51.45 Gcal/h), the 
temperature of superheated steam 440 � and the 
pressure of superheated steam 39 kgf/cm. 

The results of the calculation of gross emissions 
(t/year) and specific emission (g/s) of pollutants are 
given in the Table 2. When burning fossil fuels n an 
atmosphere are thrown out carbon oxides, nitrogen 
and sulfur dioxide. According to the hygienic 
requirements set maximum-permissible concentra-
tion (maximum concentration limit, mg/m3) of 
harmful substances polluting the atmospheric air are 
established. Maximum permissible concentration 
are accepted according to [14] and resulted in  
Table 3. 

It has been established that when burning 
Karaganda coal, a large amount of pollutants are 
emitted into the atmosphere, the concentration of 
which exceeds the maximum one-time and daily 
average concentrations of impurities. 

Our calculations show that average daily 
concentrations of pollutants exceed maximum 
permissible concentrations (concentration not 
having adverse effects on human health). From this 
we can conclude that will worsen human health 
(environmental condition). Therefore, it is necessary 
to reduce the anthropogenic load on the ecosystem.
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Table 2 – Calculation of gross emissions (tons/year), specific emissions (g/s) of pollutants and average daily surface concentrations 
(mg/m3) 

 

Fuel 
Harmful substances

Gross emissions, t/year 
Karaganda coal (non-irradiated) 120.3 7.4 12.72

Karaganda coal (irradiated) 100.4 7.6 10.56
 Specific emissions, g/s 

Karaganda coal (non-irradiated) 3.8 0.23 0.40
Karaganda coal (irradiated) 3.18 0.24 0.33

 Average daily surface concentrations, mg/m3 
Karaganda coal (non-irradiated) 9.1 0.1 0.24

Karaganda coal (irradiated) 8.3 0.7 0.20
 
 

Table 3 – Maximum permissible concentration (maximum concentration limit) of polluting substances in atmospheric 
air of localities 

 

№ code The name of substance The formula 
The value of maximum concentration 

limit (mg/m3) Hazard class 
maximum one-time average daily 

1 Carbon oxide 0.05 0.15 4 
2 Nitrogen (II) oxide 0.04 0.85 2 
3 Sulfur (II) oxide 0.03 0.005 3 

 
 
Conclusion 
 
The following conclusions can be made from the 

research: 
 Preliminary electron beam processing of coal 

leads to decrease in emissions in an atmosphere, 
decrease in emissions in an atmosphere, and reduces 
maximum-one-time emissions (see Tables 1, 2) at 
least from 0.6% up to 9% for different greenhouse 
gases. 

 Electron beam processing is an 
environmentally friendly non-reagent way to control 
the quality of the burned fuel. To obtain a 
significant technological effect, treatment with 
doses up to 50 Mrad is necessary. The given dozes 
can be recruited for 4-5 seconds. The environmental 
purity of electron-beam processing is due to the fact 
that the irradiated coal does not have induced 
radioactivity, because the energy of accelerated 
electrons are ten times less energy electrons 
provoking the occurrence of nuclear chemical 
transformation in the irradiated material. When 
exposed to electrons of this energy, there are  
 

processes associated with the excitation of valence 
electrons, and unusual valence states can occur, 
chemically active particles, ions, and other. 

 Thus, the electron beam method allows you to 
change the processes of burning coal that have 
undergone preliminary electron beam processing. 
Given the high performance of modern electron 
accelerators, preliminary calculations show the 
economic integrity of using electron-beam 
processing of coal in practice. 
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Mössbauer research in zoloceramic materials

Abstract. The work is devoted to Mössbauer studies of new building materials derived from wastes from 
coal-fired power plants. Measurements of Mössbauer spectrometers were carried out on the MC1104EM 
unit in the regime of constant acceleration with a source of 57Co (Cr). The elemental composition of 
each sample was determined by means of X-ray fluorescence analysis (XRF) on the RLP-21 installation. 
According to the results of studies of volume-surface concentric-zonal color effects in zoloceramic materials, 
the phase composition of iron compounds and their ratios is established by the Mössbauer method, and 
their elemental composition with 32 components is determined with high accuracy by means of XRF. The 
technology of obtaining gold-ceramic materials with volumetric-surface color effects is described.
Key words: MOSSBAUER spectroscopy, X-ray fluorescence analysis, NGR spectrum, aluminasilicate 
compositions.

The paper describes the results of a study of 
volume-surface concentric zonal color effects in 
gyro ceramic materials. The dependence of zonal 
flowers on the phase composition is established by 
the Mossbauer effects method.

In the production of the ceramic materials, used 
both in construction and in everyday life, one of the 
fundamental factors that predetermine the aesthetic-
consumer properties is their whiteness and color, 
which makes it possible to create a wide variety of 
color compositions [1-3].

Intensive staining of ceramics in the presence of 
non-silicate iron in clays is due to condensed iron-
containing phases, such as hematite α-Fe2O3 (reddish-
pink, red-brown and brown), magnetite Fe3O4 (brown 
to black) and various ferrites [4-7].

The objects of the research were new gyro 
ceramic examples – tiles based on ash TPP and 
monothermical clay.

To obtain a raw mixture of polycrystalline 
ashceramic tiles, consisting of 70% (mass) of ash 
from TESs with a residual fuel content of 8-9% and 
30% of moderate plastic thin ground monotermical 
clay as a dry powder, mixed carefully in a mixer. The 
beam was formed on a strip press in such form of a 
cylinder with size d = 50 mm, h = 250 ÷ 350 mm, 

after which the samples were dried at 100-110  °C, 
and then fired in an oxidizing medium by forced 
high-speed conditions: rising of temperature 950 ° C 
with a speed of 20 ° C / min; hold at this maximum 
temperature for 60 min. The total duration of the 
firing cycle was 107 minutes.

The baked beam was cut by abrasive circles 
across, accordingly the required thickness of the tiles 
(10-15 mm). The chemical composition of the using 
ash is shown in Table 1.

The surface of the obtained tiles along the entire 
depth of the volume has a polycrystalline zonal color, 
which is formed in association with the creation at 
roasting on the proposed mode in the different layers 
of the beam – sample of the necessary temperature 
and gas modes, providing different degrees of 
combustion of residual carbon of ash and oxidation 
of iron.

The colored concentric zones on the surface of 
the tiles in cross section are situated as follows: in 
the middle part a gray circle with a diameter of 33 
mm, which is surrounded by a thin strip yellow color 
(2.5 mm), around it is a strip (3 mm) of violet-red 
color, outside of the surface of the tile is painted in 
a light brown (cream) color, the width of which is 3 
mm (Fig. 1).
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Table 1

Ashes (coal) SiO2 Al2O3 Fe2O3 FeO TiO2 CaO MgO SO3 K2O Na2O
Ash of Almaty TPP

(Coal of Karaganda pool) 56,52 25,58 2,39 2,39 0,93 2,17 0,45 0,48 0,20 -

Figure 1 – Painting of colored concentric zones on the surface of tiles in a cross-section

From the corresponding zones of different colors 
samples were cut, the samples were exposed to 
nuclear gamma resonance spectroscopy (NGRS) and 
atomic force microscopy.

As is known, iron in the samples can contain 
both Fe3+ and Fe2+ [9]. In the spectra of samples 
of compounds iron can appeared as the magnetite 
(Fe3O4), mullite (3Al2O3 • 2SiO2), ε-wollastonite 
(β-Сa3Si3O9), anorthite (СaO • Al2O3 • 2SiO2), 
fayalite (Fe2SiO4), hematite (Fe2O3), solid aqueous of 
a different phase, also as the ferrites [6-9].

The Mossbauer’s investigations were carried 
out on device MC1104EM in mode with a constant 
acceleration for absorption. The source was 57Co in 
the matrix of chromium . The spectra were taken 
at room temperature. The isomeric shifts of the 
Mossbauer spectra were determined with relation to 
α-iron.

Mossbauer research of samples on the nucleus 
of 57Fe have shown that the spectra have a complex 
form. They consist of a superposition of several 
doublets and sextets having different parameters. 
We have used special computer programs for their 
decoding. In addition, these spectra were compared 
for identification with the control spectra of the 
known components.

The spectrum of Mossbauer of the central part of 
the sample has a broadened asymmetric quadrupole 

doublet. Computer processing made it possible to 
determine that it decomposes into four quadrupole 
doublets (Fig. 2).

Table 2 shows the hyperfine structure of the 
Mossbauer spectrum.

It can be seen from Table 2 that the Mössbauer 
spectrum of the sample does not have a magnetic 
structure. It consists of four diamagnetic components 
having different phase states. Each of them is 
characterized by a separate hyperfine structure 
(Table 2). These components, possibly, characterize 
oxides (SiO2, Al2O3, CaO and SO3) containing in the 
composition of ferric and ferrous iron in different 
concentrations [9]. The superposition of these 
components probably colored of the central part 
of the circular sample to a yellowish-brown (gray) 
color.

The second layer of the sample has a 
complex hyperfine structure. The parameters 
of the Mossbauer spectra of the sample have 
substantially changed. The spectrum of this layer 
differs greatly from the spectrum of the central 
layer, computer processing has shown that it 
consists of three quadrupole doublets and two 
sextets (Fig. 3). Quadrupole doublets have a 
different parameters.

The Mossbauer parameters of the hyperfine 
structure are shown in Table 3.
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Figure 2 – Spectrum of Mossbauer of the central part of the sample

Table 2

№ Isomeric shift, 
σ, mm/s.

Quadrupole splitting, 
ε, mm/s.

Magnetic splitting 
Нeff, kE

The half-width of the 
line, Г, mm/s

The share of Fe,% 
in spectrum

Formula of 
oxides

1. 0,532±0,016 0,230±0,018 - 0,638±0,031 22,7±4,0 SiO2
2. 0,786±0,050 0,778±0,60 - 0,638±0,031 36,5±5,0

Al2O33. 0,953±0,040 1,117 - 0,638±0,031 27,0±4,0 CaO
4. 1,272±0,170 1,263±0,160 - 0,638±0,031 13,9±4,0

SO3

Figure 3 – Mossbauer spectrum of the second layer of the sample
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Table 3

№
п/п

Isomeric shift, δ, 
mm/s.

Quadrupole splitting, 
ε, mm/s.

Magnetic splitting 
Нeff, kE

The half-width of the 
line, Г, mm/s

The share of 
Fe,% 

1. 0,3221±0,023 0,390±0,004 - 0.541±0,009 61,5±1,3
2. 0,621±0,022 0,902±0,040 - 0.541±0,009 5,5±1,0
3. 0,835±0,014 1,271±0,017 - 0,541±0,009 11,1±0,8
4. 0,366±0,007, -0,076±0,008 494,20±0,70 0.351±0,040 22,0±0,7
5. 0,366±0,007 -0,096±0,006 503,79±0,50 0.351±0,040 15,9±0,9

A comparison of this spectrum with the 
β-wollastonite (CaSiO3) spectrum containing 1% 
trivalent iron of the oxide showed their strong 
similarity. It is known [7-9], in the structure of high 
calcium ceramics containing a significant amount of 
glass phase, on a level with anorthite (CaO ∙ Al2O3 
∙ 2SiO2) can crystallize β-wollastonite (CaSiO3) 
and aluminosilicate, also calcium-containing solid 
solutions.

 As we see, in the structure of a solid solution of 
β-wollastonite with Fe2O3 content, 3 components 
of the NGR spectrum are fixed in the form of 
doublets corresponding to Fe + ions in three 
crystallographic positions (Table 3). In addition, 

along with doublets, two more sextets appear in the 
spectra, which is due to the presence of trivalent 
iron oxide. The doublets, quadrupole splitting (ε 
= 0.902 ± 0.040 mm/s, ε = 1.271 ± 0.017 mm/s) 
correspond to the compounds of bivalent iron, and 
(ε = 0.390 ± 0.004 mm / s.) to the compounds of 
trivalent iron. We assume that metacaolinite is 
formed on the level with β-wollastonite in the test 
sample.

The solubility of Fe2O3 in metakaolinite (Al2O3 
• 2SiO2) is insignificant and amounts to only 5.44% 
of the total additive Fe2O3. The remaining amount of 
Fe2O3 remains in the free state in the form of hematite 
(α-Fe2O3) (Fig. 4).

Figure 4 – NGR – metakaolinite spectrum (Al2O3 • 2SiO2)  
with Fe2O3 content of 1.5% [2]

NGR – the spectrum of meta kaolinite (Al2O3 • 
2SiO2) with an Fe2O3 content of 1.5% is represented 
by a sextet and a doublet of Fe3+ ions. The sextet has 
the following parameters: δ = 0,382mm/s., ε = -0,209 

mm/s. Heff = 523.5 kE, G = 0.511 mm/s. As can be 
seen, the parameters of the sextet correspond to the 
presence of Fe3+ in hematite α-Fe2O3 in the amount 
of 94.56% of its content, and 5.44% of Fe3+ in the 
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form [Fe3+O6]9 – enters the structure of metakaolinite, 
replacing Al3+ in it according to the scheme: 
[Al3+O6]9- [Fe3+O6]9-

The doublet in the spectrum (δ = 0.341 mm/s, ε = 
-0.794 mm/s, Г = 0.775 mm/s.), possibly, corresponds 
to a solid solution (Al2-xFexO3) 2SiO2. These isovalent 
substitutions in crystallochemical close ions do not 
cause electronic and crystallographic changes in the 
structure of the crystalline lattice of mullite (3Al2O3 • 
2SiO2), which does not lead to a significant decrease 
in light absorption and, consequently, to a sharp 
decrease in the reflection coefficient.

In our case, the appearance of the doublet (δ = 
0.3221 mm/s, ε = -0.390 mm/s) is possibly due to 
the state of ferric iron, which is surrounded by a 
solid solution of metakaolinite. The combination of 
these constituents in the sample probably causes the 
appearance of a yellow color.

In the third layer of the sample in the spectrum, 
we observe one quadrupole doublet and two sextets 
(Fig. 5).

Table 4 shows the values of the Mossbauer 
hyperfine spectral parameters.

The intensity of the doublet in this spectrum is 
less than the intensity of the lines of the first doublet 
on the second layer. Their hyperfine parameters 
are close to each other. It can be asserted that these 
doublets are connected, with states of iron atoms, 
located in the same positions, corresponding to ions 
of bivalent iron. On the level with the doublet, we 
observe two sextets with similar isomeric shifts, 
which differ in the values of quadrupole doublets 
ε and effective magnetic fields Нeff. on the 57Fe 
nuclei.

Comparison of this spectrum with the spectrum of 
mullite (3Al2O3·2SiO2) showed their strong external 
similarity. 

Studies of MOSSBAUER spectroscopy data 
obtained crystal-chemical state of the ions Fе3+ and 
Fe2+ in the mullite synthesized by sintering at 1350 

оС with the addition of 1.5% Fe2O3, the spectra of 
which is shown in Fig. [6].

Figure 5 – Mossbauer spectrum of the third layer of the sample

Table 4

№ Isomeric shift, δ, 
mm/s.

Quadrupole 
splitting, ε, mm/s.

Magnetic 
splitting Нeff, kE

The half-width of the 
line, Г, mm/s

The share of 
Fe,% Phase state Fe

1. 0,311±0,0025 0,3890±0,006 0,469±0,070 46,2±2,5 (3Al2-x ∙Fex3+)
O3∙2SiO2

2. 0,370±0,0021 -0,370±0,0021 430,00 0,240±0,016 16,0±0,5 Fe2SiO4

3. 0,3684±0,0022 -0,1040±0,0022 489,60 0,240±0,016 38,0±0,7 Fe2O3
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In the spectrum of mullite (3Al2O3·2SiO2+1,5% 
Fe2O3,), there are four sextets and one doublet.

Their hyperfine parameters are given in Table 5.
As can be seen from table 5 39,3% of Fe is in the 

trivalent state in the form of α- Fe2O3, 10.75% of Fe in 
the composition of magnetite Fe3О4 and 36,99% of Fe 
in the solid solution of mullite, as the firing was carried 
out in an oxidizing environment. In the formation of 
solid solution of mullite (3Al2O3·2SiO2:Fe) most likely 
isovalent substitution of Al3+ ions for Fe3+ in its structure 
in the form of tetrahedra and octahedra according to the 
schemes:[AlO4]5→ [FeO4]5 и [AlO6]9→ [FeO6]9-.

This character of isomorphism and formation 
of the solid solution does not lead to deformation of 
the crystal lattice and electronic defect structure of 
mullite(3Al2O3·2SiO2) and does not cause a sharp 
light absorption and the reduction of the reflection 
coefficient.

However, of 21.12% of iron is in the divalent state 
in the composition of magnetite Fe2O4 – 8.70% and 

in the composition of the fayalite Fe2SiO4 -12,42%. 
The formation of Fe2+ in FeO is due to the thermal 
dissociation of Fe2O3.

Fe2+ ions formed as a result of thermal 
dissociation at t˃800˚С, react with Fe2O3, forming 
magnetite Fe3O4:

Moreover, when interacting with [SiO4]4 – FеО 
forms fayalite (Fe2SiO4), which is confirmed by 
MOSSBAUER spectroscopy [7-10].

Therefore, in the synthesis of mullite 
(3Al2O3·2SiO2) in the solid phase processes, the 
presence of unreacted hematite α- Fe2O3 containing 
of purple-brown color and the formation of magnetite 
Fе3О4 with black color, and fayalite lead to strong 
light absorption and thereby reduction of the 
reflectance and whiteness of mullite.

The results of x-ray phase analysis confirmed 
the validity of the proposed mechanism of the effect 
of Fe2O3 on the structure of mullite (3Al2O3·2SiO2) 
solid-phase sintering [6].

Figure 6 – MRI spectrum of the mullite (3Al2O3·2SiO2)  
with a content of 1.5% Fe2O3

Table 5

Type of the 
spectrum δ, mm/s. ε, mm/s. Г, mm/s Нeff, kE Crystal graphics 

position Fe
The share 
of Fe,% Phase state Fe

sextet 1 0,362 -0,187 0,647 504,5 [Fe3+O6]9 39,30 α-Fe2O3

sextet 2 0,211 -0,429 0,776 251,8 Fe3+ 10,75 Fe3O4

sextet 3 0,319 0,200 0,776 351,3 Fe2+ 8,70 Fe3O4

sextet 4 0,350 -0,200 0,776 415,0 [Fe2+O6]10 12,42 Fe2SiO4

Doublet 1 0,303 0,828 0,776 - [Fe3+O6]9- 36,99 (3Al2-x ∙Fex3+)O3∙2SiO2
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Received our mossbauer studies confirm these 
data. A very important are such studies for the 
aluminosilicate calcium – anortite (CaO·Al2O3·2SiO2), 
one of the main crystalline phases in the structure of 
various ceramic materials and products, including 
rough wall ceramics based on clays with a high content 
of impurities or specifically the additives CaCO3 to 
provide the required exploitation properties.

It is known [7-9], the basis of the feldspar 
structure, including the anortite, is a framework of 
interconnected layers of tetrahedrons [SiO4]4-and 
[AlO4]5 through the summit.

Study by mossbauer spectroscopy of the effect 
of oxides of Fe2O3 on the phase and crystal-chemical 
state Fe3+ ions taking into account the particular 

structure of anortite confirmed the above views about 
the mechanism of formation of iron solid solution 
(figure 7).

Analysis of the Mossbauer spectra (Fig.7) and 
their parameters confirm the presence in samples of 
anortite (CaO·Al2O3·2SiO2), both of 0.5% and 3.0% 
Fe2O3 4 non-equivalent Fe3+ component ions in their 
structure (table 6). This is sextet with parameters 
AGRS, including the magnetic field tensions, 
Heff=510,8; 512,0 кЭ indicating the presence and 
magneto-ordered phase of α- Fe2O3. This proves that 
even when the content of Fe2O3 = 0.5% iron ions Fe3+ 
is not completely included in the structure of anortite 
(CaO·Al2O3·2SiO2), and the solubility of the Fe2O3 in 
the anortite is 0.75 – 0.78 % by weight.

Figure 7 – MOSSBAUER spectra of anortite (CaO·Al2O3·2SiO2) containing Fe2O3, % by mass: 3.0

Table 6

The amount 
of Fe2O3, %

Type of the 
spectrum δ, mm/s. ε, mm/s. Г, mm/s Нeff, kE Crystal graphics 

position Fe
The share 
of Fe,% Phase state Fe

0,3 Sextet 0,33 -0,13 0,52 512,0 [FeО6]9- 21,79 Fe2O3

0,3 Doublet 1 0,18 1,28 0,77 - [AlО4]5- 36,44 СS2A2O8:F
0,3 Doublet 2 0,42 1,11 0,57 - [Si О4]4- 19,73 СS2A2O8:F
0,3 Doublet 3 0,26 0,66 00,53 - [СаО10]18- 22,04 СS2A2O8:F

Moreover, the parameters of the AGRS spectra 
(table 6) identified 3 non-equivalent positions of 
the Fe3+ ions are represented by doublets 1,2, and 
3, is isomorphic – having replaced in the crystal 
lattice of anortite ions Ca2+, Si4, Al3+ to form solid 
iron-containing solution of the composition: [Са1-

xFex∙Al2-yFey∙Si2-z∙Fez]O8. In the technology of 
thin, construction and artly-decorative ceramics a 
significant role play a vitreous phase aluminasilicate 

compositions in ensuring the white, color and 
physico-technical properties. As can be seen from the 
informations shown in table 6, when the content of 
Fe2O3 from 0 to 1%, the reflection coefficient of the 
glass phase fused from pure oxides at a temperature 
1400оC, reduced slightly from 86,1 to 70.9%.

This is because in the oxidative conditions of 
firing and cooling Fe3+ ions substitute for isovalent 
ions Al3+ in the tetrahedral [AlO4 ]5 according to 
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the scheme: [AlO4]5 → [FeO4]5 that does not cause 
strong light absorption and reduce reflectance. When 
the content of Fe2O3 equal to 3% the reflection 
coefficient of the glass phase is significantly reduced 
and is 48.3%. Effect of glass phase on the whiteness 
of the product depending on the content Fe2O3 largely 
depends on the quantity, viscosity-forming melt and 
the firing temperature.

These phase and crystal-chemical features of 
dyeing aluminate and aluminosilicate crystalline and 
glassy phases are very important in the development 
of effective methods for producing materials isdelii 
as high whiteness (porcelain, faience), and intensely 
vivid colors, light and dark spectra in construction 
ceramics.

The formation of iron solid solutions in the crystal 
phases with a complex structure results in a significant 
reduction of the reflection coefficient of metakaolinite 
Al2O3∙2SiO2, and wollastonite (CaOSiO2) and 
anortite (CaO-Al2O3-SiO2) even (CaO·Al2O3·2SiO2), 
with the content of 0.5% Fe2O3 and can be explained 
by the isomorphism and crystal-chemical state of the 

ions Fe3+, given the structures of these phases. Higher 
susceptibility to staining of wollastonite and anortite 
oxide Fe2O3 due to the formation of iron containing 
clusters in a nano-complex of the crystal lattice 
due to isomorphous substitutions in the tetrahedral 
[SiO4]4-and [AlO4]5 , Si4 and Al3+ ions and Ca2+ ions 
in the voids of the lattice Fe3+ and the presence of 
free α – Fe2O3, not included in the structure of the 
solid solution and the low solubility limit of Fe2O3 
in the structure of wollastonite (СаЅіО3) and anortite 
(CaO·Al2O3·2SiO2), which is 0.68 to 0.69 and 0.75 
– 0.78 percent by weight, respectively. When the 
exaggeration of the number of Fe2O3 to 1.0%, TO 
of aluminosilicate phases mullite (3Al2O3∙2SiO2) 
and glass phase decreases relatively not very high, 
respectively, 17.6 and 15.2% in comparison with 
the sample without Fe2O3. Isovalent substitution 
in crystal-close ions do not cause electronic and 
crystallographic changes in the structure of the crystal 
lattice of the mullite that does not lead to a significant 
reduction in light absorption and consequently, to a 
sharp decrease of the reflection coefficient.

Figure 8 – a Mossbauer spectrum of the fourth layer of sample

Table 7

№ Isomeric shift, δ, 
mm/s.

Quadrupole splitting, 
ε, mm/s.

Magnetic splitting 
Нeff, kE

The half-width of the 
line, Г, mm/s

The share of Fe,% 

1. 0,300±0,0018 0,399± 005 0,524±0,012 69,6±0,8
2. 0,381±0,006 -0,092±006 494,86 ±0,60 0,375±0,027 14,4±0,8
3. 0,366±0,004 -0,098± 004 504,32 ±1,30 0,375±0,027 16,5±1,3



114 Mössbauer research in zoloceramic materials

International Journal of Mathematics and Physics 9, №2, 101 (2018)

Substitutions like this take place in the structure 
of the glass phase. Therefore, from the perspective 
of lightening the coloring of ceramics, i.e., increase 
its reflectivity, the formation of iron containing solid 
solutions of wollastonite and anortite on the one 
hand is positive, because the reflection coefficient 
with Fe2O3 contents up to 1% significantly higher 
reflectance of the hematite with content 6.5%. This 
is to some extent neutralizes their color with oxide 
Fe2O3. However, when increased amounts of Fe2O3, 
in particular the masses on the basis of iron-bearing 
clays in the production of building ceramics, the 
efficiency of neutralization of its coloration is 
significantly reduced with the presence of free α- 
Fe2O3 with a limited solubility limit in the structures 

of wollastonite (СaSiO3) and anortite (CaO-Al2O3-
SiO2), and also due to the heterogeneous nature of the 
formation of the solid solutions with Fe3+ and their 
clusters, probably in the third word is formed purple-
red color.

In the fourth layer of the sample in the spectrum, 
there is one doublet and two sextet (Fig.8).

Hyperfine parameters of mossbauer spectra are 
shown in table 7.

There is an increase in the intensity as a doublet, 
and the second sextet, which indicates the increase in 
the number of iron ions in these states. The intensity 
of the first sextet is smaller than in the previous case. 
All these changes in the spectra of mossbauer is 
strongly reflected in the dawn samples.

Figure 9 – Topography of the sample surface(7x7) mkm, obtained using atomic force microscope

Effect of coloring impurities of Fe on the color 
silicate phases, the most common of which in the 
structure of low-temperature ceramics containing 
carbonate materials are β-wollastonite (СaSiO3) and 
aluminosilicate Ca – anortite (CaO-Al2O3-SiO2), 
calcium containing solid solutions. These structures 
are characterized by often laminated or framed 
structure with complex relationships of silicate 
and aluminosilicate polyhedra of various degree 
of their association. This causes in some of the 
aluminosilicates the formation in nanoobject of their 
structures of Fe–containing clusters that cause strong 
absorption and a sharp decrease in the reflection 
coefficient. Because these phases are common to the 

products of construction and other types of ceramics, 
it is extremely important the study of whiteness and 
staining in the presence in their composition of Fe2O3. 
Staining of 4-th layer of light – brown color, probably 
due to the formation of β-wollastonite (СaSiO3) and 
aluminosilicate Ca – anortite (CaO-Al2O3-SiO2), 
calcium containing solid solution.

As can be seen from the above data, the ability 
to stain various phases of the oxide Fe2O3 is very 
different depending on the structure of the phases and 
their crystal chemistry and phase state of Fe.

The results of the research of the micro-
nanostructure of the surface layer of different zones 
of the samples is shown in Fig.9. It was found that 
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significant differences in the studied layers of samples 
are not observed.
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Introduction 
 
The Klein-Gordon (KG) equation is an important 

equation in theoretical physics especially in quantum 
field theory (QFT) and relativistic quantum 
mechanics. It also appears in nonlinear optics and 
plasma physics. The Klein-Gordon equation often 
arises in physics in linear as well as nonlinear forms. 
In the past, the equation had been extensively studied 
by many physicists and applied mathematicians with 
the help of a variety of methods. This paper deals 
with solving a particular form of the generalized 
Klein-Gordon (GKG) equation with full nonlinearity 
via the first integral method [1 – 7].  

The generalized Klein-Gordon equation [8 – 10] 
that is to be studied in this paper is written in the form 

 
��� �  ����� +  �� �  ��� +  ������ = 0,    (1) 
 

where the dependent variable �(�, �) represents a 
wave profile, x and t are spatial and temporal 
variables, �, �, �, � are real-valued constants and � =
2, 3, 4, . .. 

 
Reduction to Nonlinear Ordinary Differential 

Equation (NLODE) 
 
To reduce Eq.(1) to a nonlinear ordinary 

differential equation (NLODE), we put 

 
�(�, �) = �(�), � = � � ��           (2) 

 
where v is a constant , generally the constant speed of 
wave propagation.  

Now, from eq.(2), we have 
 

��� =  ��  �
��

���  , ��� =  ���
���  . 

 
Substituting these derivatives in Eq.(1), we 

obtain 
 

(�� �  ��) ���
��� +  �� �  ���  +  ������ = 0.   (3) 

 
Thus, Eq.(1) is reduced to a NLODE. 
Let us further simplify the reduced NLODE by 

putting 
 �(�) =  ��(�)� �

���.                   (4) 
 
Then, we have 
 

 ��
�� =  �

��� ����
���  ��

��                   (5) 
and 
 

 �
��

��� =  ���
(���)�  �

����
���  ���

���� +  �
��� �

���
���  ���

���  .  (6) 
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Substituting Eqs.(4) to (6) in Eq. (3), we obtain 
 

(� − �)(�� − ��)� ���
��� − 

 

− (� − �) (�� −  ��) ���
�� �

�
+ 

 
+ (� − �)� ���  −  (� − �)� ���  +  

 
+(� − �)� ���  = 0.                       (7) 

 
Solving Eq. (7) and using Eqs. (2) and (4), we can 

obtain the solution �(�, �) of Eq. (1). 
In this paper, solutions of Eqs. (7) are to be 

obtained via a method known as the first integral 
method. 

 
Algorithm of the First Integral method 
 
Before applying the first integral method in 

finding the solutions of Eq. (7), we introduce an 
algorithm of the method as in the following. 

Let us consider a general NLPDE in the form 
 
 �(�, ��, �� , ��� , ���, ��� , ���� , . . . ) =  0,  (8) 
 

where � = �(�, �) is its solution, � and � represent 
the spatial and the temporal variables and F 
represents a polynomial in u and its partial 
derivatives. Here, the subscripts denote 
differentiations with respect to them. 

Let us introduce the transformations, 
 

 � = �(�, �) = �(�), � = � − ��,            (9) 
 

where v is a constant to be determined latter. 
Now, we have,  
 

�� =  ��
�� =  ��

��  , �� =  ��
�� = −� ��

��  , 
 

��� =  ���
��� =  ���

��� , ��� =  ���
�� �� =  −� ���

���  , 
 

��� =  ���
��� =  ��  ���

���  , ���.              (10) 
 
Using Eqs. (9) and (10), we can reduce Eq. (8) to 

a nonlinear ordinary differential equation (NLODE) 
of the form 

 

�(�, ��, ���, ����, . . . ) = 0             (11) 
 

where the primes denote derivatives with respect to 
the same variable (�) such that  
�� =  ��

��  , ��� =  ���
���  , ���. and �(�, ��, ���, . . . )  

denotes another polynomial in U and its derivatives 
with respect to �. 

This is exactly the way by which Eq. (1) was 
reduced to Eq. (7). 

Now, Let us suppose that the solution of the Non 
Linear Ordinary Differential Equation (NLODE) 
(11) can be expressed as 

 
 �(�) = �(�).                        (12) 

 
We further introduce the following new variables 
 

�(�) = �(�), �(�) =  ��(�) = 
 

= ��(�) =  ��
�� =  ��

��                   (13) 
 

leading to the plane autonomous system 
 

 
 �(�) = ��(� ), ��(� ) =  �( �(�), �(� ) ) ,  (14) 
 

 
where H is a polynomial in X and Y. 

If we can find two first integrals to the system of 
equations in (14) under the same conditions, then the 
analytic solutions of equations (14) can be obtained 
directly. However, in general, it is really difficult for 
us to realize this even for one first integral, because 
for a given plane autonomous system, there exists 
neither a systematic theory that can tell us how to find 
its first integrals nor a logical way for telling us what 
these first integrals are. We will apply the Division 
Theorem to obtain a first integral to the system of 
equations (14) which reduces eqn. (11) to a first order 
integrable ODE. An exact solution of eqn. (8) is then 
obtained by solving this ODE. For convenience, let 
us recall the division theorem for two variables in the 
complex domain C [w, z]. 

Division Theorem: For two polynomials P(w, z) 
and Q(w, z) in a complex domain C [w, z], if P(w, z) 
is irreducible in C[w, z] and if Q(w, z) vanishes at all 
zero points of P(w, z), then there exists another 
polynomial G(w, z) in C[w, z] such that Q(w, z) = 
P(w, z) G(w, z). The division theorem follows 
immediately from Hilbert – Nullstellensatz theorem 
of commutative algebra.  
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Application of the First Integral method in 
solving the Generalized Klein-Gordon equation 

 
In this section, the first integral method is applied 

in finding soliton solutions of Eq. (7) and hence of 
Eq. (1). 

In Eq. (7), let us put  
 

�(�) = �(�), �(�) = ��(�) =  ��
�� ,        (15a) 

 

��(�) =  ��
�� =  (� − 2)

(� − 1) (��)�

� + 

 

+ (� − 1)
(�� − ��) ��� −  ��� +  ���� = 

 

= (� − 2)
(� − 1) 1

� �� + 

 
+  (���)

(�����) ��� −  ��� +  ����.             (15b) 
 
Further, let us introduce another new variable � 

such that 
�� = � �� . 

 
Then, Eqs.(15) yield 
 

��
�� = ��, ��

�� =  � − 2
� − 1 �� + 

 
+ ���

�����  ���� −  ��� +  ����.             (16) 
 
We suppose that �(�) and �(�) are nontrivial 

solutions of Eq. (16) and �( �(�), �(�) ) =
 ∑ ��(�) ��(�)�

���  is an irreducible polynomial in 
the complex domain ���, �� such that 

 
 ���(�), �(�)� =  ∑ ��(�) ��(�)�

��� = 0, (17) 
 

where ��(�) (� = 0, 1, 2, �, . . . � − 1, �) are 
polynomials in X and ��  ≠ 0. 

Here, Eq.(17) is called the first integral to the 
system of Eqs.(16). 

By division theorem, there exists a polynomial 
�(�) + ℎ(�)� in the complex domain ���, �� such 
that 

��
�� =  ��

��  ��
��  +  ��

��  ��
�� = 

 

=  ��(�) + ℎ(�)�� ∑ ��(�)�
��� ��(�).   (18) 

 
Now, using Eqs.(16), (17) and (18) we write  
 

� ���(�) � ����
�

���
+ 

 
+ ∑ ���(�) ����  ����

��� �� +  ���
�����  ���� −�

���
 ��� +  ����� =  

 

=  � �(�) ��(�)
�

���
 �� +  � ℎ(�) ��(�) ����

�

���
 . 

 
 
From the above equation, equating the 

coefficients of �� (� = � + 1, �, . . . �, 2, 1, 0) from 
both sides, we obtain 

 
� ��� (�) =  ℎ(�) ��(�) − � (���)

(���) ��(�),  (19a) 
 

� ����� (�) = �(�) ��(�) + ℎ(�) ����(�) − 
 

−  (���)(���)
���  ���� (�),            (19b) 

 
 

� ��� (�) = �(�) ��(�) + ℎ(�) ��(�) − 
 

− 2(� − 2)
� − 1  ��(�) − 

 
− �(���)

�����  ��(�) ���� −  ��� +  ����,   (19c) 
 
 

� ��� (�) = �(�) ��(�) + ℎ(�) ��(�) − 
 

− � − 2
� − 1 ��(�) − 

 
− �(���)

�����  ��(�) ���� − ��� + ����,      (19d) 
 
 

� ��� (�) = �(�) ��(�) + ℎ(�) ��(�)  − 
 

− �(���)
�����  ��(�)���� −  ��� +  ����,      (19e) 
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��(�) � − 1
�� − ��  ���� −  ��� +  ���� = 

 
=  �(�) ��(�).                     (19f) 

 
Since ��(�) is a polynomial in X, we deduce 

from Eq.(19a) that ℎ(�) = �(���)
���  . 

For simplicity, we take ��(�) = 1. We can find 
the degrees of �(�), ��(�), ��(�), ���. by balancing 
of degrees in Eqs.(19). Then, we express these 
functions as polynomials of appropriate degrees in X 
with undetermined coefficients. Substituting such 
polynomials in appropriate equations in (19) and 
equating coefficients of like powers of X from both 
sides of the resulting equation, we can find the 
undetermined coefficients. Thus, we can know the 
exact expressions of ��(�), ��(�), ��(�), ���. 
Substitution of these expressions in Eq.(17) can yield 
the expression(s) for Y. Recalling that � =  ��

�� , we 
can find �(�) �� �(�) on integration. 

Then using Eqs. (2) and (4), we can arrive at �(�) 
and hence at �(�, �). 

In a particular case, let us take � =  1. Then, 
Eqs.(19) yield 

 
 � ��� (�) =  � ℎ(�) −  ���

���� ��(�),       (20a) 
 

 � ��� (�) = �(�) ��(�) + ℎ(�) ��(�) ,     (20b) 
 

��(�) � − 1
�� − ��  ���� −  ��� +  ���� = 

 
=  �(�) ��(�).                       (20c) 

 
Since ��(�) are polynomials in X, we deduce 

from Eq. (20a) that ��(�) is a constant and ℎ(�) =
 ���
��� . For simplicity, we take ��(�) = 1. From 
balancing of degrees in Eqs. (20), we conclude that 
deg��(�)� = ������(�)� = 2. 

We suppose that 
 

 ��(�) =  �� +  ��� +  �� ��           (21) 
 

where ��, �� , �� (��  ≠ 0) are arbitrary constants to 
be determined. 

Substituting the expressions for ��(�) and its 
derivative ��� (�) and also the values of ��(�) and 
ℎ(�) in Eq. (20b), we have 

 
 

��� + 2���� = �(�) + 
 

+ ���
��� ��� +  ��� +  �� �����, �(�) =   

 
= − ���

��� ��  +  �
��� ��� +  �

��� ���� .     (22) 
 
Substituting the expressions for 

��(�), ��(�), �(�) in Eq. (20c), we obtain 
 
���

�����  ���� −  ��� +  ���� =  �− ���
��� ��  +

+ �
��� ��� +  �

��� ����� (�� +  ��� +  �� ��).  
 
Equating coefficients of like powers of X from 

both sides of the above equation, we obtain 
 

 ���
��� ��� = 0,                        (23) 

  
 ���
��� ���� = 0,                      (24) 

 
 �
��� ���� +  �

��� ���  −  �(���)
�����  = 0,         (25) 

 
 ���
��� ���� +  �(���)

�����  = 0,              (26) 
 

 �
��� ���  −  �(���)

�����  = 0 .             (27) 
 
 
From Eq.(23), we obtain �� = 0 and then Eq.(25) 

yields 

 �� =  ∓ (� − 1) � �
�����  .              (28) 

 
Further, from Eq. (27), we have 
 

 �� =  ± (� − 1) � �
� (�����)  .         (29) 

 
Using these values of �� and �� , Eq. (26) yields 

the constraint condition 
 

 � =  � ��

� (���)� .                         (30) 
 
Hence, we write 
 

 �� =  ± �(���)
�(���)  � �

�����  .              (31) 
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Substituting the values of �� � �� and �� in Eq. 
(21), we have 

 

��(�) =  ∓ (� � 1) � �
�� � ��  � ±  

 

± �(� � 1)
�(� � 1) � �

�� � ��  �� .  

                (32) 
As � = 1 and ��(�) = 1 in the present case, Eq. 

(17) yields 
��(�) � � = 0 

 
��� � =  ��

��  =  � ��(�)= 
 

=  ± (� � 1) � �
�� � ��  � ∓ 

 

∓ �(���)
�(���)  � �

�����  �� .                  (33) 

 
Integrating Eq. (33), we obtain the solutions 
 
 

�(�) = �(�) =  ± (� � 1)�
�� ⨯ 

 

⨯  �1 ±  ���� �(���)
�  � �

�����  (� �  ��)��   (34) 

 
and  
 

�(�) = �(�) =  ± (� � 1)�
��  ⨯ 

 

⨯ �1 ± ���� �(���)
�  � �

�����  (� �  ��)��         (35) 

 
 
where �� is an integration constant. 

Choosing �� = 0 and recalling that �(�� �) =
�(�) =  ��(�)� �

��� with � =  � � ��� we obtain kink 
and anti-kink soliton solutions of Eq. (1) as 

 
 

�(�� �) =  � ± (���)�
��  �1 ± ���� �(���)

�  � �
�����  (� � ��)���

�
���

                                   (36) 

 
 

and  
 

 

(�� �) =  � ± (���)�
��  �1 ± ���� �(���)

�  � �
�����  (� � ��)���

�
��� .                                       (37) 

 
 

These solutions are those obtained by Wazwaz 
[11]. 

One can try for solutions with � =  �� �� � which 
will become complicated. Attempts for solutions 
with � � � must be dropped out as algebraic 
equations with degrees greater than or equal to 5 are 
generally not solvable. 

 
Conclusion 
 
In this paper, the first integral method is 

successfully applied in finding exact solutions of 
generalized Klein-Gordon equation. The 
performance of this method is found to be effective 
and reliable. The method can be applied in finding 
exact solutions of many nonlinear evolution 

equations arising in the studies of social dynamics, 
science and engineering. One advantage of the 
method is that it is applicable to both integrable as 
well as non-integrable systems. 
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